REFERENCE DATA for # RADIO ENGINEERS fourth edition INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION 320 Park Avenue, New York 22, New York Copyright © 1943, 1946, and 1949 by Federal Telephone and Radio Corporation Copyright © 1956 by International Telephone and Telegraph Corporation Fourth Edition First Printing; September, 1956 Second Printing; January, 1957 Third Printing; March, 1957 Fourth Printing; July, 1957 Fifth Printing; December, 1959 Sixth Printing; November, 1960 Seventh Printing; July, 1961 Eighth Printing; September, 1962 All rights reserved. This book, or any part thereof, may not be reproduced in any form without permission of the publishers. Printed in United States of America by American Book—Stratford Press Incorporated New York, New York ## Foreword E. Washington Stewart III The first American edition of Reference Data for Radio Engineers was published by Federal Telephone and Radio Corporation in 1943. It was suggested by a 60-page brochure of that title issued in 1942 by Standard Telephones and Cables Limited, an English subsidiary of the International Telephone and Telegraph Corporation. Expanded American editions published in 1946 and 1949 were stimulated by the widespread acceptance of the book by practicing engineers and by universities, technical schools, and colleges, in many of which it has become an accepted text. This fourth edition is sponsored by the International Telephone and Telegraph Corporation in behalf of its research, engineering, and manufacturing companies throughout the world. Federal Telecommunication Laboratories Division of International Telephone and Telegraph Corporation has continued its major role of directing and approving the technical contents of all the editions published in the United States. While dominantly the cooperative efforts of engineers in the International System, some of the material was obtained from other sources. Acknowledgement is made of contributions to the third and fourth editions by J. G. Truxal of the Polytechnic Institute of Brooklyn; J. R. Ragazzini and L. A. Zadeh of Columbia University; C. L. Hogan and H. R. Mimno of Harvard University; P. T. Demos, E. J. Eppling, A. G. Hill, and L. D. Smullin of Massachusetts Institute of Technology, and by A. Abbot, M. S. Buyer, J. J. Caldwell, Jr., M. J. DiToro, S. F. Frankel, G. H. Gray, R. E. Houston, H. P. Iskenderian, R. W. Kosley, George Lewis, R. F. Lewis, E. S. McLarn, S. Moskowitz, J. J. Nail, E. M. Ostlund, B. Parzen, Haraden Pratt, A. M. Stevens, and A. R. Vallarino. Special credit is due to W. L. McPherson, who compiled the original British editions, and to H. T. Kohlhaas and F. J. Mann, editors of the first two and the third American editions, respectively. The present members of the International System who contributed to the fourth edition are listed on the following page. #### Editorial Board A. G. Kandoian, chairman L. A. deRosa G. A. Deschamps M. Dishal R. E. Gray W. W. Macalpine R. McSweeny W. Sichak H. P. Westman A. K. Wing, Jr. H. P. Westman, editor J. E. Schlaikjer, assistant editor # 4 FOREWORD #### International Telephone and Telegraph Corporation H. H. Buttner E. M. Delorgine E. D. Phinney #### Farnsworth Electronics Company A. Henderson H. Salinger #### Federal Telecommunication Laboratories | R. T. Adams | M. Dishal | G. R. Leef | R. L. Plouffe | |-----------------|----------------|-----------------|-----------------| | F. J. Altman | D. S. Duguid | D. J. LeVine | L. Pollock | | C. R. Brown | L. Feit | W. W. Macalpine | J. H. Reynolds | | T. G. Brown | R. E. Gray | T. J. Marchese | P. C. Sandretto | | J. H. Brundage | J. F. Heney | M. Masonson | E. J. Setescak | | T. F. Buck | R. B. Hoffman | C. R. Muller | W. Sichak | | F. X. Bucher | J. L. Jatlow | F. A. Muller | H. R. Terhune | | H. G. Busignies | A. G. Kandoian | H. G. Nordlin | N. S. Tierney | | A. G. Clavier | S. Klein | P. F. Panter | M. W. Wallace | | L. A. deRosa | P. P. Lantzy | H. A. Peretko | R. L. Whittle | | G. A. Deschamps | | | A. K. Wing, Jr. | #### Federal Telephone and Radio Company W. F. Bonner R. A. Felmly M. Lilienstein M. Enderlin W. H. Hawk K. R. Stephanz #### Kellogg Switchboard and Supply Company B. E. Swanson C. E. Wood ## Mackay Radio and Telegraph Company R. McSweeny C. E. Scholz G. T. Royden L. Spangenberg #### Standard Telecommunication Laboratories, Limited A. H. W. Beck #### Standard Telephones and Cables, Limited W. L. McPherson E. A. Richards C. E. Strong # Contents | Chapter 1 — Frequency data | 7 | |--|------| | Chapter 2 — Units, constants, and conversion factors | 29 | | Chapter 3 — Properties of materials | 41 | | Chapter 4 — Components | 76 | | Chapter 5 — Fundamentals of networks | 112 | | Chapter 6 — Filters, image-parameter design | 164 | | Chapter 7 — Filters, modern-network-theory design | 187 | | Chapter 8 — Filters, simple bandpass design | 236 | | Chapter 9 — Attenuators | 247 | | Chapter 10 — Bridges and impedance measurements | 263 | | Chapter 11 — Iron-core transformers and reactors | 271 | | Chapter 12 — Rectifiers and filters | 305 | | Chapter 13 — Magnetic amplifiers | 323 | | Chapter 14 — Feedback control systems | 344 | | Chapter 15 — Electron tubes | 367 | | Chapter 16 — Electron-tube circuits | 432 | | Chapter 17 — Semiconductors and transistors | 478 | | Chapter 18 — Transistor circuits | 499 | | Chapter 19 — Madulatian | 527 | | Chapter 20 — Transmission lines | 549 | | Chapter 21 — Waveguides and resonators | 617 | | Chapter 22 — Scattering matrixes | 644 | | Chapter 23 — Antennas | 662 | | Chapter 24 — Radio-wave propagation | 710 | | Chapter 25 — Radio noise and interference | 762 | | Chapter 26 — Broadcasting | 778 | | Chapter 27 — Radar fundamentals | 800 | | Chapter 28 — Wire transmssion | 816 | | Chapter 29 — Electroacoustics | 850 | | Chapter 30 — Digital computors | 879 | | Chapter 31 — Nuclear physics | 888 | | Chapter 32 — Miscellaneous data | 920 | | Chapter 33 — Information theory | 964 | | Chapter 34 — Probability and statistics | 981 | | Chapter 35 — Fourier waveform analysis | 1002 | | Chapter 36 — Maxwell's equations | 1025 | | Chapter 37 — Mathematical formulas | 1031 | | Chapter 38 — Mathematical tables | 1098 | ; . • # frequency spectrum # **■** Frequency data ## Wavelength-frequency conversion The graph given below permits conversion between frequency and wavelength; by use of multiplying factors such as those at the bottom of the page, this graph will cover any portion of the electromagnetic-wave spectrum. | for freque | for frequencies from | | multiply λ by | |----------------|----------------------|--------|---------------| | 0.03 - | 0.3 megacycles | 0.01 | 100 | | 0.3 - | 3.0 megacycles | 0.1 | 10 | | | 30 megacycles | 1.0 | 1.0 | | 30 - 30 | 00 megacycles | 10 | 0.1 | | 300 - 3,00 | 00 megacycles | 100 | 10.0 | | 3,000 - 30,00 | 00 megacycles | 1,000 | 0.001 | | 30,000 -300,00 | 00 megacycles | 10,000 | 0.0001 | #### Wavelength-frequency conversion continued #### Conversion formulas Propagation velocity $c \approx 3 \times 10^8$ meters/second Wavelength in meters $$\lambda_m = \frac{300,000}{f \text{ in kilocycles}} = \frac{300}{f \text{ in megacycles}}$$ Wavelength in feet $$\lambda_{fi} = \frac{984,000}{f \text{ in kilocycles}} = \frac{984}{f \text{ in megacycles}}$$ 1 Angstrom unit $$\mathring{A}=3.937\times 10^{-9}$$ inch $$=1\times 10^{-10} \quad \text{meter} \\ =1\times 10^{-4} \quad \text{micron}$$ 1 micron $$\mu = 3.937 \times 10^{-5}$$ inch = 1 × 10⁻⁶ meter = 1 × 10⁴ Angstrom units #### Nomenclature of frequency bands In accordance with the Atlantic City Radio Convention of 1947, frequencies should be expressed in kilocycles/second at and below 30,000 kilocycles, and in megacycles/second above this frequency. The band designations as decided upon at Atlantic City and as later modified by Comite Consultatif International Radio Recommendation No. 142 in 1953 are as follows | | | | 14 . 4 . 1 | | | |----------------|-----------|--------------|-----------------------|-----|-----------------------------------| | band
number | | uency
nge | metric
subdivision | fr | Atlantic City equency subdivision | | 4 | 3- | 30 kc | Myriametric waves | VLF | Very-low frequency | | 5 | 30 | 300 kc | Kilometric waves | LF | Low frequency | | 6 | 300- | 3,000 kc | Hectometric waves | MF | Medium frequency | | 7 | 3,000- | 30,000 kc | Decametric waves | HF | High frequency | | 8 | 30- | 300 mc | Metric waves | VHF | Very-high frequency | | 9 | 300 | 3,000 mc | Decimetric waves | UHF | Ultra-high frequency | | 10 | 3,000 | 30,000 mc | Centimetric waves | SHF | Super-high frequency | | 11 | 30,000- | 300,000 mc | Millimetric waves | EHF | Extremely-high frequency | | 12 | 300,000-3 | ,000,000 mc | Decimillimetric waves | _ | _ | Note that band ''N'' extends from 0.3×10^N to 3×10^N cy; thus band 4 designates the frequency range 0.3×10^4 to 3×10^4 cy. The upper limit is included in each band; the lower limit is excluded. Description of bands by means of adjectives is arbitrary and the CCIR recommends that it be discontinued, e.g., "ultra-high frequency" should not be used to describe the range 300 to 3000 mc. **Letter designations for frequency bands:** Letters such as X have been employed in the past to indicate certain bands. These terms were originally used for military secrecy, but they were later mentioned in general technical literature. Those most often used are shown in Fig. 4 of the chapter "Radar fundamentals." The letter designations have no official standing and the limits of the band associated with each letter are not accurately defined. ## Frequency allocations by international treaty For purposes of frequency allocations, the world has been divided into regions as shown in the figure. Regions defined in table of frequency allocations. Shaded area is the tropical zones The following table of frequency allocations pertains to the
western hemisphere (region 2). This allocation was adopted by the International Telecommunications Conference at Atlantic City in 1947 and was confirmed by the similar conference in Buenos Aires in 1952. An asterisk (*) following a service designation indicates that the allocation has been made on a world-wide basis. All explanatory notes covering region 2 as well as other regions have been omitted. For these explanatory notes consult the texts of the Atlantic City and Buenos Aires Conventions ## Frequency allocations by international treaty continued which may be purchased from the Secretary General, International Telecommunications Union, Palais Wilson, Geneva, Switzerland. Frequency assignments in the U.S.A. below 25 mc are in general accord with the following table. Above 25 mc, the U.S.A. assignments comply with the table, but the various bands have been subdivided among many services as shown in the listings on pages 12 to 15. Assignments of frequencies in each country are subject to many special conditions. For the U.S.A. consult the Rules and Regulations of the Federal Communications Commission, which may be purchased from the Superintendent of Documents, Government Printing Office, Washington 25, D.C. | kilocycle | s service | kilocycles | service | |------------|---|------------|-------------------------------------| | 10- 1 | Rodio navigation* | 3200- 3400 | Broadcasting,* Fixed,* Mo- | | 14- 7 | | | bile except aeronautical mo- | | 70- 9 | | | bile* | | 90- 11 | Fixed,* Maritime mobile,* Ra- | 3400- 3500 | Aeronautical mobile* | | | dio navig ati on* | 3500- 4000 | Amateur, Fixed, Mobile ex- | | 110- 16 | Fixed, Maritime mobile | ł | cept aeronautical | | 160- 20 |) Fixed | 4000- 4063 | Fixed* | | 200- 28 | | 4063 4438 | Maritime mobile* | | | nautical navigation | 4438- 4650 | Fixed, Mobile except aero- | | 285 - 32 | | | nautical | | 20.5 40 | beacons) | 4650- 4750 | Aeronautical mobile* | | 325- 40 | 5 Aeronautical mobile,* Aero-
nautical navigation* | 4750- 4850 | Broadcasting, Fixed | | 405- 41 | Aeronautical mobile, Aero- | 4850 4995 | Broadcasting,* Fixed,* Land mobile* | | | nautical navigation, Maritime | 4995- 5005 | Standard frequency* | | | navigation (radio direction finding) | 5005- 5060 | Broadcasting,* Fixed* | | 415 49 | | 5060- 5250 | Fixed* | | 490- 51 | | 5250- 5450 | Fixed, Land mobile | | 510- 53 | | 5450- 5480 | Aeronautical mobile | | 535- 160 | _ | 5480 5730 | Aeronautical mobile* | | 1605- 180 | | 5730- 5950 | Fixed* | | 1803 1800 | Fixed, Mobile | 5950- 6200 | Broadcasting* | | 1800- 200 | - | 6200- 6525 | Maritime mobile* | | .555 255 | cept aeronautical, Radio nav- | 6525- 6765 | Aeronautical mobile* | | | igation | 6765 7000 | Fixed* | | 2000- 206 | Fixed, Mobile | 7000- 7100 | Amateur* | | 2065- 210 | Maritime mobile | 7100- 7300 | Amateur | | 2105- 2300 | Fixed, Mobile | 7300- 8195 | Fixed* | | 2300- 249 | Broadcasting, Fixed, Mobile | 8195- 8815 | Maritime mobile* | | 2495- 2503 | Standard frequency | 8815- 9040 | Aeronautical mobile* | | 2505- 2850 | Fixed, Mobile | 9040- 9500 | Fixed* | | 2850- 315 | Aeronautical mobile* | 9500- 9775 | Broadcasting* | | 3155- 3200 | | 9775- 9995 | Fixed* | | | nautical mobile* | 9995-10005 | Standard frequency* | # Frequency allocations by international treaty continued | kilocycles | service | megacycles | service | |-------------|---|----------------------------|--| | 10005-10100 | Aeronautical mobile* | 88 - 100 | Broadcosting* | | 10100-11175 | Fixed* | 100 - 108 | Broadcasting | | 11175-11400 | Aeronautical mobile* | 108 - 118 | Aeronautical navigation* | | 11400-11700 | Fixed* | 118 - 132 | Aeronautical mobile* | | 11700-11975 | Broadcasting* | 132 - 144 | Fixed, Mobile | | 11975-12330 | Fixed* | 144 - 146 | Amateur* | | 12330-13200 | Maritime mobile* | 146 - 148 | Amateur | | 13200-13360 | Aeronautical mobile* | 148 - 174 | Fixed, Mobile | | 13360-14000 | Fixed* | 174 - 216 | Broadcasting, Fixed, Mo- | | 14000-14350 | Amateur* | | bile . | | 14350-14990 | Fixed* | 216 - 220 | Fixed, Mobile | | 14990-15010 | Standard frequency* | 220 - 225 | Amateur | | 15010-15100 | Aeronautical mobile* | 225 - 235 | Fixed, Mobile | | 15100-15450 | Broadcasting* | 235 - 328.6 | Fixed,* Mobile* | | 15450-16460 | Fixed* | 328.6- 335.4 | Aeronautical navigation* | | 16460-17360 | Maritime mobile* | 335.4- 420 | Fixed,* Mobile* | | 17360-17700 | Fixed* | 420 - 450 | Aeronautical navigation,* | | 17700-17900 | Broadcasting* | 400 440 | Amateur* | | 17900-18030 | Aeronautical mobile* | 450 - 460 | Aeronautical navigation,
Fixed, Mobile | | 18030-19990 | Fixed* | 460 - 470 | Fixed,* Mobile* | | 19990-20010 | Standard frequency* | 470 - 585 | Broadcasting* | | 20010-21000 | fixed* | 585 - 610 | Broadcasting | | 21000-21450 | Amateur* | 610 - 940 | Broadcasting* | | 21450-21750 | Broadcasting* | 940 - 960 | Fixed | | 21750-21850 | Fixed* | 960 - 1215 | Aeronautical navigation* | | 21850-22000 | Aeronautical fixed, Aero-
nautical mobile* | 1215 - 1300 | Amateur* | | 22000-22720 | Maritime mobile* | 1300 - 1660 | Aeronautical navigation | | 22720-23200 | Fixed* | 1660 - 1700 | Meteorological aids (radio- | | 23200-23350 | Aeronautical fixed,* Aero- | | sonde) | | | nautical mobile* | 1700 - 2300 | Fixed,* Mobile* | | 23350-24990 | Fixed,* Land mobile* | 2300 - 2450 | Amateur* | | 24990-25010 | Standard frequency* | 2450 - 2700 | Fixed,* Mobile* | | 25010-25600 | Fixed,* Mobile except aero- | 2700 – 2900 | Aeronautical navigation* | | | nautical* | 2900 - 3300 | Radio navigation* | | 25600-26100 | Broadcasting* | 3300 - 3500 | Amateur | | 26100-27500 | Fixed,* Mobile except aero-
nautical* | 3500 - 3900 | Fixed, Mobile | | 27500-28000 | Fixed, Mobile | 3900 - 4200 | Fixed,* Mobile* | | 28000-29700 | Amateur* | 4200 - 4400 | Aeronautical navigation* | | 20000-29700 | Anidieor | 4400 - 5000 | Fixed,* Mobile* | | | | 5000 - 5250
5250 - 5650 | Aeronautical navigation* Radio navigation* | | megacycles | service | 5650 - 5850 | Amateur* | | 29.7- 44 | Fixed, Mobile | 5850 - 5925 | Amateur | | 44 - 50 | Broadcasting, Fixed, Mobile | 5925 - 8500 | Fixed,* Mobile* | | 50 - 54 | Amateur | 8500 - 9800 | Radio navigation* | | 54 - 72 | Broadcasting, Fixed, Mobile | 9800 -10000 | Fixed,* Radio navigation* | | 72 - 76 | Fixed, Mobile | 10000 -10500 | Amateur* | | 76 - 88 | Broadcasting, Fixed, Mo- | Above 10500 | Not allocated by Atlantic | | | bile | 1 | City Convention | ## Frequency allocations above 25 mc in U.S.A. The following listings show the frequency bands above 25 mc allocated to various services in the U.S.A. as of 21 November 1956.* Note that many of these bands are shared by more than one service. #### Government Armed forces and other departments of the national government. | 24.99 - 25.01 | 34.00 - 35.00 | 162.00 - 174.00 | 4400 - 5000 | |---------------|-----------------|-----------------|---------------------| | 25.33 - 25.85 | 36.00 - 37.00 | 216.00 - 220.00 | 7125 - 850 0 | | 26.48 - 26.95 | 38.00 - 39.00 | 225.00 - 328.60 | 9800 - 10000 | | 27.54 - 28.00 | 40.00 - 42.00 | 335.40 - 400.00 | 13225 - 16000 | | 29.89 - 29.91 | 132.00 - 144.00 | 406.00 - 420.00 | 18000 - 21000 | | 30.00 - 30.56 | 148.00 - 152.00 | 1700 -1850 | 22000 - 26000 | | 32.00 - 33.00 | 157.05 - 157.25 | 22002300 | above 30000 | #### Public safety Police, fire, forestry, highway, and emergency services. | 27.23 - 27.28 | 42.00 - 42.96 | 453 - 454 | 3500 - 3700 | |---------------|-----------------|--------------------|---------------| | 30.84 - 32.00 | 44.60 - 47.68 | 458 - 4 5 9 | 6425 - 6875 | | 33.00 - 33.12 | 72.00 - 76.00 | 890 - 940 | 10550 - 10700 | | 33.40 - 34.00 | 153.74 - 154.46 | 952 - 960 | 11700 - 12700 | | 37.00 - 37.44 | 154.61 157.50 | 1850 - 1990 | 13200 - 13225 | | 37.88 - 38.00 | 158.70 — 162.00 | 2110 - 2200 | 16000 - 18000 | | 39.00 - 40.00 | 166.00 - 172.40 | 2450 - 2700 | 26000 - 30000 | #### Industrial Power, petroleum, pipe line, forest products, motion picture, press relay, builders, ranchers, factories, etc. | 25.01 - 25.33 | 42.96 - 43.20 | 171.80 - 172.00 | 2110 - 2200 | |---------------|-----------------|-----------------|---------------| | 27.255 | 47.68 - 50.00 | 173.20 173.40 | 2450 - 2700 | | 27.28 - 27.54 | 72.00 - 76.00 | 406.00 - 406.40 | 3500 - 3700 | | 29.70 - 29.80 | 152.84 - 153.74 | 412.40 - 412.80 | 6425 - 6875 | | 30.56 - 30.84 | 154.46 - 154.61 | 451.00 452.00 | 10550 - 10700 | | 33.12 - 33.40 | 158.10 - 158.46 | 456.00 - 457.00 | 11700 - 12700 | | 35.00 - 35.20 | 169.40 - 169.60 | 890 - 940 | 13200 - 13225 | | 35.72 - 35.96 | 170.20 - 170.40 | 952 - 960 | 16000 - 18000 | | 37.44 - 37.88 | 171.00 - 171.20 | 1850 -1990 | 26000 - 30000 | #### Land transportation Taxicabs, railroads, buses, trucks. | 27.255 | 152.24 - 152.48 | 952 - 960 | 6425 - 6875 | |---------------|-----------------|-------------|---------------| | 30.64 - 31.16 | 157.45 - 157.74 | 1850 - 1990 | 10550 - 10700 | | 35.68 - 35.72 | 159.48 - 161.85 | 2110 - 2200 | 11700 - 12700 | | 35.96 - 36.00 | 452 - 453 | 2450 - 2700 | 13200 - 13225 | | 43.68 - 44.60 | 457 - 458 | 3500 - 3700 | 16000 - 18000 | | 72.00 - 76.00 | 890 - 940 | | 26000 - 30000 | ^{*} These allocations are revised at frequent intervals. Specific information can be obtained from the Frequency Allocation and Treaty Division of the Federal Communications Commission; Washington 25, D. C ## Frequency allocations above 25 mc in U.S.A. #### Domestic public Message or paging services to persons and to individual stations, primarily mobile. | 35.20 - 35.68 | 157.74 - 158.10 | 2450 - 2500 | 11700 - 12200 | |-----------------|--------------------------|--------------------|---------------| | 43.20 - 43.68 | 158.46 — 158. 7 0 | 3500 - 3700 | 13200 - 13225 | | 152.00 - 152.24 | 454 – 455 | 6425 6 <i>5</i> 75 | 16000 - 18000 | | 152.48 -
152.84 | 459 - 460 | 10550 10700 | 26000 - 30000 | #### Citizens radio Personal radio services. #### Common carrier fixed Point-to-point telephone, telegraph, and program transmission for public use. | 26.955 | *76.00 - 88.00 | 2450 - 2500 | 10700 - 11700 | |---------------|----------------|---------------------|---------------| | 29.80 - 29.89 | †88 – 100 | 3700 4200 | 13200 - 13225 | | 29.91 - 30.00 | ‡98 – 108 | 59 25 - 6425 | 16000 - 18000 | | 72.00 - 76.00 | 716 - 940 | 10550 -10700 | 26000 - 30000 | ^{*} Territories of Alaska and Hawaii only. #### International control Links between stations used for international communication and their associated control centers. | 952 - 960 | 2100 - 2200 | . 6575 - 6875 | |-------------|-------------|---------------| | 1850 - 1990 | 2500 - 2700 | 12200 - 12700 | #### Television broadcastina ## Frequency-modulation broadcasting $$88 - 108$$ ## Television pickup, links, and intercity relay Studio-to-transmitter links, etc. [†] Territory of Alaska only. ‡ Territory of Hawaii only. ## Frequency allocations above 25 mc in U.S.A. con ## FM and standard broadcasting links and intercity relay Studio-to-transmitter links, etc. $$890 - 952$$ #### Standard broadcasting remote pickup | 25.85 - 26.48 | 166.0 - 170.2 | 455 - 456 | |-----------------|---------------|-----------| | 152 84 - 153 38 | 450.0 - 451.0 | | #### Aeronautical fixed | 29.80 - 29.89 | 2500 - 2700 | 12200 - 12700 | |---------------|---------------|---------------| | 29.91 - 30.00 | 6575 — 6875 | 13200 - 13225 | | 72.00 - 76.00 | 10550 — 10700 | 16000 - 18000 | | 2450 - 2500 | | 26000 - 30000 | #### Aeronautical, air-to-ground | 108 132 | 6425 - 6575 | 13200 - 13225 | |-------------|---------------|---------------| | 2450 - 2500 | 10550 - 10700 | 16000 - 18000 | | 3500 - 3700 | 11700 - 12200 | 26000 - 30000 | ## Flight-test telemetering ## Aeronautical radio navigation Instrument landing systems, ground control of approach, very-high-frequency omnidirectional range, tacan, etc. | 75.0 | 960 - 1215 | 2700 - 3300 | 5000 - 5650 | |---------------|-------------|-------------|-------------| | 108.0 - 118.0 | 1300 - 1660 | 4200 - 4400 | 8500 - 9800 | | 200 / 225 / | | | | ## Radio navigation and radio location Civilian radar, racon, etc. ## Meteorological aids Radiosondes, etc. #### Frequency allocations above 25 mc in U.S.A. continued #### Maritime Communication between ships and/or coastal stations. | 27.255 | 43.0 - 43.2 | *72.0 - 76.0 | 156.25 - 157.45 | |---------------|-------------|--------------|-----------------| | 35.04 - 35.20 | | | 161.85 - 162.00 | ^{*} For point-to-point use only. #### Amateur | 26.96 - 27.23 | 220 - 225 | 2300 - 2450 | 10000 - 10500 | |-----------------|-------------|-------------|---------------| | 28.00 - 29.70 | 420 - 450 | 3300 - 3500 | 21000 - 22000 | | 50.00 - 54.00 | 1215 - 1300 | 5650 - 5925 | Above 30000 | | 144.00 - 148.00 | | | | ## Industrial, scientific, and medical equipment | 27.12 | 915 | 5850 | 18000 | |-------|------|------|-------| | 40.68 | 2450 | | | # International call-sign prefixes | AMA—AOZ Spain APA—ASZ Pakistan India AXA—AXZ Commonwealth of Australia AXA—AZZ Republic of Argentina BAA—BZZ China CAA—CEZ Chile CFA—CKZ Conada CNA—CNZ Morocco CPA—CPZ Bolivia CQA—CRZ Portuguese Colonies CSA—CUZ Ortuguay CVA—CZZ Canada DAA—DMZ Germany DNA—DQZ Belgian Congo — Ruanda-Urundi DRA—DTZ Republics EA—EIZ Republics EIA—EIZ Republics EIA—EIZ Republics EIA—EIZ Republics FAA—FZZ Fronce and Colonies and Protectorates Republics HAA—HAZ Hungary HBA—HBZ Switzerland HCA—HDZ Ecuador HEA—HEZ Switzerland HCA—HDZ Ecuador HEA—HEZ Switzerland HCA—HDZ Hungary HBA—HBZ Switzerland HCA—HDZ Hungary HBA—HBZ Switzerland HCA—HDZ Ecuador HFA—HFZ Republic of Haiti Dominican Republic HIA—HIZ Dominican Republic HIA—HIZ Dominican Republic HIA—HIZ Republic of Colombia HCA—HDZ Republic of Colombia HCA—HDZ Republic of Panama HQA—HPZ Republic of Honduras HQA—HPZ Republic of Honduras HCA—HDZ HIA—HIZ Nicaragua HCA—HDZ Republic of Honduras HQA—HPZ Republic of Honduras HCA—HDZ HIA—HIZ Nicaragua HIA—HIZ HIA—HIX—HIX—HIX—HIX—HIX—HIX—HIX—HIX—HIX—HIX | AAA-ALZ | United States of America | I ETA-ETZ | Ethiopia | |--|---------|---------------------------|---------------|-----------------------------| | APA-ASZ ATA-AWZ AXA-AXZ Commonwealth of Australia AYA-AZZ Republic of Argentina BAA-BZZ China CAA-CEZ CAA-CEZ CAA-CEZ CAA-CZ CAA-CZ CAA-CZ CAA-CZ CAA-CX CUba CNA-CNZ COA-COZ CUba CYA-CZ CAA-CZ CAA-CZ CAA-CZ CAA-CZ CAA-CZ CAA-CZ CAA-CZ CAB-CI CAA-CY COB-CAC CAA-CY CAA- | | | | | | ATA-AVZ India AXA-AXZ Commonwealth of Australia AYA-AZZ Republic of Argentina AYA-AZZ Republic of Argentina CAA-CEZ China CAA-CEZ Chile CFA-CKZ Conada CNA-CNZ CNA-CNZ COA-COZ Cuba COA-COZ Cuba CPA-CPZ Bolivia CYA-CZZ CAA-CZZ Portuguay CYA-CZZ CAnada DAA-DMZ DNA-DAZZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republic DUA-DZZ EAA-EHZ EIA-EIZ EIA-EIZ EIA-EIZ EIA-EIZ EIA-EIZ EIA-EIZ ENA-EOZ EPA-EQZ ERA-ERZ Iran FAA-FZZ Fronce and Colonies and Protectorates GAA-GZZ Great Britain HAA-HAZ Hungary HAA-HBZ Switzerland HCA-HDZ Switzerland HCA-HDZ Fecudor HEA-HEZ Switzerland HCA-HDZ HAB-HEZ Switzerland HCA-HDZ HAB-HEZ Switzerland HCA-HDZ HAB-HEZ Switzerland HCA-HDZ HAB-HEZ Fooland HCA-HDZ HAB-HEZ Fooland HAA-HAZ Hungary HAA-HAZ Republic of Haiti HIA-HIZ Dominican Republic Fraq HOA-HPZ Republic of Panama HOA-HPZ Republic of Honduras Siam HAA-HAZ HIA-HIZ Nicaragua HVA-HVZ Vatican City State HVA-HVZ France and Colonies and Protectorates Fronce and Colonies Indiana Protectorates Fronce and Colonies Indiana Protectorates Fronce and Colonies Indiana I | | • | EUM-LLZZ | | | AXA-AXZ Commonwealth of Australia AYA-AZZ Republic of Argentina BAA-BZZ China CAA-CEZ Chile CFA-CKZ Conada CLA-CMZ Cuba CNA-CNZ CNA-CNZ COA-COZ CWB COA-COZ CPA-CPZ Bolivia CYA-CZZ CAnada CYA-CZZ DAA-DMZ DRA-DMZ DRA-DMZ DRA-DTZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republics Republics ELA-ELZ ELA-ELZ EMA-EOZ LIran LIrans ERA-ERZ LIrans ERA-ERZ LIrans Republics Re | | | E A: A :: E77 | | | AYA-AZZ Republic of Argentina BAA-BZZ China CAA-CEZ Chile CFA-CKZ Conada CLA-CMZ Cuba CNA-CNZ Cuba CPA-CPZ Bolivia CYA-CPZ Portuguese Colonies CYA-CZ Uruguay CYA-CZZ Canada DAA-DMZ Germany DNA-DQZ Belgian Congo - Ruanda-Urundi DRA-DTZ Republic DUA-DZZ Republic of the Philippines ELA-ELZ EAA-EHZ Union of Soviet Socialist Republics ELA-ELZ Republics ELA-EZ Union of Soviet Socialist Republics EVA-EQZ Iran EPA-EQZ Iran ERA-ERZ Union of Soviet Socialist Republics PA-EQZ Iran Republics Republ | | | 1777-177 | | | BAA-BZZ China CAA-CEZ Chile CAA-CEZ Chile CAA-CEZ Chile CAA-CKZ Conada CLA-CMZ Cuba CNA-CNZ Morocco COA-COZ Cuba CPA-CPZ Bolivia CSA-CUZ Portugal CVA-CXZ Uruguay CYA-CXZ Uruguay CYA-CZZ Canada DAA-DMZ Belgian Congo - Ruanda-Urundi DRA-DTZ Republic of the Philippines Beljan-Congo - Ruanda-Urundi Republic DUA-DZZ Republic of the Philippines ELA-ELZ Spain ELA-ELZ Republics ELA-ELZ Republics ELA-ELZ Republics ELA-EZ Union of Soviet Socialist Republics EVA-EXZ Urion of Soviet Socialist Republics ELA-EZ Republics ELA-EZ Republics ELA-EZ Republics ELA-EZ Republics ELA-EZ Union of Soviet Socialist Republics ELA-EZ Rep | | | CAA-C77 | | | CAA-CEZ Chile CFA-CKZ Conada CLA-CMZ Cuba CNA-CNZ CNA-CNZ COA-COZ CUba CPA-CPZ Bolivia CYA-CPZ CYA-CZ CA-CZ | | | | | | CFA-CKZ Conada CLA-CMZ CLA-CMZ CNA-CNZ CNA-CNZ CNA-CNZ CNA-CNZ CNA-CNZ CNA-CPZ Bolivia CPA-CPZ Bolivia CYA-CZ CSA-CUZ CYA-CZ CYA-CZ CYA-CZ CAnada DAA-DMZ DRA-DTZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republic DUA-DZZ EAA-EHZ EIA-EIZ EIA-EIZ EIA-ELZ EIA-ELZ ENA-EOZ ENA-EOZ RA-EOZ RA-CZ RA-EOZ RA-CZ RA-HZ | | | | | | CLA-CMZ Cuba CNA-CNZ Morocco COA-COZ Cuba CPA-CPZ Bolivia CQA-CRZ Portuguese Colonies CSA-CUZ Portuguay CYA-CZZ Uruguay CYA-CZZ Canada DA-DMZ Germany DNA-DQZ Belgian Congo - Ruanda-Urundi BRA-DTZ Republic DUA-DZZ Republic of the Philippines ELA-ELZ Republic of the
Philippines ELA-ELZ Republics ELA-ELZ Republics ELA-ELZ Republics ELA-ECZ Union of Soviet Socialist Republics ELA-EAZ Republic Of Colombia HIA-HIZ Republic of Popublic HOA-HPZ Republic of Honduras HAA-HZ Republic of | | | | | | CNA-CNZ COA-COZ Cuba CPA-CPZ Bolivia CQA-CRZ CQA-CRZ CYA-CXZ CYA-CXZ CYA-CXZ CYA-CXZ CYA-CXZ CYA-CXZ CYA-CXZ CYA-CXZ CYA-CXZ COnada DAA-DMZ DAA-DMZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republic BUA-DZZ EAA-EHZ EIA-EJZ EIA-EJZ EIA-ELZ EIA-ELZ EIA-ELZ EMA-EOZ ENA-EOZ ENA-EOZ Republics Republic | | | | | | COA-COZ CPA-CPZ Bolivia CSA-CUZ Portuguese Colonies CVA-CXZ Uruguay CYA-CZZ DAA-DMZ DNA-DMZ Belgian Congo - Ruanda-Urundi DRA-DTZ Republic DUA-DZZ EAA-EHZ EIA-EJZ EIA-EJZ EIA-ELZ Republics Republics ELA-ELZ Republics FA-EQZ RA-ERZ Union of Soviet Socialist Republics Republic of Colombia Republic of Panama Republic of Panama Republic of HNA-HNZ Republic of Panama Republic of HNA-HNZ Republic of Panama Republic of HNA-HNZ Republic of Esalvador Valcan City State Republics Republics Republics Republics Republics Republics Republics Republics Republics Republic of Republics Republics Republics Republics Republics Republic of Republics Republic of Republics Republic of Republics Republic of Re | | | | | | CPA-CPZ CQA-CRZ CQA-CRZ Portuguese Colonies Portugual CVA-CXZ CYA-CZZ Canada DAA-DMZ DNA-DQZ DRA-DTZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republic DUA-DZZ EAA-EHZ EIA-EJZ EIA-EJZ EIA-ELZ Republic of the Philippines HHA-HHZ Republic of Colombia HHA-HHZ Republic of Colombia HNA-HNZ Republic of Panama Republic of Honduras HVA-HVZ Republic of Fanama Republic of El Salvador HVA-HVZ France and Colonies and Protectoraries HZA-HZZ Kingdom of Saudi Arabia Italy and Colonies JAA-JSZ Japan JTA-JVZ Mongolian People's Republic JWA-JXZ Norway JYA-JYZ Norway JYA-JYZ Netherlands New Guinea | | | | | | CQA-CRZ CSA-CUZ CYA-CZZ CYA-CZ CYA-CZZ CYA-CZZ CYA-CZZ CYA-CZZ CYA-CZZ CYA-CZZ CYA-CZZ CYA-CZ CYA-CZZ CYA-CZ CYA-CZZ CYA-CZZ CYA-CZZ CYA-CZ CYA-CZC CYA-CZC CYA-CZ | | | | | | CSA-CUZ Vortugal Uruguay CYA-CZZ Canada DAA-DMZ Germany DNA-DQZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republic Republic HUA-HZ Republic of Honduras Siam HUA-HZ Republic of Honduras Siam HUA-HZ Republic of Honduras Siam HUA-HZ Republic of HuA-HZ Republic of HuA-HZ Republic of HuA-HZ Republic of El Salvador HVA-HZ Vatican City State HWA-HZ Republic of El Salvador HVA-HZ Vatican City State HWA-HZ Republic of El Salvador HVA-HZ Vatican City State HWA-HZ France and Colonies and Protectorates Republics HZA-HZZ Republics HZA-HZZ Republics IAA-IZZ Italy and Colonies IAAA-IZZ Italy IAA-IZZ Italy IAAA-IZZ Italy IAAA-IZZ Italy IAAA-IZZ Italy IAAA-IZ | | | | | | CVA-CXZ Uruguay CYA-CZZ Canada DAA-DMZ Germany DNA-DQZ Belgian Congo - Ruanda-Urundi DRA-DTZ Republic DUA-DZZ Republic of the Philippines EIA-EIZ Ireland EKA-EKZ Union of Soviet Socialist Republics ELA-ELZ Republics ELA-ELZ Republics ELA-ECZ Union of Soviet Socialist Republics ERA-ERZ Republic Of Ponderion ERA-ERZ Union of Soviet Socialist Republic Of ERA-ERZ Siam ERA-ERZ Siam ERA-ERZ Siam | | | | | | CYA-CZZ Canada DAA-DMZ Germany DNA-DQZ Belgian Congo - Ruanda-Urundi BR-DTZ Republic DUA-DZZ Republic of the Philippines EIA-EIZ Ireland EIA-ELZ Republics ELA-ELZ Republics ELA-ELZ Republics ELA-ELZ Republics ELA-ECZ Union of Soviet Socialist Republics EPA-EQZ Iran EPA-EQZ Iran EPA-EQZ Iran ENA-ENZ Canada HNA-HNZ fraq HOA-HPZ Republic of Honduras HNA-HNZ Nicaragua HUA-HUZ Republic of El Salvador HVA-HVZ Vatican City State France and Colonies and Protectorates HZA-HZZ Kingdom of Saudi Arabia Italy and Colonies JAA-JSZ Japan JTA-JVZ Mongolian People's Republic JWA-JXZ Norway JYA-JYZ Hashimite Kingdom of Jordan Republics Netherlands New Guinea | | | | | | DAA-DMZ DNA-DQZ DRA-DTZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republic DUA-DZZ Republic of the Philippines EIA-EIZ EIA-EIZ EIA-ELZ EIA-ELZ EIA-ELZ EMA-EOZ Union of Soviet Socialist Republics EPA-EQZ ERA-ERZ Union of Soviet Socialist Republics Republics Republics Republics Republics Republics Republics HOA-HPZ HQA-HRZ Republic of Honduras HA-HTZ Republic of El Salvador HVA-HVZ HVA-HVZ France and Colonies and Protecforatës HZA-HZZ Kingdom of Saudi Arabia Italy and Colonies JAA-JSZ Japan JTA-JVZ Mongolian People's Republic JWA-JXZ Norway JYA-JYZ Hashimite Kingdom of Jordan Republics Netherlands New Guinea | | | | | | DNA-DQZ DRA-DTZ Belgian Congo - Ruanda-Urundi Byelorussian Soviet Socialist Republic DUA-DZZ EAA-EHZ EIA-EJZ EIA-ELZ ELA-ELZ ELA-ELZ EMA-EOZ Union of Soviet Socialist Republics EAA-EOZ EAA-EOZ Union of Soviet Socialist Republics EAA-EOZ Union of Soviet Socialist Republics EAA-EOZ Union of Soviet Socialist Republics EVA-EOZ Union of Soviet Socialist Republics EVA-IZZ UNION of Soviet Socialist Republics IVA-IVZ Iva-IVA-IVA Iva-IVA Iva-IV | | | | | | DRA-DTZ Republic Republic Republic of the Philippines REA-EHZ EAA-EHZ EKA-EKZ Republics Republic of El Salvador Idea Na-HZZ Ital-HZZ Ital-HZZ Ital-HZZ Ital-HZZ Ital-HZZ Ital-HZZ Ital-HZZ Ital-HZ | | • | | | | Republic DUA-DZZ EAA-EHZ EIA-EJZ EIA-EKZ EVA-EKZ EVA-EKZ EVA-ECZ EVA-E | | | | | | DUA-DZZ EAA-EHZ Spain Ireland Ireland ELA-EKZ ELA-EKZ ELA-EKZ ELA-ELZ ENA-EOZ ENA-EOZ ENA-EOZ ENA-EOZ ERA-ERZ Union of Soviet Socialist Republics Ireland Republics Ireland Ir | DRA-DIZ | | | | | EAA-EHZ EIA-EJZ Ireland Ireland Ireland Ireland InvA-HYZ Ireland Irela | | | | | | EIA—EJZ Ireland Union of Soviet Socialist Republics Republic of Liberia IAA—IZZ Italy and Colonies ITA—IZZ | | | | | | EKA-EKZ Union of Soviet Socialist Republics HZA-HZZ Kingdom of Saudi Arabia ELA-ELZ Republic of Liberia IAA-IZZ Italy and Colonies EMA-EOZ Union of Soviet Socialist EPA-EQZ Iran JWA-JXZ Norway ERA-ERZ Union of Soviet Socialist Republics JYA-JYZ Hashimite Kingdom of Jordan Republics JZA-JZZ Netherlands New Guinea | | | | | | Republics HZA-HZZ Kingdom of Saudi Arabia ELA-ELZ Republic of Liberia IAA-IZZ Italy and Colonies EMA-EOZ Union of Soviet Socialist Republics ITA-JYZ Mongolian People's Republic EPA-EQZ Iran JWA-JXZ Norway JYA-JYZ Hashimite Kingdom of Jordan Republics JZA-JZZ Netherlands New Guinea | | | HWA-HYZ | | | ELA—ELZ Republic of Liberia IAA—IZZ Italy and Colonies EMA—EOZ Union of Soviet Socialist Republics IJAA—JSZ Japan Iran JWA—JXZ Mongolian People's Republic ERA—ERZ Union of Soviet Socialist JWA—JXZ Hashimite Kingdom of Jordan Republics JZA—JZZ Netherlands New Guinea | EKA-EKZ | | | | | EMA-EOZ Union of Soviet Socialist Republics JAA-JSZ Japan JTA-JVZ Mongolian People's Republic JWA-JXZ Norway ERA-ERZ Union of Soviet Socialist Republics JZA-JZZ Netherlands New Guinea | | | | | | Republics JTA—JYZ Mongolian People's Republic EPA—EQZ Iran JWA—JXZ Norway ERA—ERZ Union of Soviet Socialist Republics JZA—JZZ Netherlands New Guinea | | | | Italy and Colonies | | EPA-EQZ Iran JWA-JXZ Norway ERA-ERZ Union of Soviet Socialist JYA-JYZ Hashimite Kingdom of Jordan Republics JZA-JZZ Netherlands New Guinea | EMA-EOZ | Union of Soviet Socialist | JAA-JSZ | Japan | | ERA-ERZ Union of Soviet Socialist JYA-JYZ Hashimite Kingdom of Jordan Republics JZA-JZZ Netherlands New Guinea | | Republics | JTA-JVZ | Mongolian People's Republic | | Republics JZA-JZZ Netherlands New Guinea | | | JWA-JXZ | | | | ERA-ERZ | Union of Soviet Socialist | JYA-JYZ | | | ESA-ESZ Estonia KAA-KZZ United States of America | | Republics | JZA-JZZ | Netherlands New Guinea | | | ESA-ESZ | Estonia | KAA–KZZ | United States of America | # International call-sign prefixes continued | LAA-LNZ | Norway | XVA-XVZ | Viet-Nam | |----------|---------------------------|----------|------------------------------| | LOA-LWZ | Argentine Republic | XWA-XWZ | Laos | | LXA-LXZ | Luxembourg | XXA-XXZ | Portuguese Colonies | | LYA-LYZ | Lithuania | XYA-XZZ | Burma | | LZALZZ | Bulgaria | YAA-YAZ | Afghanistan | | MAA-MZZ | Great Britain | YBA-YHZ | Indonesia | | NAA-NZZ | United States of America | YIA-YIZ | Iraq | | OAA-OCZ | Peru | YJA-YJZ | New Hebrides | | ODA-ODZ | Republic of Lebanon | YKA-YKZ | Syria | | OEA-OEZ | Austria | YLA-YLZ | Latvia | | OFA-OJZ | Finland | YMA-YMZ | Turkey | | OKA-OMZ | Czechoslovakia | YNA-YNZ | Nicaragua | | ONA-OTZ | Belgium and Colonies | YOA-YRZ | Roumania | | OUA-OZZ | Denmark | YSA-YSZ | Republic of El Salvador | | PAA-PIZ | Netherlands | YTA-YUZ | Yugoslavia | | PJA-PJZ | Netherlands Antilles | YVA-YYZ | Venezuela | | PKA-POZ | Republic of Indonesia | YZA-YZZ | Yugoslavia | | PPA-PYZ | Brazil | ZAA-ZAZ | Albania | | | Surinam | ZBA-ZJZ | British Colonies and | | PZA-PZZ | (Service abbreviations) | ZUA ZIZ | Protectorates | | QAA-QZZ | Union of Soviet Socialist | ZKA-ZMZ | New Zealand | | RAA-RZZ | | ZNA-ZOZ | British Colonies and | | 044 5147 | Republics | 2147-202 | Protectorates | | SAA-SMZ | Sweden | ZPA-ZPZ | Paraguay | | SNA-SRZ | Poland | ZQA-ZQZ | British Colonies and | | SSA-SUZ | Egypt | ZWA-ZWZ | Protectorates | | SVA-SZZ | Greece | 704 7117 | Union of South Africa | | TAA-TCZ | Turkey | ZRA-ZUZ | Brazil | | TDA-TDZ | Guatemala | ZVA-ZZZ | | | TEA-TEZ | Costa Rica | 2AA-2ZZ | Great Britain | | TFA-TFZ | Icelond | 3AA-3AZ | Principality of Monaco | | TGA-TGZ | Guatemala | 3BA-3FZ | Canada
Chile | | THA-THZ | France and Colonies and | 3GA-3GZ | ····· | | | Protectorates | 3HA-3UZ | China | | TIA-TIZ | Costa Rica | 3VA-3VZ | Tunisia | | TJA-TZZ | France and Colonies and | 3WA-3WZ | Viet-Nam | | | Protectorates | 3YA-3YZ | Norway | | UAA-UQZ | Union of Soviet Socialist | 3ZA-3ZZ | Poland | | | Republics | 4AA-4CZ | Mexico | | URA-UTZ | Ukranian Soviet Socialist | 4DA-4IZ | Republic of the Philippines | | | Republic | 4JA-4LZ | Union of Soviet Socialist | | UUA-UZZ | Union of Soviet Socialist | I | Republics | | | Republics | 4MA-4MZ | Venezuela | | VAA-VGZ | Canada | 4NA4OZ | Yugoslavia | | VHA-VNZ | Commonwealth of Australia | 4PA-4SZ | Ceylon | | VOA-VOZ | Canada | 4TA-4TZ | Peru | | VPA-VSZ | British Colonies and | 4UA-4UZ |
United Nations | | | Protectorates | 4VA-4VZ | Republic of Haiti | | VTA-VWZ | India | 4WA-4WZ | Yemen | | VXA-VYZ | Canada | 4XA-4XZ | Israel | | VZA-VZZ | Commonwealth of Australia | 4YA-4YZ | International Civil Aviation | | WAA-WZZ | United States of America | | Organization | | XAA-XIZ | Mexico | 5AA-5AZ | Libya | | XJA-XOZ | Canada | 5CA-5CZ | Morocco | | XPA-XPZ | Denmark | 6AA-6ZZ | (Not allocated) | | XQA-XRZ | Chile | 7AA-7ZZ | (Not allocated) | | XSA-XSZ | China | 8AA-8ZZ | (Not allocated) | | XTA-XTZ | France and Colonies and | 9AA-9AZ | San Marino | | AIA AIL | Protectorates | 9NA-9NZ | Nepal | | XUA-XUZ | Cambodia | 9SA-9SZ | Saar | | NON NOL | · | | | # Frequency tolerances Atlantic City, 1947 | frequency band | type of service and power | tolerance in percent | |----------------|--|----------------------| | 10-535 kc | Fixed stations | | | | 10-50 kc | 0.1 | | | 50 kc-end of band | 0.02 | | | 50 kc-end of band | 0.02 | | | Land stations | | | | Coast stations | | | | Power > 200 watts | 0.02 | | | Power < 200 watts | 0.05 | | | Aeronautical stations | 0.02 | | | Mobile stations | | | | Ship stations | 0.1 | | | Aircraft stations | 0.05 | | | Emergency (reserve) ship transmitters, and lifeboat, lifecraft, and survival-craft | | | | transmitters | 0.5 | | | Radionavigation stations | 0.02 | | | Broadcasting stations | 20 cycles | | 535–1605 kc | Broadcasting stations | 20 cycles | | 1605–4000 kc | Fixed stations | | | | Power > 200 watts | 0.005 | | | Power < 200 watts | 0.01 | | | Land stations | | | | Coast stations | | | | Power > 200 watts | 0.005 | | | Power < 200 watts | 0.01 | | | Aeronautical stations | | | | Power > 200 watts | 0.005 | | | Power < 200 watts | 0.01 | | | Base stations | | | | Power > 200 watts | 0.005 | | | Power < 200 watts , | 0.01 | | | Mobile stations | | | | Ship stations | 0.02 | | | Aircraft stations | 0.02 | | | land mobile stations | 0.02 | | | 70.7 | 0.02 | | | Radionavigation stations | | | | Power > 200 watts | 0.005 | | | Power < 200 watts | 0.01 | | | Broadcasting stations | 0.005 | #### Frequency tolerances continued | frequency band | type of service and power | tolerance in percent | |----------------|--|----------------------| | 4000-30,000 kc | Fixed stations | | | | Power > 500 watts | 0.003 | | | Power < 500 watts | 0.01 | | | Land stations | | | | Coast stations | 0.005 | | | Aeronautical stations | | | | Power > 500 watts | 0.005 | | | Power < 500 watts | 0.01 | | | Base stations | | | | Power > 500 watts | 0.005 | | | Power < 500 watts | 0.01 | | | Mobile stations | | | | Ship stations | 0.02 | | | Aircraft stations | 0.02 | | | Land mobile stations | 0.02 | | | Transmitters in lifeboats, lifecraft, and sur- | | | | vival craft | 0.02 | | | Broadcasting stations | 0.003 | | 30-100 mc | Fixed stations | 0.02 | | | Land stations | 0.02 | | | Mobile stations | 0.02 | | | Radionavigation stations | 0.02 | | | Broadcasting stations | 0.003 | | 100-500 mc | Fixed stations | 0.01 | | | Land stations | 0.01 | | | Mobile stations | 10.0 | | | Radionavigation stations | 0.01 | | | Broadcasting stations | 0.02 | | | broadcasting stations | 0.003 | | 500-10,500 mc | | 0.75 | Note: Requirements in the U.S.A. with respect to frequency tolerances are in all cases at least as restrictive (and for some services more restrictive) than the tolerances specified by the Atlantic City Convention. For details consult the Rules and Regulations of the Federal Communications Commission. ## Intensity of harmonics Atlantic City, 1947 In the band 10–30,000 kilocycles, the power of a harmonic or a parasitic emission supplied to the antenna must be at least 40 decibels below the power of the fundamental. In no case shall it exceed 200 milliwatts (mean power). For mobile stations, endeavor will be made, as far as it is practicable, to reach the above figures. ## **Designation of emissions** Emissions are designated according to their classification and the width of the frequency band occupied by them. Classification is according to type of modulation, type of transmission, and supplementary characteristics. | type of modulation | type of transmission | supplementary
characteristics | symbol | |-------------------------|---|--|--------| | Amplitude | Absence of any modulation | | A0 | | modulation | Telegraphy without the use of modulating audio frequency (on-off keying) | | A1 | | | Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated emission (Special case: An unkeyed modulated emission.) | | A2 | | | Telephony | Double sideband, full carrier | A3 | | | | Single sideband, re-
duced carrier | A3a | | | - B | Two independent sidebands, reduced carrier | A3b | | | Facsimile | | A4 | | | Television | | A5 | | | Composite transmissions and cases not covered by the above | | A9 | | | Composite transmissions | Reduced carrier | A9c | | Frequency
(or phase) | Absence of any modulation | | FO | | modulation | Telegraphy without the use of modulating audio frequency (frequency-shift keying) | | Fì | | | Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated emission (Special case: An unkeyed emission modulated by | | | | | audio frequency.) | | F2 | | | Telephony | | F3 | | | Facsimile | | F4 | | | Television | | F5 | | | Composite transmissions and cases not covered by the above | | F9 | #### Designation of emissions continued | type of modulation | type of transmission | supplementary
characteristics | symbol | |---------------------|--|--|--------| | Pulse
modulation | Absence of any modulation intended to carry information | | PO | | | Telegraphy without the use of modulating audio frequency | | PI | | | Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated pulse (Special case: An unkeyed modulated pulse.) | Audio frequency or
audio frequencies
modulating the pulse
in amplitude | P2d | | | | Audio frequency or audio frequencies modulating the width of the pulse | P2e | | | | Audio frequency or
audio frequencies
modulating the phase
for position) of the
pulse | P2f | | | Telephony | Amplitude modulated | P3d | | | | Width modulated | РЗө | | | | Phase (or position)
modulated | P3f | | | Composite transmission and cases not covered by the above | | P9 | Note: As an exception to the above principles, damped waves are designated by B. Wherever the full designation of an emission is necessary, the symbol for that class of emission, as given above, is prefixed by a number indicating the necessary bandwidth in kilocycles occupied by it. Bandwidths of 10 kilocycles or less shall be expressed to a maximum of two significant figures after the decimal. The necessary bandwidth is that required in the over-all system, including both the transmitter and the receiver, for the proper reproduction at the receiver of the desired information and does not necessarily indicate the interfering characteristics of an emission. The following tables present some examples of the designation of emissions as a guide to the principles involved. #### Designation of emissions continued | description | designation | |---|-------------| | Telegraphy 25 words/minute, international Morse code, carrier modulated by keying only | 0.1AI | | Telegraphy, 525-cycle tone, 25 words/minute, international Morse code, carrier and tone keyed or tone keyed only | 1.15A2 | | Amplitude-modulated telephony, 3000-cycle maximum modulation, double sideband, full carrier | 6A3 | | Amplitude-modulated telephony, 3000-cycle maximum modulation, single sideband, reduced carrier | 3A3a | | Amplitude-modulated telephony, 3000-cycle maximum modulation, two independent sidebands, reduced carrier | 6A3b | | Vestigial-sideband television (one sideband partially suppressed), full carrier (including a frequency-modulated sound channel) | 6000A5, F3 | | Frequency-modulated telephony, 3000-cycle modulation frequency, 20,000-cycle deviation | 46F3 | | Frequency-modulated telephony, 15,000-cycle modulation frequency, 75,000-cycle deviation | 180F3 | | One-microsecond pulses, unmodulated, assuming a value of $K=5$ | 10000P0 | ## Determination of bandwidth Atlantic City, 1947 For the determination of the necessary bandwidth, the following table may be considered as a guide. In the formulation of the table, the following working terms have been employed: - B = telegraph speed in bauds (see pp. 541 and 846) - N/T = maximum possible number of black+white elements to be transmitted per second, in facsimile and television - M = maximum modulation frequency expressed in cycles/second - D= half the difference between the maximum and minimum values of the instantaneous frequencies; D being greater than 2M, greater than N/T, or greater than B, as the case may be. Instantaneous frequency is the rate of change of phase - t = pulse length expressed in seconds - K = over-all numerical factor that differs according to the emission and depends upon the allowable signal distortion and, in television, the time lost from the inclusion of a synchronizing signal # Determination of bandwidth continued # Amplitude modulation | | | examples | |
--|---|--|-------------------------| | description
and class
of emission | necessary bandwidth in
cycles/second | details | designation of emission | | Continuous-
wave | Bandwidth = BK | Morse code at 25 words/minute, $B = 20$; | | | telegraphy
A1 | K = 5 for fading circuits
= 3 for nonfading circuits | bandwidth = 100 cycles | 0.1A1 | | | — 3 for nonlading circuits | Four-channel multiplex with 7-
unit code, 60 words/minute/chan-
nel, B = 170, K = 5; | | | | | bandwidth = 850 cycles | 0.85A1 | | Telegraphy
modulated | Bandwidth = $BK + 2M$ | Morse code at 25 words/minute, 1000-cycle tone, B = 20; | | | at audio
frequency
A2 | where K = 5 for fading circuits = 3 for nonfading circuits | bandwidth = 2100 cycles | 2.1A2 | | Commercial telephony | Bandwidth = M for single sideband | For ordinary single-sideband telephony, | | | A3 | = 2M for dou-
ble sideband | M = 3000 | 3A3a | | | | For high-quality single-sideband telephony, | | | | | M = 4000 | 4A3a | | Broadcasting
A3 | Bandwidth = 2M | M is between 4000 and 10,000 depending upon the quality desired | 8A3 to 20A3 | | Facsimile,
carrier mod-
ulated by
tone and by
keying
A4 | Bandwidth = $\frac{KN}{T} + 2M$
where $K = 1.5$ | Total number of picture elements (black+white) transmitted per second = circumference of cylinder (height of picture) × lines/unit length × speed of cylinder rotation (revolutions/second). If diameter of cylinder = 70 millimeters, lines/millimeter = 3.77, speed of rotation = 1/second, frequency of modulation = 1800 cycles; | | | | | bandwidth = 3600 + 1242
= 4842 cycles | 4.84A4 | | Television
A5 | Bandwidth = KN/T where K = 1.5 (This allows for synchronization and filter shaping.) Note: This band can be reduced when asymmetrical | Total picture elements (black + white) transmitted per second = number lines forming each image × elements/line × pictures transmitted/second. If lines = 500, elements/line = 500, pictures/second = 25; | | | | transmission is employed | bandwidth≈ 9 megacycles | 9000A5 | #### Determination of bandwidth continued ## Frequency modulation | | | examples | | |---|--|--|-------------------------| | description
and class
of emission | necessary bandwidth in cycles/second | details | designation of emission | | Frequency-
shift
telegraphy* | Bandwidth = $BK + 2D$ where | Morse code at 100 words/ minute. B = 80, K = 5, D = 425; | | | FÎ | K = 5 for fading circuits = 3 for nonfading circuits | bandwidth = 1250 cycles | 1.25F1 | | | | Four-channel multiplex with 7-unit code, 60 words/minute/channel. Then, $B=170$, $K=5$, $D=425$; | | | | | bandwidth = 1700 cycles | 1.7F1 | | Commercial
telephony
and broad- | Bandwidth = $2M + 2DK$
For commercial telephony, | For an average case of commercial telephony, with $D = 15,000$ and $M = 3000$; | | | casting
F3 | K = 1. For high-fidelity
transmission, higher values
of K may be necessary | bandwidth = 36,000 cycles | 36F3 | | Facsimile
F4 | Bandwidth $= \frac{KN}{T} + 2M + 2D$ where | (See facsimile, amplitude modula-
tion.) Cylinder diameter = 70 milli-
meters, lines/millimeter = 3.77,
cylinder rotation speed = 1/sec-
ond, modulation tone = 1800 cy- | | | | K = 1.5 | cles, $D = 10,000$ cycles; | | | | | bandwidth≈ 25,000 cycles | 25F4 | | Unmodulated
pulse
P0 | Bandwidth = 2K/t where K varies from 1 to 10 according to the permissible deviation in each particular case from a rectangular pulse shape. In many cases the value of K need not ex- ceed 6 | $t = 3 \times 10^{-6}$ and $K = 6$;
bandwidth = 4×10^{6} cycles | 4000P0 | | Modulated
pulse
P2 or P3 | Bandwidth depends upon the particular types of modulation used | | | ^{*} CCIR Recommendation No. 87 (London, 1953) for F1 emission was Bandwidth = 0.5B + 2.5D for 2.5 < 2D/B < 8Bandwidth = 2.58 + 2.0D for 8 < 2D/B < 20 ## Standard frequencies and time signals #### WWV and WWVH* as of March, 1956 The National Bureau of Standards operates radio stations WWV (near Washington, D.C.) and WWVH (Maui, Hawaii) which transmit standard radio frequencies, standard time intervals, time announcements, standard musical pitch, standard audio frequencies, and radio propagation notices. Standard frequencies are transmitted continuously day and night except as follows: WWV is silent for approximately 4 minutes beginning at 45 minutes \pm 15 seconds after each hour. WWVH is silent for 4 minutes following each hour and each half hour. WWVH is silent for 34 minutes each day beginning at 1900 UT (Universal Time). Vertical dipole antennas are employed and 100-percent amplitude double-sideband modulation is used for second pulses and announcements. The audio tones on WWV are transmitted as a single upper sideband with full carrier. Power output from the sideband transmitter is about one-third of the carrier power. | standard
frequency in mc | WWV
power in kw | WWVH
power in kw | |-----------------------------|--------------------|---------------------| | 0.5 | 0.7 | | | 2.5 | 0.7 | | | 5 | 8.0 | 2.0 | | 10 | 9.0 | 2.0 | | 15 | 9.0 | 2.0 | | 20 | 1.0 | _ | | 25 | 0.1 | | Audio frequencies and musical pitch: Two standard audio frequencies, 440 and 600 cycles per second, are broadcast on all carrier frequencies. The audio frequencies are given alternately, starting with 600 cycles on the hour for 3 minutes, interrupted 2 minutes, followed by 440 cycles for 3 minutes, ^{*} Based on U.S. Dept. of Commerce, National Bureau of-Standards, Letter Circular LC 1009 with corrections. Information on these services may be obtained from the Radio Standards Division, National Bureau of Standards; Boulder, Colorado. and interrupted 2 minutes. Each 10-minute period is the same. The 440-cycle tone is the standard musical pitch A above middle C. Time signals and standard time intervals: The audio frequencies are interrupted for intervals of precisely 2 minutes. They are resumed precisely on the hour and each 5 minutes thereafter. They are in agreement with the basic time service of the U.S. Naval Observatory so that they mark accurately the hour and the successive 5-minute periods. Universal Time (Greenwich Civil Time or Greenwich Mean Time) is announced in international Morse code each five minutes starting with 0000 (midnight). Time announcements in Morse code are given just prior to and refer to the moment of return of the audio frequencies. A voice announcement of Eastern Standard Time is given each 5 minutes from station WWV; this precedes and follows each telegraphic-code announcement. A pulse or tick, of 0.005-second duration, occurs at intervals of precisely 1 second. Each pulse on WWV consists of 5 cycles of 1000-cycle tone and each pulse on WWVH consists of 6 cycles of 1200-cycle tone. The tones of WWV are interrupted precisely 40 milliseconds each second except at the beginning and end of each 3-minute tone interval. The time pulse commences precisely 10 milliseconds after commencement of the 40-millisecond interruption. An additional pulse, 0.1 second later, is transmitted to identify the beginning of each minute. No pulse is transmitted at the beginning of the last second of each minute. **Accuracy:** Frequencies transmitted from WWV and WWVH are accurate to within 1 part in 10^8 ; this is with reference to the mean solar second, 100-day interval, as determined by the U.S. Naval Observatory with a precision of better than 3 parts in 10^9 . Time intervals, as transmitted, are accurate within \pm 2 parts in $10^8 + 1$ microsecond. Frequencies received may be as accurate as those transmitted for several hours per day during total light or total darkness over the transmission path at locations in the service range. During the course of the day, errors in the received frequencies may vary approximately between -3 to +3 *One-minute announcement intervals: - North Atlantic propagation notice at 19.5 and 49.5 minutes post each hour. - North Pacific propagation notice at 9 and 39 minutes past each hour. Audio frequencies and announcements of WWV and WWVH. parts in 10⁷. During ionospheric storms, transient conditions in the propagating medium may cause momentary change as large as 1 part in 10⁶. Time intervals, as received, are normally accurate within \pm 2 parts in 10^8+1 millisecond. Transient conditions in the ionosphere at times cause received pulses to scatter by several milliseconds. Radio propagation notices:* WWV broadcasts for the North Atlantic path at $19\frac{1}{2}$ and $49\frac{1}{2}$ minutes past every hour. The forecasts are changed daily at 0500, 1200, 1700, or 2300 Universal Time and remain unchanged for the following 6 hours. The letter—digit combination is sent as a modulated tone in international Morse code, the letter indicating conditions at 0500, 1200, 1700, or 2300 UT, respectively, and the digit the conditions forecast for the following 6-hour period. On WWVH, the forecasts as broadcast are changed at 0200 and 1800 UT and are for the next
9-hour period, these WWVH forecasts being broadcast at 9 and 39 minutes past each hour for the North Pacific path. The letters and digits signify radio propagation quality as follows: | condition at 0500, 1200,
1700, or 2300 UT | forecast | propagation
conditions | |--|-------------|--------------------------------------| | W W Disturbed | 1
2
3 | Useless
Very poor
Poor | | W
U Unsettled
N | 4
5
6 | Poor to fair
Fair
Fair to good | | N Normal | 7
8 | Good Very good Excellent | ^{*} Abstracted from, "North Atlantic Radio Warning Service," CRPL-RWS-31, March 19, 1956, National Bureau of Standards; Box 178, Fort Belvoir, Virginia and "North Pacific Radio Warning Service," CRPL-RWS-30, March 19, 1956, National Bureau of Standards; Box 1119, Anchorage, Alaska. The latest issues of these bulletins should be consulted for further information. #### Other standard-frequency stations as of August, 1954 | | Rugby | Tokyo | Torino | Johannesburg | |---|-----------------------|--|---------------------------|----------------| | Country | England | Japan | Italy | South Africa | | Call sign | MSF | JJY | IBF | ZUO | | Carrier power in kw | 0.5 | 1 | 0.3 | 0.1 | | Days per week | 7 | 7-2 | Tuesday | 7 | | Hours per day | 24ª | 24 | 6b | 24 | | Cărriers in mc | 2.5, 5, 10° | 2.5°, 5 ^f , 10 ^g d | 5 | 5 | | Modulotions in c/s | 1 ^h , 1000 | ³¹, 1000 | 1h, 440, 1000 | 1 ^k | | Duration of tone
modulation in minutes | 5 in each 15 | 9 in each 20 | 5 in each 10 ^j | _ | | Duration of time signals in minutes | 5 in each 15 | continuous | 5 in each 10 | continuous | - a Total interruption of transmission from minute 15 to minute 20 of each hour. - ^b From 0800 to 1100 and from 1300 to 1600 UT. - ^a Transmissions are also made on 60 kc. - d Transmissions are also made on 4 and 8 mc. - Daily from 0700 to 2300 UT. - f Mondoys. - Wednesdays. - h 5 cycles of 100-c/s modulation pulses. - i Interruptions for 20 milliseconds. - i 440- and 1000-c/s tones alternately. - ≥ 100 cycles of 1000-c/s modulation pulses. See also list of foreign radio time signals in "Radio Navigational Aids," U. S. Navy Hydrographic Office publication 205 for sale by the Hydrographic Office, Washington 25, D. C. # ■ Units, constants, and conversion factors # **Conversion factors** | to convert | into | multiply by | conversely,
multiply by | |----------------------|------------------------------|--------------------------|---| | Acres | Square feet | 4.356×10^{4} | 2.296 × 10 ⁻ s | | Acres | Square meters | 4047 | 2.471 × 10 ⁻⁴ | | Ampere-hours | Coulombs | 3600 | 2.778 × 10 ⁻⁴ | | Amperes per sq cm | Amperes per sq inch | 6.452 | 0.1550 | | Amperes per sq cili | Gilberts | 1.257 | 0.7958 | | Ampere-turns per cm | Ampere-turns per inch | 2.540 | 0.3937 | | Atmospheres | Mm of mercury @ 0° C | 760 | 1.316 × 10 ⁻³ | | Atmospheres | Feet of water @ 4° C | 33.90 | 2.950×10^{-2} | | Atmospheres | Inches mercury @ 0° C | 29.92 | 3.342×10^{-2} | | Atmospheres | Kg per sq meter | 1.033 × 10 ⁴ | 9.678 × 10 ⁻⁵ | | Atmospheres | Newtons per sq meter | 1.0133×10^{5} | 0.9869×10^{-5} | | • | , , | 14.70 | | | Atmospheres | Pounds per sq inch | 778.3 | 6.804×10^{-2} | | Btu | Foot-pounds | | 1.285×10^{-3} | | Btu | Joules | 1054.8 | 9.480 × 10 ⁻⁴ | | Btu | Kilogram-calories | 0.2520 | 3.969 | | Btu | Horsepower-hours | 3.929 × 10 ⁻⁴ | 2545 | | Bushels | Cubic feet | 1.2445 | 0.8036 | | Centigrade (Celsius) | Fahrenheit | | $/5 = F^{\circ} - 32$
$9/5 = (F^{\circ} + 40)$ | | Chains (surveyor's) | Feet | 66 | 1.515×10^{-2} | | Circular mils | Square centimeters | 5.067 × 10 ⁻⁶ | 1.973 × 10 ⁵ | | Circular mils | Square mils | 0.7854 | 1.273 | | Cubic feet | Cords | 7.8125×10^{-3} | 128 | | Cubic feet | Gallons (lig US) | 7.481 | 0.1337 | | Cubic feet | Liters | 28.32 | 3.531×10^{-2} | | Cubic inches | Cubic centimeters | 16.39 | 6.102×10^{-2} | | Cubic inches | Cubic feet | 5.787 × 10 ⁻⁴ | 1728 | | Cubic inches | Cubic meters | 1.639 × 10 ⁻⁶ | 6.102 × 10 ⁴ | | Cubic inches | Gallons (lig US) | 4.329×10^{-3} | 231 | | Cubic meters | Cubic feet | 35.31 | 2.832×10^{-2} | | Cubic meters | Cubic yards | 1.308 | 0.7646 | | Degrees (angle) | Radians | 1.745×10^{-2} | 57.30 | | Dynes | Pounds | 2.248×10^{-6} | 4.448×10^{8} | | , | | 7.376×10^{-8} | 1.356×10^7 | | Ergs | Foot-pounds
Feet | | | | Fathoms | | 6 | 0.16667 | | Feet | Centimeters | 30.48 | 3.281×10^{-2} | | Feet | Varas | 0.3594 | 2.782 | | Feet of water @ 4° C | Inches of mercury @ 0° C | 0.8826 | 1.133 | | Feet of water @ 4° C | Kg per sq meter | 304.8 | 3.281 × 10 ⁻⁸ | | Feet of water @ 4° C | Pounds per sq foot | 62.43 | 1.602×10^{-2} | | Foot-pounds | Horsepower-hours | 5.050 × 10 ⁻⁷ | 1.98 × 10 ⁶ | | Foot-pounds | Kilogram-meters | 0.1383 | 7.233 | | Foot-pounds | Kilowatt-hours | 3.766 × 10 ⁻⁷ | 2.655×10^{6} | | Gallons (liq US) | Cubic meters | 3.785 × 10 ⁻³ | 264.2 | | Gallons (liq US) | Gallons (liq Br Imp) (Canado | | 1,201 | | Gausses | Lines per sq inch | 6.452 | 0.1550 | # Conversion factors continued | to convert | Into | multiply by | conversely,
multiply by | |--|-----------------------------------|--------------------------|----------------------------------| | Grains (for humidity calculations) | Pounds (avoirdupois) | 1.429 × 10 ⁻⁴ | 7000 | | Grams | Dynes | 980.7 | 1.020×10^{-1} | | Grams | Grains | 15.43 | 6,481 × 10 | | Grams | Ounces (avoirdupois) | 3.527×10^{-2} | 28.35 | | Grams | Poundals | 7.093×10^{-2} | 14.10 | | Grams per cm | Pounds per inch | 5.600×10^{-3} | 178.6 | | Grams per cu cm | Pounds per cu inch | 3.613×10^{-2} | 27.68 | | Grams per sq cm | Pounds per sq foot | 2.0481 | 0.4883 | | Hectares | Acres | 2.471 | 0.4047 | | Horsepower (boiler) | Btu per hour | 3.347×10^4 | 2.98 6 × 10 ⁻² | | Horsepower (metric)
(542,5 ft-lb per sec) | Btu per minute | 41.83 | 2.390 × 10 | | Horsepower (metric)
(542.5 ft-1b per sec) | Foot-lb per minute | 3.255×10^4 | 3.072 × 10 | | Horsepower (metric)
(542.5 ft-lb per sec) | Kg-calories per minute | 10.54 | 9.485 × 10 | | Horsepower
(550 ft-lb per sec) | Btu per minute | 42.41 | 2.357 × 10 | | Horsepower
(550 ft-lb per sec) | Foot-Ib per minute | 3.3×10^4 | 3.030 × 10 | | Horsepower
(550 ft-lb per sec) | Kilowatts | 0.745 | 1.342 | | Horsepower (metric)
(542.5 ft-lb per sec) | Horsepower
(550 ft-lb per sec) | 0.9863 | 1.014 | | Horsepower
(550 ft-lb per sec) | Kg-calories per minute | 10.69 | 9. 3 55 × 10 | | Inches , | Centimeters | 2.540 | 0.3937 | | Inches | Feet | 8.333×10^{-2} | 12 | | Inches | Miles | 1.578 × 10-5 | 6.336×10^{6} | | Inches | Mils | 1000 | 0.001 | | Inches | Yards | 2.778×10^{-2} | 36 | | Inches of mercury @ 0° C | lbs per sq inch | 0.4912 | 2.036 | | Inches of water @ 4° C | Kg per sq meter | 25.40 | 3.937×10^{-1} | | Inches of water @ 4° C | Ounces per sq inch | 0.5782 | 1.729 | | Inches of water @ 4° C | Pounds per sq foot | 5.202 | 0.1922 | | Inches of water @ 4° C | In of mercury | 7.355×10^{-2} | 13.60 | | Joules | Foot-pounds | 0.7376 | 1.356 | | Joules | Ergs | 107 | 10-7 | | Kilogram-calories | Kilogram-meters | 426.9 | 2.343×10^{-1} | | Kilogram-calories | Kilojoules | 4.186 | 0.2389 | | Kilograms | Tons, long (avdp 2240 lb) | 9.482×10^{-4} | 1016 | | Kilograms | Tons, short (avdp 2000 lb) | 1.102×10^{-3} | 907.2 | | Kilograms | Pounds (avoirdupois) | 2.205 | 0.4536 | | Kilograms per kilometer | Pounds (avdp) per mile (sta | t) 3.548 | 0.2818 | | Kg per sq meter | Pounds per sq foot | 0.2048 | 4.882 | | Kilometers | Feet | 3281 | 3.048×10 | | Kilowatt-hours | Btu | 3413 | 2.930×10 | | Kilowatt-hours | Foot-pounds | 2.655×10^{6} | 3.766 × 10 | | Kilowatt-hours | Joules | 3.6×10^{8} | 2.778 × 10 | # Conversion factors continued | to convert | into | multiply by | conversely,
multiply by | |-----------------------------------|---|------------------------|----------------------------| | Kilowatt-hours | Kilogram-calories | 860 | 1.163×10^{-3} | | Kilowatt-hours | Kilogram-meters | 3.671×10^{5} | 2.724×10^{-6} | | Kilowatt-hours | Pounds carbon oxydized | 0.235 | 4.26 | | Kilowatt-hours | Pounds water evaporated
from and at 212° F | 3.53 | 0.283 | | Kilowatt-hours | Pounds water raised
from 62° to 212° F | 22.75 | 4.395×10^{-2} | | Knots* (naut mi per hour) | Feet per second | 1.688 | 0.5925 | | Knots | Meters per minute | 30.87 | 0.03240 | | Knots | Miles (stat) per hour | 1.1508 | 0.8690 | | lamberts | Candles per sq cm | 0.3183 | 3.142 | | Lamberts | Candles per sq inch | 2.054 | 0.4869 | | leagues | Miles (approximately) | 3 | 0.33 | | Links | Chains | 0.01 | 100 | | Links (surveyor's) | Inches | 7.92 | 0.1263 | | Liters | Bushels (dry US) | 2.838×10^{-2} | 35.24 | | Liters | Cubic centimeters | 1000 | 0.001 | | Liters | Cubic meters | 0.001 | 1000 | | Liters | Cubic inches | 61.02 | 1.639×10^{-2} | | liters | Gallons (lig US) | 0.2642 | 3.785 | | Liters | Pints (lig US) | 2.113 | 0.4732 | | log. N or In N | log ₁₀ N | 0.4343 | 2.303 | | lumens per sa foot | Foot-candles | 1 | 1 | | lux | Foot-candles | 0.0929 | 10.764 | | Meters | Yards | 1.094 | 0.9144 | | Meters | Varas | 1.179 | 0.848 | | Meters per min | Feet per minute | 3.281 | 0.3048 | | Meters per min | Kilometers per hour | 0.06 | 16.67 | | Microhms per cm cube | Microhms per inch cube |
0.3937 | 2.540 | | Microhms per cm cube | Ohms per mil foot | 6.015 | 0.1662 | | Miles (nautical)* | Feet | 6076.1 | 1.646 × 10 ⁻⁴ | | Miles (nautical) | Meters | 1852 | 5.400 × 10 ⁻⁴ | | Miles (nautical) | Miles (statute) | 1.1508 | 0.8690 | | Miles (statute) | Kilometers | 1.609 | 0.6214 | | Miles (statute) | Feet | 5280 | 1.894 × 10 ⁻⁴ | | Miles per hour | Kilometers per minute | 2.682×10^{-2} | 37.28 | | Miles per hour | Feet per minute | 88 | 1.136×10^{-2} | | Miles per hour | Kilometers per hour | 1.609 | 0.6214 | | Millibars | Inches mercury (32° F) | 0.02953 | 33.86 | | Millibars | Pounds per sq foot | 2.089 | 0.4788 | | (10 ³ dynes per sq cm) | • • | | | | Nepers | Decibels | 8.686 | 0.1151 | | Newtons | Dynes | 105 | 10-5 | | Newtons | Kilograms | 0.1020 | 9.807 | | Newtons | Poundals | 7.233 | 0.1383 | | Newtons | Pounds (avdp) | 0.2248 | 4.448 | | Ounces (fluid) | Quarts | 3.125×10^{-2} | 32 | | Ounces (avoirdupois) | Pounds | 6.25×10^{-2} | 16 | | Pints | Quarts (liq US) | 0.50 | 2 | | Pounds of water (dist) | Cubic feet | 1.603×10^{-2} | 62.38 | #### Conversion factors continued | to convert | into | multiply by | conversely,
multiply by | |---|--|--------------------------|----------------------------| | Pounds of water (dist) | Gallons | 0.1198 | 8.347 | | Pounds per inch | Kg per meter | 17.86 | 0.05600 | | Pounds per foot | Kg per meter | 1.488 | 0.6720 | | Pounds per mile (statute) | Kg per kilometer | 0.2818 | 3.548 | | Pounds per cu foot | Kg per cu meter | 16.02 | 6.243 × 10 ⁻² | | Pounds per cu inch | Pounds per cu foot | 1728 | 5.787 × 10 ⁻⁴ | | Pounds per sq foot | Pounds per sq inch | 6.944×10^{-3} | 144 | | Pounds per sq foot | Kg per sq meter | 4.882 | 0.2048 | | Pounds per sq inch | Kg per sq meter | 703.1 | 1.422×10^{-3} | | Poundals | Dynes | 1.383 × 10 ⁴ | 7.233 × 10 ⁻⁵ | | Poundals | Pounds (avoirdupois) | 3.108 × 10 ⁻² | 32.17 | | Quarts | Gallons (lig US) | 0.25 | 4 | | Rods | Feet | 16.5 | 6.061×10^{-2} | | Slugs (ma s s) | Pounds (avoirdupois) | 32.174 | 3.108×10^{-2} | | Sq inches | Circular mils | 1.273×10^{6} | 7.854×10^{-7} | | Sq inches | Sq centimeters | 6.452 | 0.1550 | | Sq feet | Sq meters | 9.290×10^{-2} | 10.76 | | Sq miles | Sq yards | 3.098×10^{6} | 3.228×10^{-7} | | Sa miles | Acres | 640 | 1.562×10^{-3} | | Sq miles | Sa kilometers | 2.590 | 0.3861 | | Sq millimeters | Circular mils | 1973 | 5.067×10^{-4} | | (Temp rise, °C) × (U.S. gal water)/minute | Watts | 264 | 3.79×10^{-3} | | Tons, short (avoir 2000 lb) | Tonnes (1000 kg) | 0.9072 | 1.102 | | Tons, long (avoir 2240 lb) | Tonnes (1000 kg) | 1.016 | 0.9842 | | Tons, long (avoir 2240 lb) | Tons, short (avoir 2000 lb) | 1.120 | 0.8929 | | Tons (US shipping) | Cubic feet | 40 | 0.025 | | Watts | Btu per minute | 5.689×10^{-2} | 17.58 | | Watts | Ergs per second | 107 | 10-7 | | Watts | Foot-Ib per minute | 44.26 | 2.260×10^{-2} | | Watts | Horsepower (550 ft-lb per sec) | 1.341×10^{-3} | 745.7 | | Watts | Horsepower (metric)
(542.5 ft-lb per sec) | 1.360×10^{-3} | 735.5 | | Watts | Kg-calories per minute | 1.433×10^{-2} | 69.77 | | Watt-seconds (joules) | Gram-calories (mean) | 0.2389 | 4.186 | | Webers per sq meter | Gausses | 10⁴ | 10-4 | | Yards | Feet | 3 | 0.3333 | | | | | | ^{*} Conversion factors for the nautical mile and, hence, for the knot, are based on the International Nautical Mile, which was adopted by the U.S. Department of Defense and the U.S. Department of Commerce, effective 1 July 1954. See, "Adoption of International Nautical Mile," National Bureau of Standards Technical News Bulletin, vol. 38, p. 122; August, 1954. The International Nautical Mile has been in use by many countries for various lengths of time. Note: Pounds are avoirdupois in every entry except where otherwise indicated. #### Examples - a. Required, the conversion factor for pounds (avoirdupois) to grams. Duplication of entries in the table has been reduced to the minimum. An entry will be found for kilograms to pounds, from which the required factor is obviously 453.6. - **b.** Convert inches per pound to meters per kilogram. A number of conversions have been collected under the name, pounds. The desired factor appears under pounds per inch. Since the reciprocal is tabulated, the factors must be interchanged, so the desired one is 0.05600. #### Centigrade-to-fahrenheit conversion chart ## Principal physical atomic constants* ## Centimeter-gram-second units | usual symbol | denomination | value and units | |--|---|--| | F' = Ne/c | Faraday's constant (physical scale) | 9652.19 ± 0.11 emu (g mole) $^{-1}$ | | N | Avogadro's constant (physical scale) | $(6.02486 \pm 0.00016) \times 10^{23} \text{ (g mole)}^{-1}$ | | h | Planck's constant | $16.62517 \pm 0.000231 \times 10^{-27} \text{ erg sec}$ | | m | Electron rest mass | 19.1083 ± 0.0003) × 10 ⁻²⁸ g | | e | - Electronic charge | $(4.80286 \pm 0.00009) \times 10^{-10} \text{ esu}$ | | e' = e/c | | $(1.60206 \pm 0.00003) \times 10^{-20}$ emu | | e/m | Charge-to-mass ratio of electron | $(5.27305 \pm 0.00007) \times 10^{17} \text{ esu g}^{-1}$ | | e'/m = e/(mc) | | $(1.75890 \pm 0.00002) \times 10^7 \mathrm{emu \ g^{-1}}$ | | c | Velocity of light in vacuum† | $299,793.0 \pm 0.3 \ \mathrm{km \ sec^{-1}}$ | | h/(mc) | Compton wavelength of electron | $(24.2626 \pm 0.0002) \times 10^{-11} \text{ cm}$ | | $a_0 = h^2/(4\pi^2 me^2)$ | First Bohr electron-orbit radius | 15.29172 ± 0.00002ì × 10 ⁻⁹ cm | | $\sigma = \frac{\pi^2}{60} \frac{k^4}{c^2} \frac{8\pi^3}{h^3}$ | Stefan-Boltzmann constant | $(0.56687 \pm 0.00010) \times 10^{-4} \text{ erg cm}^{-2} \text{deg}^{-4} \text{sec}^{-1}$ | | λmaxT | Wien displacement-law constant | (0.289782 ± 0.000013) cm deg | | $\mu_0 = he/(4\pi mc)$ | Bohr magneton | $(0.92731 \pm 0.00002) \times 10^{-20} \text{ erg gauss}^{-1}$ | | Nm | Atomic mass of the electron (physical scale) | (5.48763 ± 0.00006) × 10 ⁻⁴ | | M _p /Nm | Ratio, proton mass to electron mass | 1836.12 ± 0.02 | | $E_0 = e \cdot 10^8/c$ | Energy associated with 1 ev | $(1.60206 \pm 0.00003) \times 10^{-12} \text{ erg}$ | | $(mc^2/E_0) \times 10^{-6}$ | Energy equivalent of electron mass | (0.510976 ± 0.000007) Mev | | $k = R_0/N$ | Boltzmann's constant | $(1.38044 \pm 0.00007) \times 10^{-16} \text{ erg deg}^{-1}$ | | Rω | Rydberg wave number for infinite mass | $(109,737.309 \pm 0.012) \text{ cm}^{-1}$ | | н | Hydrogen atomic mass (physical scale) | 1.008142 ± 0.000003 | | R ₀ | Gas constant per mole (physical scale) | $(8.31696 \pm 0.00034) \times 10^7 \mathrm{erg \ mole^{-1} deg^{-1}}$ | | V ₀ | Standard volume of perfect gas (physical scale) | $(22,420.7 \pm 0.6) \text{ cm}^3 \text{ atmos mole}^{-1}$ | ^{*} Extracted from: E. R. Cohen, J. W. M. DuMond, T. W. Layton, and J. S. Rollett, "Analysis of Variance of the 1952 Data on the Atomic Constants and a New Adjustment, 1955," Reviews of Modern Physics, vol. 27, pp. 363–380; October, 1955. $[\]dagger$ Where c appears in the equations for other constants, it is the numerical value of the velocity in centimeters per second. #### Principal physical atomic constants continued #### Meter-kilogram-second rationalized units The following table is derived from that on p. 34; for further details regarding symbols and probable errors, refer to that table. | usual symbol | denomination | value and units | |---|---|--| | F | Faraday's constant | 9.652 × 10 ⁷ coulomb (kg-mole)-1 | | N | Avogadro's constant | 6.025 × 10 ²⁶ (kg-mole) -1 | | h | Planck's constant | 6.625 × 10 ⁻³⁴ joule sec | | m | Electron rest mass | 9.108 × 10 ⁻³¹ kg | | e | Electronic charge | 1.602 × 10 ⁻¹⁹ coulomb | | e/m | Electron charge/mass | 1.759 × 10 ¹¹ coulomb kg ⁻¹ | | c | Velocity of light in vacuum | 2.998 × 108 meters sec ⁻¹ | | h/mc | Compton wavelength of electron | 2.426 × 10 ⁻¹² meter | | Q 0 | First Bohr electron-orbit radius | 5.292 × 10 ⁻¹¹ meter | | σ | Stefan-Boltzmann constant | 5.669 × 10 ⁻⁸ watt meter ⁻² (deg K) ⁻⁴ | | λmaxT | Wien displacement-law constant | 2.898 × 10 ⁻⁸ meter (deg K) | | μ ₀ | Bohr magneton | 9.273 × 10 ⁻²⁴ joule meter ² weber ⁻¹ | | Nm | Atomic mass of the electron | 5.488 × 10 ⁻⁴ | | M _p /Nm | Ratio, proton mass to electron mass | 1836 | | vo | Speed of 1-ev electron | 5.932 × 105 meter sec ⁻¹ | | F ₀ | Energy associated with 1 ev | 1.602 × 10 ⁻¹⁹ joule | | mc ² / E ₀ | Energy equivalent of electron mass | 0.5110 × 106 ev | | k | Boltzmann's constant | 1.380 × 10 ⁻²³ joule (deg K) ⁻¹ | | R | Rydberg wave number for infinite mass | 1.097 × 10 ⁷ meter ⁻¹ | | н | Hydrogen atomic mass | 1.008 | | $R_0 = PV/MT$ | Gas constant | 8.317 × 10 ³ joule (kg-mole) ⁻¹ (deg K) ⁻¹
Note: joule = (newton/meter ²) meter ³ | | V ₀ | Standard volume of perfect gas at 0° C and 1 atmosphere (p. 29) | 22.42 meter ³ (kg-mole) -1 | # Properties of free space ``` Velocity of light = c = 1/(\mu_v \epsilon_v)^{\frac{1}{2}} = 2.998 \times 10^8 meters per second = 186,280 miles per second = 984 \times 10^6 feet per second. Permeability = \mu_v = 4\pi \times 10^{-7} = 1.257 \times 10^{-6} henry per meter. Permittivity = \epsilon_v = 8.85 \times 10^{-12} \approx (36\pi \times 10^9)^{-1} farad per meter. Characteristic impedance = Z_0 = (\mu_v/\epsilon_v)^{\frac{1}{2}} = 376.7 \approx 120\pi ohms. ``` #### Unit
conversion table | | | equation | ! | 1 | equivalen | t number of | , | 1 | |--------------------------|----------------|--------------------------------|----------------------------------|------------------|---------------------|------------------------|---------------------|--| | quantity | sym-
bol | in
mks(r)
units | mks(r)
(rationalized)
unit | mks(nr)
units | pract
units | esu | emu | mks(nr)
(nonrational-
ized) unit | | length | 1 | | meter (m) | 1 | 102 | 102 | 102 | meter (m) | | mass | m | | kilogram | 1 | 103 | 108 | 108 | kilogram | | time | t | | second | 1 | 1 | 1 | 1 | second | | force | F | F = ma | newton | 1 | 105 | 106 | 106 | newton | | work, energy | W | W = Fl | joule | 1 | 1 | 107 | 107 | joule | | power | P | P = W/t | watt | 1 | 1 | 107 | 107 | watt | | electric charge | q | | coulomb | 1 | 1 | 3×10° | 10-1 | coulomb | | volume charge density | ρ | $\rho = q/v$ | coulomb/m² | 1 | 10-6 | 3×10³ | 10-7 | coulomb/m³ | | surface charge density | σ | $\sigma = q/A$ | coulomb/m² | 1 | 10-4 | 3×10⁵ | 10-5 | coulomb/m² | | electric dipole moment | P | p = ql | coulomb-meter | 1 | 102 | 3×1011 | 10 | coulom b-mete | | polarization | P | $P = \rho/v$ | coulomb/m² | 1 | 10-4 | 3×10 ⁵ | 10-6 | coulomb/m² | | electric field intensity | E | E = F/q | volt/m | 1 | 10-2 | 10-4/3 | 103 | volt/m | | permittivity | ε | $F = q^2/4\pi\epsilon l^2$ | farad/m | 4π | 4π×10 ⁻⁹ | 36π×10° | 4x×10-11 | | | displacement | D | $D = \epsilon E$ | coulomb/m² | 4π | 4π×10-4 | 12π×10 ⁵ | 4π×10-5 | | | displacement flux | ₩ | $\Psi = DA$ | coulomb | 4π | 4π | 12π×10° | 4π×10 ⁻¹ | | | emf, electric potential | V | V = El | volt | 1 | 1 | 10-2/3 | 103 | volt | | current | I | I = q/t | ampere | 1 | 1 | 3×10 ⁹ | 10-1 | ampere | | volume current density | J | J = I/A | ampere/m² | 1 | 10-4 | 3×10 ⁵ | 10-5 | ampere/m² | | surface current density | K | K = I/l | ampere/m | 1 | 10-2 | 3×10 ⁷ | 10 ⁻³ | ampere/m | | resistance | R | R = V/I | ohm | 1 | 1 | 10-11/9 | 109 | ohm | | conductance | G | G = 1/R | mho | 1 | 1 | 9×10 ¹¹ | 10- | mho | | resistivity | ρ | $\rho = RA/l$ | ohm-meter | 1 | 102 | 10-9/9 | 1011 | ohm-meter | | conductivity | γ | $\gamma = 1/\rho$ | mho/meter | 1 | 10-2 | 9×10 ⁹ | 10-11 | mho/meter | | capacitance | \overline{c} | C = q/V | farad | 1 | 1 | 9×10 ¹¹ | 10-0 | farad | | elastance | 8 | S = 1/C | daraf | 1 | 1 | 10-11/9 | 100 | daraf | | magnetic charge | | | weber | 1/4π | 108/4π | 10 ⁻² /12π | 108/4π | | | magnetic dipole moment | m | m = ml | weber-meter | 1/4π | 1010/4m | 1/12₹ | 1010/4m | | | magnetization | M | M = m/t | weber/m² | 1/4m | 104/4π | 10 ⁻⁶ /12π | 104/4π | | | magnetic field intensity | H | H = nI/l | ampere-turn/m | 4π | 4π×10 ⁻³ | 12x×107 | 4x×10-3 | | | permeability | μ | $\overline{F=m^2/4\pi\mu l^2}$ | henry/m | 1/4π | 10 ⁷ /4π | 10 ⁻¹³ /36π | 10 ⁷ /4π | | | induction | В | $B = \mu H$ | wcber/m² | 1 | 104 | 10-6/3 | 104 | weber/m² | | induction flux | Φ | $\Phi = BA$ | weber | 1 | 108 | 10-2/3 | 108 | weber | | mmf, magnetic potential | M | M = Hl | ampere-turn | 4π | 4π×10 ⁻¹ | 12x×109 | 4π×10 ⁻¹ | | | reluctance | R | $R = M/\Phi$ | amp-turn/weber | 4π | 4±×10-9 | 36x×1011 | 4π×10-0 | | | permeance | P | P = 1/R | weber/amp-turn | 1/4₩ | 10°/4± | 10 ⁻¹¹ /36π | 109/4π | | | inductance | L | $L = \Phi/I$ | henry | 1 | 1 | 10-11/9 | 109 | henry | Compiled by J. R. Ragazzini and L. A. Zadeh, Columbia University, New York. The velocity of light was taken as 3×10^{10} centimeters/second in computing the conversion factors. Equations in the second column are for dimensional purposes only. | equiv | ralent numb | er of | | equive
numbe | | | equivalent | 1 | | |------------------|--------------------|------------------|----------------------------|--------------------|------|-------------------------------|---------------------------|-----------------|-----| | pract
units | esu | emu | practical
(cgs)
unit | esu | emu | +\$ U | number of
emu
units | emu | | | 10 ² | 102 | 10² | centimeter (cm) | 1 | 1 | centimeter (cm) ((|) 1 | centimeter (cm) | | | 103 | 103 | 103 | gram | 1 | 1 | gram ((| 1 | gram | | | 1 | 1 | 1 | second | 1 | 1 | second ((| 1 | second | | | 106 | 105 | 105 | dyne | 1 | 1 | dyne ((| 1 | dyne | | | 1_ | 107 | 107 | joule | 107 | 107 | erg ((| 1 | erg | | | 1 | 107 | 107 | watt | 107 | 107 | erg/second (C | 1 | erg/second | | | 1 | 3×10° | 10-1 | coulomb | 3×109 | 10-1 | stateoulomb (C | 10-10/3 | abcoulomb | | | 10-6 | 3×108 | 10-7 | coulomb/cm³ | 3×109 | 10-1 | stateoulomb/cm3 (C | 10-10/3 | abcoulomb/cm² | | | 10-4 | 3×10 ⁵ | 10-5 | coulomb/cm² | 3×109 | 10-1 | statcoulomb/cm² (C | 10-10/3 | abcoulomb/cm² | | | 102 | 3×10 ¹¹ | 10 | coulomb-cm | 3×10° | 10-1 | stateoulomb-cm (C | 10-10/3 | abcoulomb-em | | | 10-4 | 3×10 ⁵ | 10 ⁻⁸ | coulomb/cm² | 3×10° | 10-1 | stateoulomb/cm² (C | 10-10/3 | abcoulomb/cm2 | | | 10-2 | 10-4/3 | 108 | volt/em | 10-2/3 | 108 | statvolt/em (C | 3×10 ¹⁰ | abvolt/cm | | | 10⊸ | 9×109 | 10-11 | | 9×1018 | 10-2 | (0 | 10-20/9 | | | | 10-4 | 3×10 ⁵ | 10-5 | | 3×10° | 10-1 | (0 | 10-10/3 | | | | 1 | 3×10° | 10-1 | | 3×10° | 10-1 | (0 | 10-10/3 | | | | 1 | 10-2/3 | 108 | volt | 10-2/3 | 109 | statvolt (C | 3×10 ¹⁰ | abvolt | | | 1 | 3×10° | 10-1 | ampere | 3×109 | 10-1 | statampere (C | 10-10/3 | abampere | | | 10-4 | 3×10 ⁵ | 10-5 | ampere/cm² | 3×10° | 10-1 | statampere/cm ² (C | 10-10/3 | abampere/cm² | | | 10-2 | 3×10 ⁷ | 10 ⁻⁸ | ampere/cm | 3×109 | 10-1 | statampere/cm (C | 10-10/3 | abampere/cm | | | 1 | 10-11/9 | 109 | ohm | 10-11/9 | 109 | statohm (C | 9×10 ²⁰ | abohm | | | 1 | 9×10 ¹¹ | 10-9 | mho | 9×1011 | 10-9 | statmho (C | 10-20/9 | abmho | | | 10² | 10-9/9 | 1011 | ohm-em | 10-11/9 | 109 | statohm-cm (C | 9×10 ²⁰ | abohm-em | | | 10-1 | 9×10° | 10-11 | mho/cm | 9×10 ¹¹ | 10~• | statmho/cm (C | 10-20/9 | abmho/cm | | | 1 | 9×10 ¹¹ | 10-9 | farad | 9×10 ¹¹ | 10⁻• | statfarad (cm) (C | 10-20/9 | abfarad | | | 1 | 10-11/9 | 109 | daraf | 10-11/9 | 109 | statdaraf ((| 9×10 ²⁰ | abdaraf | | | 108 | $10^{-2}/3$ | 108 | | 10-10/3 | 1 | | 3×1010 | unit pole | (G) | | 1010 | 1/3 | 1010 | | 10-10/3 | 1 | | 3×1010 | pole-cm | (G) | | 104 | 10-6/3 | 104 | | 10-10/3 | 1 | | 3×1010 | pole/cm² | (G) | | 10-1 | 3×107 | 10-8 | oersted | 3×10 ¹⁰ | 1 | | 10-10/3 | oersted | (G) | | 107 | 10-13/9 | 107 | gauss/oersted | 10-20/9 | 1 | | 9×10 ²⁰ | gauss/oersted | (G) | | 104 | 10-6/3 | 104 | gauss | 10-10/3 | 1 | · | 3×1010 | gauss | (G) | | 108 | 10-1/3 | 108 | maxwell (line) | 10-10/3 | 1 | | 3×1010 | maxwell (line) | (G) | | 10-1 | 3×10° | 10-1 | gilbert | 3×1010 | 1 | | 10-10/3 | gilbert | (G) | | 10 ⁻⁹ | 9×10 ¹¹ | 10-9 | gilbert/maxwell | 9×1020 | 1 | | 10-20/9 | gilbert/maxwell | (G) | | 109 | 10-11/9 | 109 | maxwell/gilbert | 10-20/9 | 1 | | 9×10 ²⁰ | maxwell/gilbert | (G) | | 1 | 10-11/9 | 109 | henry | 10-11/9 | 109 | stathenry (C |) 9×10 ²⁰ | abhenry (cm) | (G) | G = Gaussian unit. #### Metric multiplier prefixes Multiples and submultiples of fundamental units such as: meter, gram, liter, second, ohm, farad, henry, volt, ampere, and watt may be indicated by the following prefixes. | prefix | abbreviation | multiplier | prefix | abbreviation | multiplie | |--------|--------------|-----------------|--------|--------------|------------------| | tera | T | 1012 | deci | a | 10-1 | | | Ġ | 109 | centi | - | 10-2 | | giga | - | | | C | | | mega | M | 10 ⁶ | milli | m | 10-3 | | myria | ma | 10 ⁴ | micro | μ | 10_6 | | kilo | k | 10 ³ | nano | n | 10 ^{—9} | | hecto | h | 10 ² | pico | P | 10-12 | | deca | l da l | 10 i | • | ' | | #### Fractions of an inch with metric equivalents | fractic
an i | | decimals of
an inch | millimeters | | ons of | decimals of
an inch | millimeters | |------------------------------|-------------|------------------------|----------------------------|-------------------------------|--------------|------------------------|------------------| | | 1/ | 0.015/ | 0.207 | l | 33/ | 0.5154 | 10.007 | | 1/ | 164 | 0.0156
0.0313 | 0.397
0.79 4 | 17/ | 33/64 | 0.5156
0.5313 | 13.097
13.494 | | 1/32 | 3/ | | | 17/32 | 35/ | | | | 17 | 3/64 | 0.0469 | 1.191 | ٠, | 35/84 | 0.5469 | 13.891 | | 16 | 5/ | 0.0625 | 1.588 | %16 | 87/ | 0.5625 | 14.288 | | 3/ | <i>5</i> €4 | 0.0781 | 1.984 | 19/ | 37/64 | 0.5781 | 14.684 | | ³ / ₃₂ | 7/ | 0.0938 | 2.381 | 19/32 | 80/ | 0.5938 | 15.081 | | 1.7 | 764 | 0.1094 | 2.778 | K/ | 3964 | 0.6094 | 15.478 | | 1/8 | 0/ | 0.1250 | 3.175 | 5∕8 | 412 | 0.6250 | 15.875 | | E / | % 4 | 0.1406 | 3.572 | 91/ | 41/64 | 0.6406 | 16.272 | | 5/32 | 11.7 | 0.1563 | 3.969 | ² 1/ ₃₂ | 42/ | 0.6563 | 16.669 | | • • | 11/64 | 0.1719 | 4.366 | 11, | 43/64 | 0.6719 | 17.066 | | ³ / ₁₆ | 10/ | 0.1875 | 4.763 | 11/16 | 45.7 | 0.6875 | 17.463 | | • . | 13/64 | 0.2031 | 5.159 | ٠,, | 45/64 | 0.7031 | 17.859 | | ⅓ 2 | | 0.2188 | 5.556 | 23/32 | 47.7 | 0.7188 | 18.256 | | | 15/64 | 0.2344 | 5.953 | ., | 47/64 | 0.7344 | 18.653 | | 1/4 | | 0.2500 | 6.350 | 3/4 | 40. | 0.7500 | 19.050 | | | 17/64 | 0.2656 | 6.747 | | 4964 | 0.7656 | 19.447 | | 9/32 | | 0.2813 | 7.144 | ²⁵ / ₃₂ | | 0.7813 | 19.844 | | | 1964 | 0.2969 | 7.541 | | 5164 | 0.7969 | 20.241 | | 5/16 | | 0.3125 | 7.938 | ¹³ / ₁₆ | | 0.8125 | 20.638 | | | 21/64 | 0.3281 | 8.334 | | 53/64 | 0.8281 | 21.034 | | 11/32 | | 0.3438 | 8.731 | 27/32 | | 0.8438 | 21.431 | | | 23/64 | 0.3594 | 9.128 | | 55 64 | 0.8594 | 21.828 | | 3/8 | | 0.3750 | 9.525 | 1/8 | | 0.8750 | 22.225 | | | 25/64 | 0.3906 | 9.922 | | 57/64 | 0.8906 | 22.622 | | 13/32 | 1 | 0.4063 | 10.319 | 29/32 | | 0.9063 | 23.019 | | | 27/64 | 0.4219 | 10.716 | | 5964 | 0.9219 | 23.416 | | 1/16 | | 0.4375 | 11.113 | 15/16 | | 0.9375 | 23.813 | | | 29/64 | 0.4531 | 11.509 | 1 | 6164 | 0.9531 | 24.209 | | 15/32 | i | 0.4688 | 11.906 | 31/32 | | 0.9688 | 24.606 | | - | 31/64 | 0.4844 | 12.303 | · | 63/64 | 0.9844 | 25.003 | | 1/2 | l ". | 0.5000 |
12.700 | l — | | 1.0000 | 25.400 | # Greek alphabet | name | capital | small | commonly used to designate | |---------|---------|----------------------|---| | ALPHA | Α | α | Angles, coefficients, attenuation constant, absorption factor, area | | BETA | В | βб | Angles, coefficients, phase constant | | GAMMA | Γ | γ | Complex propagation constant (cap), specific gravity, angles, electrical conductivity, propagation constant | | DELTA | Δ | δ | Increment or decrement (cap or small), determinant (cap) permittivity (cap), density, angles | | EPSILON | E | ϵ | Dielectric constant, permittivity, base of natural logarithms, electric intensity | | ZETA | Z | ζ | Coordinates, coefficients | | ETA | Н | η | Intrinsic impedance, efficiency, surface charge density, hysteresis, coordinates | | THETA | θ | ϑ θ | Angular phase displacement, time constant, reluctance, angles | | IOTA | 1 | ι | Unit vector | | KAPPA | K | κ | Susceptibility, coupling coefficient | | LAMBDA | Λ | λ | Permeance (cap), wavelength, attenuation constant | | MU | М | μ | Permeability, amplification factor, prefix micro | | NU | Ν | ν | Reluctivity, frequency | | XI | Ξ | ξ | Coordinates | | OMICRO | N 0 | 0 | | | PI | п | π | 3.1416 | | RHO | Р | ρ | Resistivity, volume charge density, coordinates | | SIGMA | Σ | σ | Summation (cap), surface charge density, complex propagation constant, electrical conductivity, leakage coefficient | | TAU | T | au | Time constant, volume resistivity, time-phase displacement, transmission factor, density | | UPSILON | Υ | υ | Transmission rector, density | | PHI | Φ | φφ | Scalar potential (cap), magnetic flux, angles | | CHI | Χ | χ | Electric susceptibility, angles | | PSI | Ψ | ψ | Dielectric flux, phase difference, coordinates, angles | | OMEGA | Ω | ω | Resistance in ohms (cap), solid angle (cap), angular velocity | Small letter is used except where capital (cap) is indicated. #### Decibels and power, voltage, and current ratios The decibel, abbreviated db, is a unit used to express the ratio between two amounts of power, P_1 and P_2 , existing at two points. By definition, number of db = $$10 \log_{10} \frac{P_1}{P_2}$$ It is also used to express voltage and current ratios; number of db = $$20 \log_{10} \frac{V_1}{V_2} = 20 \log_{10} \frac{I_1}{I_2}$$ Strictly, it can be used to express voltage and current ratios only when the voltages or currents in question are measured at places having identical impedances. | power
ratio | voltage
and current
ratio | decibels | power
ratio | valtage
and current
rotio | decibels | |--------------------------------------|--------------------------------------|---------------------------------|---|---------------------------------------|------------------------------| | 1.0233 | 1.0116 | 0.1 | 19.953 | 4.4668 | 13.0 | | 1.0471 | 1.0233 | 0.2 | 25.119 | 5.0119 | 14.0 | | 1.0715 | 1.0351 | 0.3 | 31.623 | 5.6234 | 15.0 | | 1.0965 | 1.0471 | 0.4 | 39.811 | 6.3096 | 16.0 | | 1.1220
1.1482
1.1749
1.2023 | 1.0593
1.0715
1.0839
1.0965 | 0.5
0.6
0.7
0.8 | 50.119
63.096
79.433
100.00 | 7.0795
7.9433
8.9125
10.0000 | 17.0
18.0
19.0 | | 1.2303
1.2589
1.3183 | 1.1092
1.1220
1.1482 | 0.9
1.0
1.2 | 158.49
251.19
398.11 | 12.589
15.849
19.953 | 20.0
22.0
24.0
26.0 | | 1.3804
1.4454
1.5136
1.5849 | 1.1749
1.2023
1.2303
1.2589 | 1.4
1.6
1.8
2.0
2.2 | 630.96
1000.0
1584.9
2511.9 | 25.119
31.623
39.811
50.119 | 28.0
30.0
32.0
34.0 | | 1.6595
1.7378
1.8197
1.9055 | 1.2882
1.3183
1.3490
1.3804 | 2.4
2.6
2.8 | 3981.1
6309.6
104
104 × 1.5849 | 63.096
79.433
100.000
125.89 | 36.0
38.0
40.0
42.0 | | 1.9953 | 1.4125 | 3.0 | 10 ⁴ × 2.5119 | 158.49 | 44.0 | | 2.2387 | 1.4962 | 3.5 | 10 ⁴ × 3.9811 | 199.53 | 46.0 | | 2.5119 | 1.5849 | 4.0 | 10 ⁴ × 6.3096 | 251.19 | 48.0 | | 2.8184 | 1.6788 | 4.5 | 10 ⁵ | 316.23 | 50.0 | | 3.1623 | 1.7783 | 5.0 | 10 ⁶ × 1.5849 | 398.11 | 52.0 | | 3.5481 | 1.8836 | 5.5 | 10 ⁶ × 2.5119 | 501.19 | 54.0 | | 3.9811 | 1.9953 | 6.0 | 10 ⁶ × 3.9811 | 630.96 | 56.0 | | 5.0119 | 2.2387 | 7.0 | 10 ⁵ × 6.3096 | 794.33 | 58.0 | | 6.3096 | 2.5119 | 8.0 | 10 ⁶ | 1,000.00 | 60.0 | | 7.9433 | 2.8184 | 9.0 | 10 ⁷ | 3,162.3 | 70.0 | | 10.0000 | 3.1623 | 10.0 | 10 ⁸ | 10,000.0 | 80.0 | | 12.589 | 3.5481 | 11.0 | 10 ₇₀ | 31,623 | 90.0 | | 15.849 | 3.9811 | 12.0 | | 100,000 | 100.0 | To convert Decibels to nepers multiply by 0.1151 Nepers to decibels multiply by 8.686 Where the power ratio is less than unity, it is usual to invert the fraction and express the answer as a decibel loss. # ■ Properties of materials ### Atomic weights* | element | symbol | atomic
number | atomic
weight | element | symbol | atomic
number | atomic
weight | |-------------|------------|------------------|------------------|--------------|--------|------------------|------------------| | Actinium | Ac | 89 | 227 | Lead | Pb | 82 | 207.21 | | Aluminum | Al | 13 | 26.98 | Lithium | Lī | 3 | 6.940 | | Americium | Am | 95 | ≈241 | Lutetium | Lu | 71 | 174.99 | | Antimony | Sb | 51 | 121.76 | Magnesium | Mg | 12 | 24.32 | | Argon | Α | 18 | 39.944 | Manganese | Mn | 25 | 54.93 | | Arsenic | As | 33 | 74.91 | Mercury | Hg | 80 | 200.61 | | Astatine | At | 85 | 211 | Molybdenum | Мо | 42 | 95.95 | | Barium | Bα | 56 | 137.36 | Neodymium | Nd | 60 | 144.27 | | Berklinium | Bk | 97 | ≈243 | Neon | Ne | 10 | 20.183 | | Beryllium | Ве | 4 | 9.013 | Neptunium | Nр | 93 | ≈239 | | Bismuth | Bi | 83 | 209.00 | Nickel | Ni | 28 | 58.69 | | Boron | В | 5 | 10.82 | Niobium | Nb | 41 | 92.91 | | Bromine | Br | 35 | 79.916 | Nitrogen | N | 7 | 14.008 | | Cadmium | Cd | 48 | 112.41 | Osmium | Os | 76 | 190.2 | | Calcium | Ca | 20 | 40.08 | Oxygen | 0 | 8 | 16.0000 | | Californium | Cf | 98 | ≈244 | Palladium | Pd | 46 | 106.7 | | Carbon | С | 6 | 12.010 | Phosphorus | P | 15 | 30.975 | | Cerium | Ce | 58 | 140.13 | Platinum | . Pt | 78 | 195.23 | | Cesium | Cs | 55 | 132.91 | Plutonium | Pυ | 94 | ≈238 | | Chlorine | CI | 17 | 35.457 | Polonium | Po | 84 | 210.0 | | Chromium | Cr | 24 | 52.01 | Potassium | K | 19 | 39.100 | | Cobalt | Co | 27 | 58.94 | Praseodymium | | 59 | 140.92 | | Copper | Cu | 29 | 63.54 | Promethium | Pm | 61 | 147 | | Curium | Cm | 96 | ≈242 | Protactinium | Pa | 91 | 231 | | Dysprosium | Dy | 66 | 162.46 | Radium | Ra | 88 | 226.05 | | Erbium | Er | 68 | 167.2 | Radon | Rn | 86 | 222 | | Europium | Eυ | 63 | 152.0 | Rhenium | Re | 75 | 186.31 | | Fluorine | F | 9 | 19.00 | Rhodium | Rh | 45 | 102.91 | | Francium | Fr | 87 | 223 | Rubidium | RЬ | 37 | 85.48 | | Gadolinium | Gd | 64 | 156.9 | Ruthenium | Ru | 44 | 101.7 | | Gallium | Gα | 31 | 69.72 | Samarium | Sm | 62 | 150.43 | | Germanium | Ge | 32 | 72.60 | Scandium | Sc | 21 | 44.96 | | Gold | Α υ | 79 | 197.2 | Selenium | Se | 34 | 78.96 | | Hafnium | Hf | 72 | 178.6 | Silicon | Si | 14 | 28.09 | | Helium | He | 2 | 4.003 | Silver | Ag | 47 | 107.880 | | Holmium | Ho | 67 | 164.94 | Sodium | Na | 11 | 22.997 | | Hydrogen | н | 1 | 1.0080 | Strontium | Sr | 38 | 87.63 | | Indium | In | 49 | 114.76 | Sulfur | S | 16 | 32.06 | | lodine | ŕ | 53 | 126.91 | Tantalum | Ta | 73 | 180.88 | | Iridium | lr | 77 | 193.1 | Technotium | Тө | 43 | 98 | | Iron | Fe | 26 | 55.85 | Tellurium | Te | 52 | 127.61 | | Krypton | Kr | 36 | 83.80 | Terbium. | Тb | 65 | 159.2 | | Lanthanum | lа | 57 | 138.92 | Thallium | TI | 81 | 204.39 | ^{*} From "Handbook of Chemistry and Physics," 34th edition, Chemical Rubber Publishing Company; Cleveland, Ohio. # Atomic weights continued | element | symbol | atomic
number | atomic
weight | element | symbol | atomic
number | atomic
weight | |----------|--------|------------------|------------------|-----------|--------|------------------|------------------| | Thorium | Th | 90 | 232.12 | Vonadium | ٧ | 23 | 50.95 | | Thulium | Tm | 69 | 169.4 | Xenon | Хe | 54 | 131.3 | | Tin | Sn | 50 | 118.70 | Ytterbium | Yb | 70 | 173.04 | | Titanium | Ti | 22 | 47.90 | Yttrium | Υ | 39 | 88.92 | | Tungsten | W | 74 | 183.92 | Zinc | Zn | 30 | 65.38 | | Uranium | U | 92 | 238.07 | Zirconium | Zr | 40 | 91.22 | #### Electromotive force #### Series of the elements | element | volts | ion | element | volts | ion | |-----------|--------|-------------------|-----------|--------------------|-------------------| | Lithium | 2.9595 | Li ⁺ | Tin | 0.136 | Sn++ | | Rubidium | 2.9259 | Rb ⁺ | lead | 0.122 | Pb++ | | Potassium | 2,9241 | K ⁺ | Iron | 0.045 | Fe ⁺⁺⁺ | | Strontium | 2.92 | Sr ⁺⁺ | Hydrogen | 0.000 | H+ | | Barium | 2,90 | Ba++ | Antimony | -0.10 | Sb+++ | | Calcium | 2.87 | Ca ⁺⁺ | Bismuth | -0.226 | Bi+++ | | Sodium | 2.7146 | Na ⁺ | Arsenic | -0.30 | As+++ | | Magnesium | 2.40 | Mg ⁺⁺ | Copper | -0.344 | Cu++ | | Aluminum | 1.70 | AI ⁺⁺⁺ | Oxygen | 0.397 | 0- | | Beryllium | 1.69 | Be ⁺⁺ | Polonium | -0.40 | Po++++ | | Uranium | 1.40 | U++++ | Copper | 0.470 | Cu ⁺ | | Manganese | 1.10 | Mn ⁺⁺ | lodine | -0.5345 | I | | Tellurium | 0.827 | Te | Tellurium | -0.558 | Te++++ | | Zinc | 0.7618 | Zn++ | Silver | -0.7978 | Ag ⁺ | | Chromium | 0.557 | Cr ⁺⁺ | Mercury | 0.7986 | Hg ⁺⁺ | | Sulphur | 0.51 | 5 | Lead | -0.80 | Pb++++ | | Gallium | 0.50 | Ga+++ | Palladium | 0.820 | Pd++ | | Iron | 0.441 | Fe ⁺⁺ | Platinum | 0.863 | Pt | | Cadmium | 0.401 | C9++ | Bromine | -1.0648 | Br | | Indium | 0.336 | In+++ | Chlorine | 1.3583 | CI- | | Thallium | 0.330 | TI+ | Gold | -1.360 | Αυ ⁺⁺⁺ | | Cobalt | 0.278 | Co++ | Gold | — 1.50 | Αυ ⁺ | | Nickel | 0.231 | Ni ⁺⁺ | Fluorine | - 1.90 | F | #### Position of metals in the galvanic series | Corroded end (anodic, | 18-8 Stainless (active) | Silver
solder | |-----------------------------|----------------------------------|----------------------------| | or least noble) | 18-8-3 Stainless (active) | Nickel (passive) | | Magnesium Magnesium alloys | Lead-tin solders | Inconel (passive) | | Zinc | lead | Chromium-iron (passive) | | | <u>Tin</u> | 18-8 Stainless (passive) | | Aluminum 2S | Nickel (active) | 18-8-3 Stainless (passive) | | Cadmium | Inconel (active) | Silver | | Aluminum 17ST | Brasses | Graphite | | Steel or Iron | Copper | Gold | | Cast Iron | Bronzes | Platinum | | Chromium-iron (active) | Copper-nickel alloys | Protected end (cathodic, | | Ni-Resist | Monel | or most noble) | | Note: Groups of metals indi | cate they are closely similar in | | #### Electromotive force continued #### Periodic chart of work functions* | | | | | | | | | | group | • | | | | | | | | |----------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|----|------------|------------|------------| | period | | 1 | 1 | 11 | | II | 1 | ٧ | Ι ' | v | 1 | VI | V | 11 | | Atit | | | | A | B | A | B | A | B | A | B | A | B | A | B | A | В | | Atti | | | 2 | li
2.39 | | | Be
3.37 | | B
4.5 | | C
4.39 | | | | | | | | | Π | | 3 | Na
2.27 | : | | Mg
3.46 | | A1
3.74 | | Si
4.1 | | P
— | | s
— | | | | | | | 4 | K
2.15 | | Ca
2.76 | | \$c | | Ti
4.09 | | V
4.11 | | Cr
4.51 | | Mn
3.95 | | Fe
4.36 | Co
4.18 | Ni
4.84 | | | | Cu
4.47 | | Zn
3.74 | | Ga
3.96 | | Ge
4.56 | | As
5.11 | | Se
4.72 | | | | | | | 5 | Rb
2.13 | | Sr
2.35 | | Y
— | | Zr
3.84 | | Cb
3.99 | | Mo
4,27 | | Tc — | | Ru
4.52 | Rh
4.65 | Pd
4.82 | | | | Ag
4.28 | | Cd
3.92 | | ln_ | | Sn
4,11 | | Sb
4.08 | | Te
4,73 | | | | | | | 6 | Cs
1.89 | | Ba
2.29 | | la
3.3 | | Hf
3.53 | | Ta
4.12 | | W
4.50 | | Re
5.1 | | Os
4.55 | Ir
4.57 | Pt
5.29 | | _ | | Αυ
4.58 | | Hg
4.52 | | TI
3.76 | | Pb
4.02 | | Bi
4,28 | | Po
— | | | | | | | 7 | Fa — | | Ra | | Ac | | Th
3,41 | | Pa
— | _ | U
3.74 | | | | | | | | Rare
earths | Ce
2.7 | Pr
2.7 | Nd
3.3 | Sm
3.2 | | | | | | | | | | | | | | ^{*} Mean of published data, 1924–1949. From, H. B. Michaelson, "Work Functions of the Elements," Journal of Applied Physics, vol. 21, pp. 536–540; June, 1950. #### Temperature-emf characteristics of thermocouples* ^{*} From R. L. Weber, "Temperature Measurement and Control," Blakiston Co., Philadelphia, Pennsylvania; 1941: see pp. 68–71. # continued Electromotive force | | | | | | | | | Ę | ermo | Thermocouples and their characteristics | and t | heir ch | aracte | ristics | |--|---|--|---|--|--|--|---|--
--|--|--|--|---|--| | fype | copper/constantan tron/constantan chromel/constantan | ntan | iron/con | stantan | chromel | /constantan | | chrome!/alumel | platin | platinum/platinum platinum rhodium (13) | platinum | ı/platinum
um (13) | carbon | carbon/silicon
carbide | | Composition, percent | 100Cu 60Cu 40 | 60Cu 40Ni 100Fe | | 50Cu 40Ni | 90Ni 10C | r 55Cu 45Ni | 90Ni 10Cr | 60Cu 40Ni 90Ni 10Cr 55Cu 45Ni 90Ni 10Cr 94Ni 2Al 3Mn 1Si | <u>.</u> | 90Pt 10Rh | å | 87Pt 13Rh | ٥ | SiC | | *Range of application, °C 200 to +300 | -200 to +300 | - | -200 to +1382 | | 10 to +1100 | 8 | -200 to +1200 | +1200 | 10 to +1450 | | 0 to +1450 | S | 110 +2000 | 0 | | Resistivity, micro-ohm-cm 1.75 | 11.75 49 | 10 | | 49 | 70 | 49 | 170 | 29.4 | 01 | 21 | | | | | | Temperature coefficient of resistivity, per ° C | 10.0039 0.00001 | | 0.005 | 0.00001 | 0.00035 | 0.0002 | 0.00035 | 0.000125 | 0.0030 | 0.0018 | | | | | | e, ° C | 11085 1190 | = | 1535 | 1190 | 1400 | 1190 | 1400 | 1430 | 1755 | 1700 | | | 3000 | 2700 | | enf in millivolts;
reference junction at 0° C | 100° C
200
300 1 | } | 100° C
200 400
600 1000
1000 | 5.28mv
10.78
21.82
33.16
45.48
58.16 | 100° C
200
400
600 | 6.3mv
13.3
28.5
44.3 | 100° C
200 400
800 800
1200 1400 | 4.1 mv
8.13
16.39
24.90
33.31
41.31
48.85
55.81 | 100° C
200 200
600 400
1200 1200
1400 1400 | 0.643mv
1.436
3.251
5.222
7.330
9.569
11.924
14.312
16.674 | 100° C
200 C
400 600
1000
1400
1400 | 0.646mv
1.444
3.398
5.561
7.927
10.470
13.181
15.940 | 1210° C
1300
1360
1450 | 353.6mv
385.2
403.2
424.9 | | influence of temperature
and gas atmosphere | Subject to oxidation Oxidizing and re- Chromel att and altertion belove during atmosphere subjurous at 400°C due Cu, obove have little effect on issistance 160°C due constantan accuracy. Best used lion good, wire. Ni-plating of in day atmosphere. To reducin Cu tube gives protect. Resistance to oxida- phere poor, in a cid-contain- floor good to 400°C. Phere poor, ling gas. Contamine. Resistance to reducing a mosphere floor of Cu affects ing atmosphere floor oxid oxygen, moisture, to reducing orm. To reducing orm. | bove de bove de bove de bove de bove de bove de bove he de d | vidizing a ave little ave little couracy. couracy. con good on good on good ssistance as ave ave little couracy. I have a little couracy. I have a little couracy and a little couracy. I have a little couracy and a little couracy. | oxidation Oxidizing and resolve during atmosphere in above during atmosphere in above funding atmosphere in a country of the property p | Chromel sulphurou Resistano Resistano to redu to redu phere po | attacked by as amosphere, e to oxidere, e d. d. Resistance icing atmosphere, or. | Resistance
phere very
reducing
Affacted b
or sulphure
H±S. | Subject to oxidation Oxidizing and re- Chromel attacked by Resistance to oxidizing atmost every and alreation above during atmosphere suphruvus atmospheres, phere very good. Resistance to good. Resistance to reducing atmosphere poor. Susceptible to chemical alteration of the constant | Resista
good.
poor.
by As,
1 H2, H3,
1000-4 | Resistance to oxidizing atmosphere very Used agood. Resistance to reducing amosphere ment, poor. Succeptible to chemical alteration sheath by As. Si, P vapor in reducing gas (CO ₂ , inert. Hs, Hs, SO2). Pt corrodes easily above 1000°. Used in gas-light protecting tube. | reducing atmos reducing chemical chemical chemical chemical croducing produces and gaht protestight protestight protestight protestight protestight protestight protestight protestight protestight chemical chemi | phere very almosphere almosphere almosphere gas (CQ2, sily above setting tube. | | Used as tube ele-
ment. Carbon
sheart chemically
inert. | | Particular applications | low temperature, in- Low temperature, in-
bustion. Institution. Steel an-
bustion engine. Used nesting, bottler flues,
as a tube element tube stills. Used in
the measurements in reducing or neutral
steen line. | Jsed ne ment tu re | Low tempera
dustrial. Standarding, boll
tube stills.
reducing or | rature, in-
steel an-
oller flues,
Used in
or neutral | | | Used in ox
Industrial. (
stills, electr | Used in oxidizing atmosphere, International Stand- Similar to Pt/PRht10) Steel furnace and Industrial. Ceramic kilns, tube and 630 to 106.5°C. but has higher emi. ladel temperatures, stills, electric furnaces. | Internat
ard 630 | fional Stand-
to 1065° C. | Similar to
but has hi | Pt/PtRh(10)
gher emf. | Steel fur
ladle tem
laborato
urements. | Steel furnace and adle temperatures. about the steel temperatures. urements. | * For prolonged usage; can be used at higher temperature for short periods. #### Physical constants of various metals and alloys | material | relative
resist-
ance* | temp
coeff of
resistivity | specific
gravity | coeff of
thermal
cond | avg coeff
thermal
expan
(X10 ⁻⁶) | melting
point
°C | |-------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------|---|------------------------| | A.I | | C | | | | | | Advance (55 Cu, 45 Ni) | see
1.64 | Constantan
0.0039 | 2.70 | 2.03 | 28.7 | 660 | | Aluminum | 24.21 | 0.0039 | 6.7 | 0.187 | 10.9 | 630 | | Antimony | 19.33 | 0.0036 | 5.73 | 0.107 | 3.86 | sublimes | | Arsenic | 69.8 | 0.0042 | 9.8 | 0.0755 | 13.4 | 271 | | Bismuth | 3.9 | 0.004 | 8.47 | 1.2 | 20.2 | 920 | | Brass (66 Cu, 34 Zn) | 4.4 | 0.002 | 8.64 | 0.92 | 31.6 | 321 | | Cadmium | 2900 | 0.0005 | 0.64 | 0.72 | 31.6 | 3500 | | Carbon, gas | 2900 | 0.0005 | - | | _ | 3300 | | Chromax (15 Cr, 35 Ni, | 50.0 | 0.00031 | 7.95 | 0.130 | | 1380 | | balance Fe) | 58.0 | 0.00031 | 1 | 0.130 | 12.4 | 1495 | | Cobalt | 5.6 | 0.0033 | 8.9 | _ | 12.4 | 1475 | | Columbium | see | Niobium | | 0.010 | 740 | 1010 | | Constantan (55 Cu, 45 Ni) | 28.45 | ±0.0002 | 8.9 | 0.218 | 14.8 | 1210 | | Copper-annealed | 1.00* | 0.00393 | 8.89 | 3.88 | 16.1 | 1083 | | hard drawn | 1.03 | 0.00382 | 8.94 | 1.000 | _ | 1083 | | Duralumin | 3.34 | 0.002 | 2.7 | 1.603 | - | 500-637 | | Eureka (55 Cu, 45 Ni) | see | Constantan | 5 000 4 000 | 0.07.000 | 100 | 00.70 | | Gallium | 56.8 | | 5.903-6.093 | | 18.0 | 29.78 | | German silver | 16.9 | 0.00027 | 8.7 | 0.32 | 18.4 | 1110 | | Germanium | ≈ 65.0 | 0.0004 | 5.35 | | 740 | 958.5 | | Gold | 1.416 | 0.0034 | 19.32 | 2.96 | 14.3 | 1063 | | Ideal (55 Cu, 45 Ni) | see | Constantan | 7.00 | 0.057 | 00.0 | 15/4 | | Indium | 9.0 | 0.00498 | 7.30 | 0.057 | 33.0 | 156.4 | | Iron, pure | 5.6 | 0.00520.0062 | 7.86 | 0.67 | 12.1 | 1535 | | Kovar A (29 Ni, 17 Co, | | | | 0.100 | | 1450 | | 0.3 Mn, balance Fe) | 28.4 | | 8.2 | 0.193 | 6.2 | 1450 | | Lead | 12.78 | 0.0039 | 11.34 | 0.344 | 29.4 | 327 | | Magnesium | 2.67 | 0.004 | 1.74 | 1.58 | 29.8 | 651 | | Manganin 184 Cu, 12 Mn, | 1 | | | | | 010 | | 4 Ni) | 26 | ±0.00002 | 8.5 | 0.63 | _ | 910 | | Mercury | 55.6 | 0.00089 | 13.55 | 0.063 | | -38.87 | | Molybdenum, drawn | 3.3 | 0.0045 | 10.2 | 1.46 | 6.0 | 2630 | | Monel metal (67 Ni, 30 | 07.0 | 0.000 | 0.0 | 0.05 | 140 | 1200
1250 | | Cu, 1.4 Fe, 1 Mn) | 27.8 | 0.002 | 8.8 | 0.25 | 16.3 | 1300-1350 | | Nichrome I (65 Ni, 12 | 450 | 0.00017 | 0.05 | 0.120 | | 1250 | | Cr, 23 Fe) | 65.0 | 0.00017 | 8.25 | 0.132 | 75.5 | 1350 | | Nickel | 5.05 | 0.0047 | 8.9 | 0.6 | 15.5 | 1455 | | Nickel silver (64 Cu, 18 | 1.0 | 0.00007 | 0.70 | 0.00 | | 1110 | | Zn, 18 Ni) | 16.0 | 0.00026 | 8.72 | 0.33 | 7, | 1110 | | Niobium | 13.2 | 0.00395 | 8.55 | | 7.1 | 2500 | | Palladium | 6.2 | 0.0033 | 12.0 | 0.7 | 11.0 | 1549 | | Phosphor-bronze (4 Sn, | | 0.000 | | 0.00 | 1,,, | 1050 | | 0.5 P, balance Cul | 5.45 | 0.003 | 8.9 | 0.82 | 16.8 | 1050 | | Platinum | 6.16 | 0.003 | 21.4 | 0.695 | 9.0 | 1774 | | Silicon | 0.05 | 0.0000 | 2.4 | 0.020 | 4.68 | 1420 | | Silver | 0.95 | 0.0038 | 10.5 | 4.19 | 18.8 | 960.5 | | Steel, manganese (13Mn, | 43.5 | | 7.01 | 0.110 | | 1510 | | 1 C, 86 Fe) | 41.1 | | 7.81 | 0.113 | _ | 1510 | | Steel, SAE 1045 (0.4-0.5 | 7 / 10 - | | 7.0 | 0.50 | | | | C, balance Fe) | 7.6–12.7 | _ | 7.8 | 0.59 | 15.0 | 1480 | | Steel, 18–8 stainless (0.1 C, | 50.0 | | 7.0 | 0.140 | 10. | | | 18 Cr, 8 Ni, balance Fel | 52.8 | i — | 7.9 | 0.163 | 19.1 | 1410 | ^{*} Resistivity of copper = 1.7241×10^{-6} ohm-centimeters. #### Physical constants of various metals and alloys continued | material | relative
resist-
ance* | temp
coeff of
resistivity | specific
gravity | coeff of
thermal
cond | avg coeff
thermal
expan
(X10 ⁻⁶) | melting
point
°C | |-------------------------|------------------------------|---------------------------------|---------------------|-----------------------------|---|------------------------| | Tantalum | 9.0 | 0.003 | 16.6 | 0.545 | 6.6 | 2900 | | | | | 1 | 0.545 | | | | Thorium | 18.6 | 0.0021 | 11.2 | | 12.3 | 1845 | | Tin | 6.7 | 0.0042 | 7.3 | 0.64 | 26.9 | 231.9 | | Titanium | 47.8 | _ | 4.5 | 0.41 | 8.5 | 1800 | | Tophet A (80 Ni, 20 Cr) | 62.5 | 0.00014 | 8.4 | 0.136 | i — | 1400 | | Tungsten | 3.25 | 0.0045 | 19.3 | 1.6 | 4.6 | 3370 | | Uranium | 32-40 | 0.0021 | 18.7 | 1.5 | | ≈1150 | | Zinc | 3.4 | 0.0037 | 7.14 | 1.12 | 26.3 | 419 | | Zirconium | 2.38 | 0.0044 | 6.4 | _ | 5.0 | 1900 | **Relative resistance:** The table of relative resistances gives the ratio of the resistance of any material to the resistance of a piece of annealed copper of identical physical dimensions and temperature. The resistance of any substance of uniform cross-section is proportional to the length and inversely proportional to the cross-sectional area. $$R = \rho L/A$$ # where ρ = resistivity, the proportionality constant L = length A = cross-sectional area R = resistance in ohms If L and A are measured in centimeters, ρ is in ohm-centimeters. If L is measured in feet, and A in circular mils, ρ is in ohm-circular-mils/foot. Relative resistance = ρ divided by the resistivity of copper (1.7241 imes 10⁻⁶ ohm-centimeters) Temperature coefficient of resistivity gives the ratio of the change in resistivity due to a change in temperature of 1 degree centigrade relative to the resistivity at 20 degrees centigrade. The dimensions of this quantity are ohms/degree centigrade/ohm, or 1/degree centigrade. The resistance at any temperature is $$R = R_{20} \left[1 + \alpha_{20} \left(T - 20 \right) \right]$$ #### where R_{20} = resistance in ohms at 20 degrees centigrade T = temperature in degrees centigrade $lpha_{20}=$ temperature coefficient of resistivity/degree centigrade at 20 degrees centigrade #### Physical constants of various metals and alloys continued **Specific gravity** of a substance is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of water. In the cgs system, the specific gravity of a substance is exactly equal to the weight in grams of one cubic centimeter of the substance. Coefficient of thermal conductivity is defined as the time rate of heat transfer through unit thickness, across unit area, for a unit difference in temperature. Expressing rate of heat transfer in watts, the coefficient of thermal conductivity $K = WL/A\Delta T$ where W = watts L = thickness in centimeters $A = area in centimeters^2$ ΔT = temperature difference in degrees centigrade Coefficient of thermal expansion: The coefficient of linear thermal expansion is the ratio of the change in length per degree to the length at 0° C. It is usually given as an average value over a range of temperatures and is then called the average coefficient of thermal expansion. #### Temperature charts of metals On the following two pages are given centigrade and fahrenheit temperatures relating to the processing of metals and alloys. Soldering, brazing, and welding: This chart has been prepared to provide, in a convenient form, the melting points and components of various common soldering and brazing alloys. The temperature limits of various joining processes are indicated with the type and composition of the flux best suited for the process. The chart is a compilation of present good practice and does not indicate that the processes and materials cannot be used in other ways under special conditions. Melting points: The melting-point chart is a thermometer-type graph upon which are placed the melting points of metals, alloys, and ceramics most commonly used in electron tubes and other components in the electronics industry. Pure metals are shown opposite their respective melting points on the right side of the thermometer. Ceramic materials and metal alloys are similarly shown on the left. The melting temperature shown for ceramic bodies is that temperature above which no crystalline phase normally exists. No attempt has been made to indicate their progressive softening characteristic. #### Temperature charts of metals continued #### Soldering, brazing, and welding processes* ^{*} By R. C. Hitchcock, Research Laboratories, Westinghouse Electric Corp., East Pittsburgh, Pa. Reprinted by permission from *Product Engineering*, vol. 18, p. 171; October, 1947. #### Temperature charts of metals continued #### Melting points of metals, alloys, and ceramics* ^{*} By K. H. McPhee. Reprinted by permission from Electronics, vol. 21, p. 118; December, 1948. #### Wire tables* # Solid copper—comparison of gauges | Amer- | Birming- | British | dian | neter | | ar | e a | we | ight | |----------------------------------|--|---|----------------|------------------|------------------|----------------------------|----------------------|----------------------------------|-------------------------------------| | ican
(B & S)
wire
gauge | ham
(Stubs')
iron
wire
gauge | stand-
ard
(NBS)
wire
gauge | mils | milli-
meters | circular
mils | square
milli-
meters | square
inches | per
1000 feet
in
pounds | per
kilometer
in
kilograms | | | 0 | _ | 340.0 | 8.636 | 115600 | 58.58 | 0.09079 | 350 | 521 | | 0 | - | _ | 324.9 | 8.251 | 105500 | 53.48 | 0.08289 | 319 | 475 | | - | _ | 0 | 324.0 | 8.230 | 105000 | 53.19 | 0.08245 | 318 | 472 | | - | 1 | 1 | 300.0 | 7.620 | 90000 | 45.60 | 0.07069 | 273 | 405 | | 1 | ! - | - | 289.3 | 7.348 | 83690 | 42.41 | 0.06573 | 253 | 377 | | - | 2 | - | 284.0 | 7.214
7.188 | 80660
80090 | 40.87
40.58 | 0.06335
0.06290 | 244
242 | 363
361 | | - | - | -
2 | 283.0
276.0 | 7.010 | 76180 | 38.60 | 0.05963 | 231 | 343 | | - | 3 | | 259.0 | 6.579 | 67080 | 33.99 | 0.05269 | 203 | 302 | | 2 | <u> </u> | _ | 257.6 | 6.544 | 66370 | 33.63 | 0.05213 | 201 | 299 | | - | - | 3 | 252.0 | 6.401 | 63500 | 32.18 | 0.04988 | 193 | 286 | | Ξ | 4 | - | 238.0 | 6.045 | 56640 | 28.70 | 0.04449
0.04227 | 173
163 | 255
242 | | 3 | - | 4 | 232.0
229.4 | 5.893
5.827 | 53820
52630 | 27.27
26.67 | 0.04227 | 159 | 237 | | | 5 | _ | 220.0 | 5.588 | 48400 | 24.52 | 0.03801 | 147 | 217 | | _ | _ | 5 | 212.0 | 5.385 | 44940 | 22.77 | 0.03530 | 136 | 202 | | 4 | - | = | 204.3 | 5.189 | 41740 | 21.18 | 0.03278 | 126 | 188 | | - | 6 | - | 203.0
192.0 | 5.156
4.877 | 41210
36860 | 20.88
18.68 | 0.03237
0.02895 | 125
112 | 186
166 | | 5 | | 6 | 181.9 | 4.621 | 33100 | 16.77 | 0.02600 | 100 | 149 | | 3 | 7 | _ | 180.0 | 4.572 | 32400 | 16.42 | 0.02545 | 98.0 | 146 | | - | 1 - 1 | 7 | 176.0 | 4.470 | 30980 | 15.70 | 0.02433 | 93.6 | 139 | | - | 8 | - | 165.0 | 4.191 | 27220 | 13.86 | 0.02138 | 86.2 | 123
118 | | 6 | - | 8 | 162.0
160.0 | 4.116
4.064 | 26250
25600 | 13.30
12.97 | 0.02062 | 79.5
77.5 | 115 | | _ | 9 | - | 148.0 | 3.759 | 21900 | 11.10 | 0.01720 | 66.3 | 98.6 | | 7 | | _ | 144.3 | 3 .665 | 20820 | 10.55 | 0.01635 | 63.0 | 93.7 | | _ | l . . 1 | 9 | 144.0 | 3.658 | 20740 | 10.51 | 0.01629 | 62.8 | 93.4
80.8 | | 8 | 10 | _ | 134.0
128.8 | 3.404
3.264 | 17960
16510 | 9.098
8.366 | 0.01410
0.01297 | 54.3
50.0 | 74.4 | | | 1 - 1 | 10 | 128.0 | 3.251 | 16380 | 8.302 | 0.01267 | 49.6 | 73.8 | | _ | 11 | - | 120.0 | 3.048 | 14400 | 7.297 | 0.01131 | 43.6 | 64.8 | | _ | l - i | 11 | 116.0 | 2.946 | 13460 | 6.818 | 0.01057 | 40.8 | 60.5 | | 9 | <u>,-</u> | _ | 114.4
109.0 | 2.906
2.769 | 13090 | 6.634
6.020 | 0.01028 | 39.6
35.9 | 58.9
53.5 | | _ | 12 | 12 | 104.0 | 2.642 | 10820 | 5.481 | 0.007331 | 32.7 | 48.7 | | 10 | | - | 101.9 | 2.588 | 10380 | 5.261 | 0.008155 | 31.4 | 46.8 | | - | 13 | - | 95.00 | 2.413 | 9025 | 4.573 | 0.007088 | 27.3 | 40.6 | | | - | 13 | 92.00 | 2.337
2.305 | 8464
8234 | 4.289
4.172 | 0.006648 | 25.6
24.9 | 38.1
37.1 | | 11 | 14 | _ | 90.74
83.00 | 2.108 | 6889 | 3,491 | 0.005411 | 20.8 | 31.0 | | 12 | '- | _ | 80.81 | 2.053 | 6530 | 3.309 | 0.005129 | 19.8 | 29.4 | | - | - | 14 | 80.00 | 2.032 | 6400 | 3.243 | 0.005027 | 19.4 | 28.8 | | | 15 | 15 | 72.00 | 1.829
1.828 | 5184
5178
 2.627
2.624 | 0.004072 | 16.1
15.7 | 23.4
23.3 | | 13 | 16 | _ | 71.96
65.00 | 1.651 | 4225 | 2.024 | 0.004067 | 12.8 | 19.0 | | 14 | '- | _ | 64.08 | 1.628 | 4107 | 2.081 | 0.003225 | 12.4 | 18.5 | | - | - | 16 | 64.00 | 1.626 | 4096 | 2.075 | 0.003217 | 12.3 | 18.4 | | | 17 | - | 58.00 | 1.473 | 3364 | 1.705 | 0.002642
0.002558 | 10.2
9.86 | 15.1
14.7 | | 15 |] [| 17 | 57.07
56.00 | 1.450
1.422 | 3257
3136 | 1.650
1.589 | 0.002558 | 9.50 | 14.7 | | 16 | _ | <u>''</u> | 50.82 | 1.291 | 2583 | 1.309 | 0.002028 | 7.82 | 11.6 | | - | 18 | - | 49.00 | 1.245 | 2401 | 1.217 | 0.001886 | 7.27 | 10.8 | | .= | - | 18 | 48.00 | 1.219 | 2304 | 1.167 | 0.001810 | 6.98 | 10.4
9.23 | | 17 | 19 | _ | 45.26
42.00 | 1.150 | 2048
1764 | 1.038
0.8938 | 0.001609
0.001385 | 6.20
5.34 | 7.94 | | 18 | - 19 | _ | 40.30 | 1.007 | 1624 | 0.8231 | 0,001363 | 4.92 | 7.32 | | - | - | 19 | 40.00 | 1.016 | 1600 | 0.8107 | 0.001257 | 4.84 | 7.21 | | .= | - | 20 | 36.00 | 0.9144 | 1296 | 0.6567 | 0.001018 | 3.93 | 5.84 | | 19 | 20 | _ | 35.89
35.00 | 0.9116 | 1288
1225 | 0.6527
0.6207 | 0.001012 | 3.90
3.71 | 5.80
5.52 | | _ | 21 | 21 | 32.00 | 0.8128 | 1024 | 0.5189 | 0.0008042 | 3.11 | 4.62 | | 20 | - | - | 31.96 | 0.8118 | 1022 | 0.5176 | 0.0008023 | 3.09 | 4.60 | ^{*} For information on insulated wire for inductor windings, see pp. 114 and 278. #### Wire tables continued #### Annealed copper (AWG) | AWG | diam- | cross | section | ohms per | l l | | ft per ohm | ohms per lb | |----------------|-----------------|------------------|------------------|--------------------------------|--------------------|-----------|---------------------|---------------------| | B & S
gauge | eter in
mils | circular
mils | squore
inches | 1000 ft
at 20° C
(68° F) | lbs per
1000 ft | ft per lb | at 20° C
(68° F) | at 20° C
(68° F) | | 0000 | 460.0 | 211,600 | 0.1662 | 0.04901 | 640.5 | 1.561 | 20,400 | 0.00007652 | | 000 | 409.6 | 167,800 | 0.1318 | 0.06180 | 507.9 | 1.968 | 16,180 | 0.0001217 | | 00 | 364.8 | 133,100 | 0.1045 | 0.07793 | 402.8 | 2.482 | 12,830 | 0.0001935 | | 0 | 324.9 | 105,500 | 0.08289 | 0.09827 | 319.5 | 3.130 | 10,180 | 0.0003076 | | 1 | 289.3 | 83,690 | 0.06573 | 0.1239 | 253.3 | 3.947 | 8,070 | 0.0004891 | | 2 | 257.6 | 66,370 | 0.05213 | 0.1563 | 200.9 | 4.977 | 6,400 | 0.0007778 | | 3 | 229.4 | 52,640 | 0.04134 | 0.1970 | 159.3 | 6.276 | 5,075 | 0.001237 | | 4 | 204.3 | 41,740 | 0.03278 | 0.2485 | 126.4 | 7.914 | 4,025 | 0.001966 | | 5 | 181.9 | 33,100 | 0.02600 | 0.3133 | 100.2 | 9.980 | 3,192 | 0.003127 | | 6 | 162.0 | 26,250 | 0.02062 | 0.3951 | 79.46 | 12.58 | 2,531 | 0.004972 | | 7 | 144.3 | 20,820 | 0.01635 | 0.4982 | 63.02 | 15.87 | 2,007 | 0.007905 | | 8 | 128.5 | 16,510 | 0.01297 | 0.6282 | 49.98 | 20.01 | 1,592 | 0.01257 | | 9 | 114.4 | 13,090 | 0.01028 | 0.7921 | 39.63 | 25.23 | 1,262 | 0.01999 | | 10 | 101.9 | 10,380 | 0.008155 | 0.9989 | 31.43 | 31.82 | 1,001 | 0.03178 | | 11 | 90.74 | 8,234 | 0.006467 | 1.260 | 24.92 | 40.12 | 794 | 0.05053 | | 12 | 80.81 | 6,530 | 0.005129 | 1.588 | 19.77 | 50.59 | 629.6 | 0.08035 | | 13 | 71.96 | 5,178 | 0.004067 | 2.003 | 15.68 | 63.80 | 499.3 | 0.1278 | | 14 | 64.08 | 4,107 | 0.003225 | 2.525 | 12.43 | 80.44 | 396.0 | 0.2032 | | 15 | 57.07 | 3,257 | 0.002558 | 3.184 | 9.858 | 101.4 | 314.0 | 0.3230 | | 16 | 50.82 | 2,583 | 0.002028 | 4.016 | 7.818 | 127.9 | 249.0 | 0.5136 | | 17 | 45.26 | 2,048 | 0.001609 | 5.064 | 6.200 | 161.3 | 197.5 | 0.8167 | | 18 | 40.30 | 1,624 | 0.001276 | 6.385 | 4.917 | 203.4 | 156.6 | 1.299 | | 19 | 35.89 | 1,288 | 0.001012 | 8.051 | 3.899 | 256.5 | 124.2 | 2.065 | | 20 | 31.96 | 1,022 | 0.0008023 | 10.15 | 3.092 | 323.4 | 98.50 | 3.283 | | 21 | 28.46 | 810.1 | 0.0006363 | 12.80 | 2.452 | 407.8 | 78.11 | 5.221 | | 22 | 25.35 | 642.4 | 0.0005046 | 16.14 | 1.945 | 514.2 | 61.95 | 8.301 | | 23 | 22.57 | 509.5 | 0.0004002 | 20.36 | 1.542 | 648.4 | 49.13 | 13.20 | | 24 | 20.10 | 404.0 | 0.0003173 | 25.67 | 1,223 | 817.7 | 38.96 | 20.99 | | 25 | 17.90 | 320.4 | 0.0002517 | 32.37 | 0,9699 | 1,031.0 | 30.90 | 33.37 | | 26 | 15.94 | 254.1 | 0.0001996 | 40.81 | 0,7692 | 1,300 | 24.50 | 53.06 | | 27 | 14.20 | 201.5 | 0.0001583 | 51.47 | 0.6100 | 1,639 | 19.43 | 84.37 | | 28 | 12.64 | 159.8 | 0.0001255 | 64.90 | 0.4837 | 2,067 | 15.41 | 134.2 | | 29 | 11.26 | 126.7 | 0.00009953 | 81.83 | 0.3836 | 2,607 | 12.22 | 213.3 | | 30 | 10.03 | 100.5 | 0.00007894 | 103.2 | 0.3042 | 3,287 | 9.691 | 339.2 | | 31 | 8.928 | 79.70 | 0.00006260 | 130.1 | 0.2413 | 4,145 | 7.685 | 539.3 | | 32 | 7.950 | 63.21 | 0.00004964 | 164.1 | 0.1913 | 5,227 | 6.095 | 857.6 | | 33 | 7.080 | 50.13 | 0.00003937 | 206.9 | 0.1517 | 6,591 | 4.833 | 1,364 | | 34 | 6.305 | 39.75 | 0.00003122 | 260.9 | 0.1203 | 8,310 | 3.833 | 2,168 | | 35 | 5.615 | 31.52 | 0.00002476 | 329.0 | 0.09542 | 10,480 | 3.040 | 3,448 | | 36 | 5.000 | 25.00 | 0.00001964 | 414.8 | 0.07568 | 13,210 | 2.411 | 5,482 | | 37 | 4.453 | 19.83 | 0.00001557 | 523.1 | 0.06001 | 16,660 | 1.912 | 8,717 | | 38 | 3.965 | 15.72 | 0.00001235 | 659.6 | 0.04759 | 21,010 | 1.516 | 13,860 | | 39 | 3.531 | 12.47 | 0.000009793 | 831.8 | 0.03774 | 26,500 | 1.202 | 22,040 | | 4 0 | 3.145 | 9.888 | 0.000007766 | 1049.0 | 0.02993 | 33,410 | 0.9534 | 35,040 | Temperature coefficient of resistance: The resistance of a conductor at temperature ${\it T}$ in degrees centigrade is given by $R = R_{20} [1 + \alpha_{20} (T - 20)]$ where R_{20} is the resistance at 20 degrees centigrade and α_{20} is the temperature coefficient of resistance at 20 degrees centigrade. For copper, $\alpha_{20}=0.00393$. That is, the resistance of a copper conductor increases approximately 4/10 of 1 percent per degree centigrade rise in temperature. #### Wire tables continued #### Hard-drawn copper (AWG)* | AWG | wire | breaking | tensile | we | ight | maximum
resistance | | ectional
rea | |----------------|-----------------------------|-------------------------|----------------------------|----------------------------|-------------------------|-------------------------------------|---------------------------|----------------------------------| | B & S
gauge | diameter
in inches | load in
pounds | strength
in
lbs/in² | pounds
per
1000 feet | pounds
per
mile | (ohms per
1000 feet
at 68° F) | circulor
mils | square
inches | | 4/0 | 0.4600 | 8143 | 49,000 | 640.5 | 3382 | 0.05045 | 211,600 | 0.1662 | | 3/0 | 0.4096 | 6722 | 51,000 | 507.9 | 2682 | 0.06361 | 167,800 | 0.1318 | | 2/0 | 0.3648 | 5519 | 52,800 | 402.8 | 2127 | 0.08021 | 133,100 | 0.1045 | | 1/0 | 0.3249 | 4517 | 54,500 | 319.5 | 1687 | 0.1011 | 105,500 | 0.08289 | | 1 | 0.2893 | 3688 | 56,100 | 253.3 | 1338 | 0.1287 | 83,690 | 0.06573 | | 2 | 0.2576 | 3003 | 57,600 | 200.9 | 1061 | 0.1625 | 66,370 | 0.05213 | | 3 | 0.2294 | 2439 | 59,000 | 159.3 | 841.2 | 0,2049 | 52,630 | 0.04134 | | 4 | 0.2043 | 1970 | 60,100 | 126.4 | 667.1 | 0,2584 | 41,740 | 0.03278 | | 5 | 0.1819 | 1591 | 61,200 | 100.2 | 529.1 | 0,3258 | 33,100 | 0.02600 | | 6 7 | 0.1650 | 1326 | 62,000 | 82.41 | 435.1 | 0.3961 | 27,225 | 0.02138 | | | 0.1620 | 1280 | 62,100 | 79.46 | 419.6 | 0.4108 | 26,250 | 0.02062 | | | 0.1443 | 1030 | 63,000 | 63.02 | 332.7 | 0.5181 | 20,820 | 0.01635 | | 8 9 | 0.1340 | 894.0 | 63,400 | 54.35 | 287.0 | 0.6006 | 17,956 | 0.01410 | | | 0.1285 | 826.0 | 63,700 | 49.97 | 263.9 | 0.6533 | 16,510 | 0.01297 | | | 0.1144 | 661.2 | 64,300 | 39.63 | 209.3 | 0.8238 | 13,090 | 0.01028 | | 10
11 | 0.1040
0.1019
0.09074 | 550.4
529.2
422.9 | 64,800
64,900
65,400 | 32.74
31.43
24.92 | 172.9
165.9
131.6 | 0.9971
1.039
1.310 | 10,816
10,380
8,234 | 0.008495
0.008155
0.006467 | | 12 | 0.08081 | 337.0 | 65,700 | 19.77 | 104.4 | 1.652 | 6,530 | 0.005129 | | 13 | 0.07196 | 268.0 | 65,900 | 15.68 | 82.77 | 2.083 | 5,178 | 0.004067 | | 14 | 0.06408 | 213.5 | 66,200 | 12.43 | 65.64 | 2.626 | 4,107 | 0.003225 | | 15 | 0.05707 | 169.8 | 66,400 | 9.858 | 52.05 | 3.312 | 3,257 | 0.002558 | | 16 | 0.05082 | 135.1 | 66,600 | 7.818 | 41.28 | 4.176 | 2,583 | 0.002028 | | 17 | 0.04526 | 107.5 | 66,800 | 6.200 | 32.74 | 5.266 | 2,048 | 0.001609 | | 18 | 0.04030 | 85.47 | 67,000 | 4.917 | 25.96 | 6.640 | 1,624 | 0.001276 | ^{*}Courtesy of Copperweld Steel Co., Glassport, Pa. Based on ASA Specification H–4.2 and ASTM Specification B–1. Modulus of elasticity is 17,000,000 lbs/inch². Coefficient of linear expansion is 0.000094/degree Fahrenheit. Weights are based on a density of 8.89 grams/cm³ at 20 degrees centigrade (equivalent to 0.00302699 lbs/circular mil/1000 feet). The resistances are maximum values for hard-drawn copper and are based on a resistivity of 10.674 ohms/circular-mil foot at 20 degrees centigrade (97.16 percent conductivity) for sizes 0.325 inch and larger, and 10.785 ohms/circular-mil foot at 20 degrees centigrade (96.16 percent conductivity) for sizes 0.324 inch and smaller. #### Tensile strength of copper wire (AWG)* | | | hard a | irawn | medium-h | ard drawn | saft or a | nnealed | |------------------------|----------------------------------|---|----------------------------------|---|----------------------------------|---|----------------------------------| | AWG
B & \$
gauge | wire
diameter
in
inches | minimum
tensile
strength
lbs/in² | breaking
load
in
pounds | minimum
tensile
strength
lbs/in² | breaking
load
in
pounds | maximum
tensile
strength
lbs/in ² | breaking
load
in
pounds | | 1
2
3 | 0,2893
0,2576
0,2294 | 56,100
57,600
59,000 | 3688
3003
2439 | 46,000
47,000
48,000 | 3024
2450
1984 | 37,000
37,000
37,000 | 2432
1929
1530 | | 4
5
- | 0.2043
0.1819
0.1650
| 60,100
61,200
62,000 | 1970
1591
1326 | 48,330
48,660 | 1584
1265
— | 37,000
37,000 | 1213
961.9 | | 6
7
- | 0.1620
0.1443
0.1340 | 62,100
63,000
63,400 | 1280
1030
894.0 | 49,000
49,330 | 1010
806.6 | 37,000
37,000
— | 7 62.9
605.0 | | 8
9
 | 0.1285
0.1144
0.1040 | 63,700
64,300
64,800 | 826.0
661.2
550.4 | 49,660
50,000 | 643.9
514.2 | 37,000
37,000 | 479.8
380.5 | | 10
11
12 | 0.1019
0.09074
0.08081 | 64,900
65,400
65,700 | 529.2
422.9
337.0 | 50,330
50,660
51, 000 | 410.4
327.6
261.6 | 38,500
38,500
38,500 | 314.0
249.0
197.5 | ^{*}Courtesy of Copperweld Steel Co., Glassport, Pa. Wire tables continued charocteristic impedonce* Solid copperweld (AWG) %0g 40% cond 1102244088 30% cond * offenuotion in decibels/mile* 40% cond Š å 1132 1132 1156 1163 1163 30% conduct breaking load, 40% conduct resistance ohms/1000 ft at 68° F 30% conduct 0.0847 1.085 1.395 1.395 1.395 1.395 1.083 40% conduct 0.0337 0.0737 1.627 1.627 2.547 3.212 3.212 2.548 5.11 10.23 10.24 10.24 10.24 10.25 2.546 8.25.46 8.2 8.63 10.09 11.23 24.75 24.75 24.75 25.76 25.76 27.76 11.06 10.06 10.06 10.06 10.06 10.06 10.06 10.06 10.06 10.06 10.06 1 feet Per Pound pounds per mile 11.18 45.57 45 pounds 181 .0000312 .0000248 .0000196 .0000156 .0000123 77700000. square inch 03278 102042 101037 101038 101038 1004045 1004042 1004042 1004042 1004042 1004042 1004042 1006043
1006043 .0000789 .0000626 .0000496 cross-sectional 4.7.40 5.5.50 5.50 5. circular mils 뺩 22043 11.1286 11.1286 11.1143 aBand at 1000 cycles/second. 12-inch wire spacing insulators, # 54 CHAPTER 3 #### Wire tables continued #### Voltage drop in long circuits The table below shows the conductor size (AWG or B&S gauge) necessary to limit the voltage drop to 2-percent maximum for various loads and distances. The calculations are for alternating-current circuits in conduit. | cur- | | | | dista | nce in | feet | | | | | | | dista | nce in | foot | | | | |---|-------|---|--|--|---|---|--|--|---|-------|---|---|--|--|--|---|--|---| | in
am-
peres | 25 | 50 | 75 | 100 | 150 | 200 | 300 | 400 | 500 | 25 | 50 | 75 | 100 | 150 | 200 | 300 | 400 | 500 | | - | sing | l e -ph | 050 | 110 v | olts | | | | | sing | le-pho | 350- | 220 v | olts | | | | | | 1 1.5
2 3
4 5 6 7 8 9 10 12 14 16 18 20 25 30 35 50 70 80 90 100 120 | | 14 14 12 12 12 10 10 10 8 8 8 6 6 6 6 6 4 4 4 4 4 2 2 2 2 1 | 14 12 12 12 12 10 10 10 8 8 8 8 6 6 6 4 4 4 4 4 4 2 2 2 1 0 0 0 00 | 14 12 12 12 10 10 10 8 8 8 8 6 6 6 4 4 4 2 2 2 2 1 0 00 000 0000 0000 0000 | 14 14 12 10 10 8 8 8 8 6 6 6 6 4 4 4 4 2 2 2 1 0 0 000 0000 0000 0000 | 14 12 10 10 8 8 8 6 6 6 6 4 4 4 4 2 2 2 2 1 0 00 00 00 00 00 00 00 00 00 00 00 00 | 14 12 10 8 8 6 6 6 6 4 4 4 4 2 2 2 2 1 1 0 0 000 0000 0000 0 | 12
10
10
10
8
6
6
4
4
4
2
2
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 10
10
8
6
6
4
4
2
2
2
2
2
1
0
00
000
000
000
000
000
00 | | 14
14
14
14
12
12
10
10
10
8
8
8
6
6
6
6
4
4 | 14
14
14
14
12
12
10
10
10
8
8
8
8
6
6
6
6
6
4
4
4
4
2
2 | 14 14 14 12 12 10 10 10 10 8 8 8 8 6 6 6 6 4 4 4 4 4 2 2 2 2 1 1 | 14 14 12 12 10 10 10 8 8 8 6 6 6 4 4 4 4 4 2 2 2 1 1 0 0 00 00 | 14 12 12 12 10 10 88 88 66 66 44 42 22 21 00 000 0000 0000 0000 0000 | 14 14 12 10 10 8 8 8 6 6 6 4 4 4 2 2 2 1 1 0 0 00 0000 0000 | 14 112 100 110 8 8 8 8 6 6 6 4 4 4 4 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 14
12
12
10
8
8
8
6
6
6
4
4
4
4
2
2
2
2
1
0
0
0000
0000
0000
00 | | | three | -pha | s o —2 | 20 vo | its | | | | | three | -pha | s 4 | 40 vo | its | • | | | | | 1 1.5
2 2 3
4 5 6 6 9
10 12 14 16 820 25 30 35 40 45 50 60 70 80 900 120 | | 14 14 14 12 12 12 10 10 10 8 8 8 6 6 6 6 4 | 14 14 12 12 12 10 10 10 8 8 8 6 6 6 6 4 4 4 4 4 4 2 2 | 14 14 12 12 12 12 10 10 10 8 8 6 6 6 4 4 4 4 2 2 2 2 2 | 14 14 12 12 12 10 10 8 8 8 8 6 6 6 4 4 4 4 4 4 4 2 2 2 1 0 0 | 14 14 12 12 10 10 10 10 10 8 8 8 6 6 6 4 4 4 2 2 2 2 1 1 0 00 00000 | 14 12 12 10 10 8 8 8 8 6 6 6 4 4 4 4 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 14 14 12 10 10 10 8 8 6 6 6 6 4 4 4 4 2 2 2 2 1 0 0 000 0000 | 14 12 10 10 10 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | 14 14 14 12 12 12 12 10 10 10 10 8 8 8 6 6 6 6 | 14 14 14 14 12 12 12 10 10 8 8 8 6 6 6 6 6 4 | 14 14 14 12 12 12 10 10 8 8 8 6 6 6 6 4 4 4 4 4 2 2 | 14 14 14 12 12 12 10 10 10 8 8 8 6 6 6 6 6 6 4 4 4 2 2 2 2 2 | 14 14 12 12 12 10 10 8 8 8 6 6 6 4 4 4 4 4 2 2 2 1 0 0 0 | 14 14 12 12 10 10 10 10 8 8 8 6 6 6 6 4 4 2 2 2 2 1 0 0 00 000 000 | 14 12 12 12 10 10 10 10 8 8 8 6 6 6 6 6 6 4 4 4 4 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | #### Wire tables continued #### Fusing currents of wires The current I in amperes at which a wire will melt can be calculated from: $I=\mathrm{Kd}^{3/2}$ where d is the wire diameter in inches and K is a constant that depends on the metal concerned. The table below gives the fusing currents in amperes for 5 commonly used types of wire. Owing to the wide variety of factors that can influence the rate of heat loss, these figures must be considered as only
approximations. | AWG
B&\$
gauge | diam
d in
inches | copper
(K =
10,244) | aluminum
(K =
7585) | german
silver
(K =
5230) | iron
(K =
3148) | tin
(K =
1642) | |----------------------|------------------------|---------------------------|---------------------------|-----------------------------------|-----------------------|----------------------| | 40 | 0.0031 | 1.77 | 1.31 | 0.90 | 0.54 | 0.28 | | 38 | 0.0039 | 2.50 | 1.85 | 1.27 | 0.77 | 0.40 | | 36 | 0.0050 | 3.62 | 2.68 | 1.85 | 1.11 | 0.58 | | 34 | 0.0063 | 5.12 | 3.79 | 2.61 | 1.57 | 0.82 | | 32 | 0.0079 | 7.19 | 5.32 | 3.67 | 2.21 | 1.15 | | 30 | 0.0100 | 10.2 | 7.58 | 5.23 | 3.15 | 1.64 | | 28 | 0.0126 | 14.4 | 10.7 | 7.39 | 4.45 | 2.32 | | 26 | 0.0159 | 20.5 | 15.2 | 10.5 | 6.31 | 3.29 | | 24 | 0.0201 | 29.2 | 21.6 | 14.9 | 8.97 | 4.68 | | 22 | 0.0253 | 41.2 | 30.5 | 21.0 | 12.7 | 6.61 | | 20 | 0.0319 | 58.4 | 43.2 | 29.8 | 17.9 | 9.36 | | 19 | 0.0359 | 69.7 | 51.6 | 35.5 | 21.4 | 11.2 | | 18 | 0.0403 | 82.9 | 61.4 | 42.3 | 25.5 | 13.3 | | 17 | 0.0452 | 98.4 | 72.9 | 50.2 | 30.2 | 15.8 | | 16 | 0.0508 | 117 | 86.8 | 59.9 | 36.0 | 18.8 | | 15 | 0.0571 | 140 | 103 | 71.4 | 43.0 | 22.4 | | 14 | 0.0641 | 166 | 123 | 84.9 | 51.1 | 26.6 | | 13 | 0.0719 | 197 | 146 | 101 | 60.7 | 31.7 | | 12 | 0.0808 | 235 | 174 | 120 | 72.3 | 37.7 | | 11 | 0.0907 | 280 | 207 | 143 | 86.0 | 44.9 | | 10 | 0.1019 | 333 | 247 | 170 | 102 | 53.4 | | 9 | 0.1144 | 396 | 293 | 202 | 122 | 63.5 | | 8 | 0.1285 | 472 | 349 | 241 | 145 | 75.6 | | 7 | 0.1443 | 561 | 416 | 287 | 173 | 90.0 | | 6 | 0.1620 | 668 | 495 | 341 | 205 | 107 | Courtesy of Automatic Electric Company; Chicago, III. #### Wire tables continued #### Physical properties of various wires* | | | co | per | .! | |---|---|---|---|---| | | properly | annealed | hard-drawn | aluminum
99 percent pure | | Ohms/mil-foot at | hiessen's standard in percent | 99 to 102 | 96 to 99 | 61 to 63 | | | 68°F = 20°C | 10.36 | 10.57 | 16.7 | | | mile at 68°F = 20°C | 54,600 | 55,700 | 88,200 | | | at 68°F = 20°C | 875 | 896 | 424 | | | clent of resistivity/°F | 0.00233 | 0.00233 | 0.0022 | | | cient of resistivity/°C | 0.0042 | 0.0042 | 0.0040 | | Mean specific gray | circular mil | 8.89 | 8.94 | 2.68 | | Pounds/1000 feet/ | | 0.003027 | 0.003049 | 0.000909 | | Weight in pounds, | | 0.320 | 0.322 | 0.0967 | | Mean specific hea | t in °F | 0.093 | 0.093 | 0.214 | | Mean melting poin | | 2,012 | 2,012 | 1,157 | | Mean melting poin | | 1,100 | 1,100 | 625 | | | of linear expansion/°F | 0.00000950 | 0.00000950 | 0.00001285 | | | of linear expansion/°C | 0.0000171 | 0.0000171 | 0.0000231 | | Solid wire (Values in pounds/in²) | Ultimate tensile strength
Average tensile strength
Elastic limit
Average elastic limit
Modulus of elasticity
Average modulus of elasticity | 30,000 to 42,000
32,000
6,000 to 16,000
15,000
7,000,000 to
17,000,000
12,000,000 | 45,000 to 68,000
60,000
25,000 to 45,000
30,000
13,000,000 to
18,000,000
16,000,000 | 20,000 to 35,000
24,000
14,000
14,000
8,500,000 to
11,500,000
9,000,000 | | Concentric strand (Values in pounds/in²) | Tensile strength Average tensile strength Elastic limit Average elastic limit Modulus of elasticity | 29,000 to 37,000
35,000
5,800 to 14,800
5,000,000 to
12,000,000 | 43,000 to 65,000
54,000
23,000 to 42,000
27,000
12,000,000 | 25,800
13,800
Approx
10,000,000 | ^{*} Reprinted by permission from "Transmission Towers," American Bridge Company, Pittsburgh, Pa.; 1925; p. 169. #### Stranded copper (AWG)* | Jii aiia | oa cobi | PO: (176) | , | | | | | | |------------------|-----------------------|-----------------------|---|-------------------------|--------------------------|------------------------------|---------------------------|--| | circular
mils | AWG
B & S
gauge | number
of
wires | individual
wire
diam in
inches | cable
diam
inches | area
square
inches | weight
lbs per
1000 ft | weight
lbs per
mile | *maximum
resistance
ohms/1000 ft
at 20° C | | 211,600 | 4/0 | 19 | 0.1055 | 0.528 | 0.1662 | 653.3 | 3,450 | 0.05093 | | 167,800 | 3/0 | 19 | 0.0940 | 0.470 | 0.1318 | 518.1 | 2,736 | 0.06422 | | 133,100 | 2/0 | 19 | 0.0837 | 0.419 | 0.1045 | 410.9 | 2,170 | 0.08097 | | 105,500 | 1/0 | 19 | 0.0745 | 0.373 | 0.08286 | 325.7 | 1,720 | 0.1022 | | 83,690 | 1 | 19 | 0.0664 | 0.332 | 0.06573 | 258.4 | 1,364 | 0.1288 | | 66,370 | 2 | 7 | 0.0974 | 0.292 | 0.05213 | 204.9 | 1,082 | 0.1624 | | 52,640 | 3 | 7 7 7 | 0.0867 | 0.260 | 0.04134 | 162.5 | 858.0 | 0.2048 | | 41,740 | 4 | | 0.0772 | 0.232 | 0.03278 | 128.9 | 680.5 | 0.2582 | | 33,100 | 5 | | 0.0688 | 0.206 | 0.02600 | 102.2 | 539.6 | 0.3256 | | 26,250 | 6 | 7 7 7 | 0.0612 | 0.184 | 0.02062 | 81.05 | 427.9 | 0.4105 | | 20,820 | 7 | | 0.0545 | 0.164 | 0.01635 | 64.28 | 339.4 | 0.5176 | | 16,510 | 8 | | 0.0486 | 0.146 | 0.01297 | 50.98 | 269.1 | 0.6528 | | 13,090
10,380 | 9 | 7 7 | 0.0432
0.0385 | 0.130 | 0.01028
0.008152 | 40.42
32.05 | 213.4
169.2 | 0.8233
1.038 | | 6,530 | 12 | 7 7 7 | 0.0305 | 0.0915 | 0.005129 | 20.16 | 106.5 | 1.650 | | 4,107 | 14 | | 0.0242 | 0.0726 | 0.003226 | 12.68 | 66.95 | 2.624 | | 2,583 | 16 | | 0.0192 | 0.0576 | 0.002029 | 7.975 | 42.11 | 4.172 | | 1,624 | 18
20 | 7 7 | 0.0152
0.0121 | 0.0456
0.0363 | 0.001275
0.0008027 | 5.014
3.155 | 26.47
16.66 | 6.636
10.54 | ^{*} The resistance values in this table are trade maxima for soft or annealed copper wire and are higher than the average values for commercial cable. The following values for the conductivity and resistivity of copper at 20 degrees centigrade were used: Conductivity in terms of International Annealed Copper Standard: 98.16 percent Resistivity in pounds per mile-ohm: 891.58 Resistivity in pounds per mile-ohm: Resistivity in pounds per mile-ohm: Resistance of hard-drawn copper is slightly greater than the values given, being about 2 percent to 3 percent greater for sizes from 4/0 to 20 AWG. | | steel | crucible | plow steel, | copper | -clad | |---|---|---------------------------------|---|--------------------------------|--------------------------| | iron
(Ex BB) | (Siemens-
Martin) | steel, high
strength | extra-high
strength | 30% cond | 40% cond | | 16.8
62.9
332,000 | 8.7
119.7
632,000 |
122.5
647,000 |
125.0
660,000 | 29.4
35.5
187,000 | 39.0
26.6
140,000 | | 4,700
0.0028
0.0050 | 8,900
0.00278
0.00501 | 9,100
0.00278
0.00501 | 9,300
0.00278
0.00501 | 2.775
0.0024
0.0044 | 2.075

0.0041 | | 7.77
0.002652
0.282 | 7.85
0.002671
0.283 | 7.85
—
0.283 | 7.85
0.283 | 8.17
0.00281
0.298 | 8.25
0.00281
0.298 | | 0.113
2,975
1,635 | 0.117
2,480
1,360 | 111 | = | = | = | | 0,00000673
0,0000120 | 0.00000662
0.0000118 | ·= | = | 0.0000072
0.0000129 | 0.0000072
0.0000129 | | 50,000 to 55,000
55,000
25,000 to 30,000
30,000
22,000,000 to
27,000,000 | 70,000 to 80,000
75,000
35,000 to 50,000
38,000
22,000,000 to
29,000,000 | 125,000
69,000 | 187,000
130,000 | 60,000
30,000 | 100,000 | | 26,000,000 | 29,000,000
74,000 to 98,000 | 30,000,000
85,000 to 165,000 | 30,000,000
140,000 to 245,000 | 19,000,000
70,000 to 97,000 | 21,000,000 | | = | 80,000
37,000 to 49,000
40,000
12,000,000 | 125,000
 | 180,000
180,000
110,000
15,000,000 | 80,000 | - = | #### Machine screws #### Head styles-method of length measurement continued Machine screws Dimensions and other data | 1 | - | , | Shanada | 400 | Jeografia | *1114 | | tan drill+ | _ | | | head | | _ | _ | hex not | _ | | washer | |
--|--|--------|---------|-----|-------------|----------|----|------------|------|----------|-------|-------|-------|----------|-------|---------|----------------|------|--------|--------| | dia coarse fine no dia 0.056 - 80 52 0.0644 55 0.073 64 72 47 0.079 55 0.086 56 64 42 0.094 54 0.099 48 - 37 0.104 4 0.112 40 - 48 31 0.120 4 0.125 40 - 44 29 0.136 33 0.138 32 - 40 27 0.144 33 0.164 36 - 40 27 0.144 33 0.190 24 - 36 9 0.196 2 0.216 24 - 36 2 0.196 2 0.216 28 2 0.221 1 1 0.250 - 28 2 0.221 1 0.250 - 28 | - | | | | | | | diameter | ete. | Pound | 2 | Aat | Ē | Allister | | | | | | | | 0.0060 — 80 52 0.064 5 0.0073 64 72 47 0.079 5 0.086 56 64 42 0.094 5 0.086 56 64 42 0.094 5 0.097 48 31 0.120 4 0.112 40 — 48 3 0.125 — 44 29 0.136 3 0.136 32 — 40 27 0.144 3 0.164 — 36 18 0.170 2 0.190 — 36 18 0.170 2 0.206 — 36 2 0.196 2 0.206 — 28 2 0.221 1 0.206 — 28 — 17/64 4 | | P. | 60000 | And | 2 | 물 | 9 | inches | Ē | ž G | max | ξG | ž G | max | fat | across | thick-
ness | 8 | 9 | thick- | | 0.073 64 72 47 0.079 5 0.086 56 64 42 0.094 5 0.089 48 - 37 0.104 4 0.112 40 - 48 31 0.120 4 0.125 - 44 29 0.136 3 0.136 32 - 44 3 - 0.136 32 - 40 27 0.144 3 0.144 32 - 36 18 0.170 2 0.196 - 32 9 0.196 2 2 0.250 - 28 2 0.221 1 1 0.250 - - 28 - 17/64 - | 1 | 090.0 | ı | 80 | 52 | 0.064 | 56 | 0.047 | 1.2 | 0.113 | 0.053 | 0.119 | 960'0 | 0.059 | 0.156 | 0.171 | 0.046 | | | l l | | 0.096 | + | 0.073 | 4 | 72 | 47 | 0.079 | 53 | 090'0 | 1,5 | 0.138 | 0.061 | 0.146 | 0.118 | 0.070 | 0.156 | 0,171 | 0.046 | ı | | l | | 0.112 | - | 0.086 | 88 | 26 | 42 | 0.094 | જ | 0.070 | 1.8 | 0.162 | 0.070 | 0.172 | 0.140 | 0.083 | 0.187 | 0.205 | 0.062 | 1/4 | 0.093 | 0.032 | | 0.112 | <u> </u> | | 84 | | , | 701.0 | 47 | 0.079 | 2.0 | 781.0 | 8200 | 0 100 | 1710 | 9000 | 781.0 | 9000 | 0,000 | 1,4 | 901.0 | 000 | | 0.112 | | 0.099 | ı | 56 | જે | 6.10 | 55 | 0.082 | 2.1 | <u>ò</u> | 0 | 0.177 | 5 | 2000 | 9 | 0.200 | 780.0 | - | 5 | 0.00 | | 0.125 | | | \$ | 1 | ; | 8 | 5 | 0.089 | 2.3 | 1100 | 7800 | 300.0 | 200 | 201.0 | 96.0 | 3760 | 000 | 2//3 | 361.0 | 0.00 | | 0.125 | | 0.112 | | 84 | | S.
S. | 42 | 0.094 | 2.4 | 0.211 | 0000 | 0.223 | 3 | ò | 0.230 | c/7:n | 260.0 | 9/10 | 0.123 | 7000 | | 0.138 | <u> </u> | | \$ | 1 | 8 | 701.0 | 8 | 0.102 | 2.6 | 760.0 | 3000 | 0360 | 3000 | 010 | 0.810 | 777 | 010 | 3 /8 | 0110 | 0.000 | | 0.138 32 27 0.144 3
0.144 32 18 0.170 2
0.150 24 9 0.196 2
0.216 28 2 0.221 1
0.250 20 17/64 | | 0.125 | 1 | 2 | 4 | 82.5 | 37 | 0.104 | 2.6 | 0.530 | | 707:0 | 200 | 2 | 7.00 | | 200 | 2/0 | 3 | 1 | | 0.134 | | | 32 | 1 | | | 38 | 0.107 | 2.7 | 076.0 | 501.0 | 0700 | 7000 | 0.130 | 0312 | 0 344 | 010 | 5/16 | 0.154 | 0.026 | | 0.164 32 18 0.170 2
0.190 24 9 0.196 2
0.216 24 9 0.196 2
0.250 20 17/64 | | 98.1.3 | | 40 | 7 | <u> </u> | 33 | 0.113 | 2.9 | 0.200 | 3 | 1770 | 0770 | 701.0 | 7 000 | - | 2 | 3/8 | 3 | 0.046 | | 0.190 24 36 18 0.170 2
0.190 24 9 0.196 2
0.216 24 2 0.221 1
0.250 20 17/64 | 1 | | 32 | ı | : | | 29 | 0.136 | 3.5 | 000 | 91.0 | 0 330 | 0,000 | 231.0 | 0.344 | 0.273 | 3010 | 3/8 | 701.0 | 0.032 | | 0.190 | | 0.164 | | % | ×2 | 5 | 29 | 0.136 | 3.5 | 6000 | | 7000 | 0.2.0 | 8 | t | 0.50 | 27.0 | 7/16 | 0.100 | 0.046 | | 0.150 | 1 | | 22 | | | 20.00 | 52 | 0.150 | 3.8 | 0360 | 781.0 | 386 | 0313 | 081.0 | 0.375 | 0.413 | 301.0 | 7/16 | a100 | 0.036 | | 0.216 24 — 2 0.221 1 1 0.250 2 0.221 1 1 0.250 2 0.250 2 0.251 1 1 0.250 2 0.2 | | 3 | ı | 32 | | <u>.</u> | 21 | 0.159 | 4.0 | 3 | 3 | | | 8 | | | 2 | 1/2 | | 0.063 | | 0.230 | 1 | | 24 | | , | 2 | 16 | 0.177 | 4.5 | 8070 | 0.169 | 0.438 | 0.357 | 0.205 | 0.437 | 0.488 | 0 154 | 1/2 | 0.250 | 0.063 | | 0.250 20 - 17/64 - | | 0.216 | ı | 28 | 7 | 77.0 | 14 | 0.182 | 4.6 | 04.0 | | | | | è | 3 | 3 | 91/6 | 3 | | | 0.230 28 1//64 | 1 | | 8 | I | | | 7 | 0.201 | 5.1 | 0.472 | 7710 | 600 | 7170 | 0.337 | 0.437 | 0.488 | 0.203 | 9/16 | 1800 | 0.040 | | | _ | 0.250 | | 88 | I . | 6/ | 3 | 0.213 | 5.5 | 1 | 3 | 3 | | - | 0.500 | 0.577 | 0.250 | 8/9 | - | 0.063 | All dimensions in inches except where noted. Tap-drill sizes are for use in hand tapping material such as brass or soft steel. For copper, aluminum, Norway iron, cast iron, bakelite, or for very thin * Clearance-drill sizes are practical values for use of the engineer or technician doing his own shop work. material, the drill should be a size or two larger diameter than shown. #### Drill sizes* | drill | inches | drill | Inches | drill | Inches | drill | inches | |---|--|---|--|---|--|---|--| | 0.10 mm
0.15 mm
0.20 mm
0.25 mm
0.30 mm | 0.003937
0.005905
0.007874
0.009842
0.011811 | 1.30 mm
no 55
1.35 mm
no 54
1.40 mm | 0.051181
0.052000
0.053149
0.055000
0.055118 | 3.10 mm
½ in
3.20 mm
3.25 mm
no 30 | 0.122047
0.125000
0.125984
0.127952
0.128500 | no 4
5.40 mm
no 3
5.50 mm | 0.209000
0.212598
0.213000
0.216535
0.218750 | | no 80
no 79½
0.35 mm
no 79
no 78½ | 0.013000
0.013500
0.013779
0.014000
0.014500 | 1.45 mm
1.50 mm
no 53
1.55 mm | 0.057086
0.059055
0.059500
0.061023
0.062500 | 3.30 mm
3.40 mm
no 29
3.50 mm
no 28 | 0.129921
0.133858
0.136000
0.137795
0.140500 | 5.60 mm
no 2
5.70 mm
5.75 mm
no 1 | 0.220472
0.221000
0.224409
0.226377
0.228000 | | no 78 | 0.015000 | 1.60 mm | 0.062992 | 1.60 mm | 0.140625 | 5.80 mm | 0.228346 | | 164 in | 0.015625 | no 52
 0.063500 | 3.60 mm | 0.141732 | 5.90 mm | 0.232283 | | 0.40 mm | 0.015748 | 1.65 mm | 0.064960 | no 27 | 0.144000 | Itr A | 0.234000 | | no 77 | 0.016000 | 1.70 mm | 0.066929 | 3.70 mm | 0.145669 | ¹⁵ 64 in | 0.234375 | | 0.45 mm | 0.017716 | no 51 | 0.067000 | no 26 | 0.147000 | .6.00 mm | 0.236220 | | no 76 | 0.018000 | 1.75 mm | 0.068897 | 3.75 mm | 0.147637 | Itr B | 0.238000 | | 0.50 mm | 0.019685 | no 50 | 0.070000 | no 25 | 0.149500 | 6.10 mm | 0.240157 | | no 75 | 0.020000 | 1.80 mm | 0.070866 | 3.80 mm | 0.149606 | Itr C | 0.242000 | | no 74½ | 0.021000 | 1.85 mm | 0.072834 | no 24 | 0.152000 | 6.20 mm | 0.244094 | | 0.55 mm | 0.021653 | no 49 | 0.073000 | 3.90 mm | 0.153543 | Itr D | 0.246000 | | no 74
no 73½
no 73
0.60 mm
no 72 | 0.022000
0.022500
0.023000
0.023622
0.024000 | 1.90 mm
no 48
1.95 mm
5√4 in
no 47 | 0.074803
0.076000
0.076771
0.078125
0.078500 | no 23
5∕2 in
no 22
4.00 mm
no 21 | 0.154000
0.156250
0.157000
0.157480
0.159000 | 6.25 mm
6.30 mm
ltr E
14 in 6.40 mm | 0.246062
0.248031
0.250000
0.251968 | | no 71 ½ | 0.025000 | 2.00 mm | 0.078740 | no 20 | 0.161000 | 6.50 mm | 0.255905 | | 0.65 mm | 0.025590 | 2.05 mm | 0.080708 | 4.10 mm | 0.161417 | Itr F | 0.257000 | | no 71 | 0.026000 | no 46 | 0.081000 | 4.20 mm | 0.165354 | 6.60 mm | 0.259842 | | no 70 | 0.027000 | no 45 | 0.082000 | no 19 | 0.166000 | Itr G | 0.261000 | | 0.70 mm | 0.027559 | 2.10 mm | 0.082677 | 4.25 mm | 0.167322 | 6.70 mm | 0.263779 | | no 69½ | 0.028000 | 2.15 mm | 0.084645 | 4.30 mm | 0.169291 | 1764 in | 0.265625 | | no 69 | 0.029000 | no 44 | 0.086000 | no 18 | 0.169500 | 6.75 mm | 0.265747 | | no 68½ | 0.029250 | 2.20 mm | 0.086614 | ¹¹ ⁄ ₆₄ in | 0.171875 | Itr H | 0.266000 | | 0.75 mm | 0.029527 | 2.25 mm | 0.088582 | no 17 | 0.173000 | 6.80 mm | 0.267716 | | no 68 | 0.030000 | no 43 | 0.089000 | 4.40 mm | 0.173228 | 6.90 mm | 0.271653 | | no 67 | 0.031000 | 2.30 mm | 0.090551 | no 16 | 0.177000 | Itr I | 0.272000 | | 1√2 in | 0.031250 | 2.35 mm | 0.092519 | 4.50 mm | 0.177165 | 7.00 mm | 0.275590 | | 0.80 mm | 0.031496 | no 42 | 0.093500 | no 15 | 0.180000 | Itr J | 0.277000 | | no 66 | 0.032000 | 3∕2 in | 0.093750 | 4.60 mm | 0.181102 | 7.10 mm | 0.279527 | | no 65 | 0.033000 | 2.40 mm | 0.094488 | no 14 | 0.182000 | Itr K | 0.281000 | | 0.85 mm | 0.033464 | no 41 | 0.096000 | no 13 | 0.185000 | % in | 0.281250 | | no 64 | 0.035000 | 2.45 mm | 0.096456 | 4.70 mm | 0.185039 | 7.20 mm | 0.283464 | | 0.90 mm | 0.035433 | no 40 | 0.098000 | 4.75 mm | 0.187007 | 7.25 mm | 0.285432 | | no 63 | 0.036000 | 2.50 mm | 0.098425 | ³ / ₆ in | 0.187500 | 7.30 mm | 0.287401 | | no 62 | 0.037000 | no 39 | 0.099500 | 4.80 mm | 0.188976 | Itr L | 0.290000 | | 0.95 mm | 0.037401 | no 38 | 0.101500 | no 12 | 0.189000 | 7.40 mm | 0.291338 | | no 61 | 0.038000 | 2.60 mm | 0.102362 | no 11 | 0.191000 | Itr M | 0.295000 | | no 60½ | 0.039000 | no 37 | 0.104000 | 4.90 mm | 0.192913 | 7.50 mm | 0.295275 | | 1.00 mm | 0.039370 | 2.70 mm | 0.106299 | no 10 | 0.193500 | ¹⁹ ⁄ ₄ in | 0.296875 | | no 60 | 0.040000 | no 36 | 0.106500 | no 9 | 0.194000 | 7.60 mm | 0.299212 | | no 59
1.05 mm
no 58
no 57
1.10 mm | 0.041000
0.041338
0.042000
0.043000
0.043307 | 2.75 mm
764 in
no 35
2.80 mm
no 34 | 0.108267
0.109375
0.110000
0.110236
0.111000 | 5.00 mm
no 8
5.10 mm
no 7 | 0.196850
0.199000
0.200787
0.201000
0.203125 | ltr N
7.70 mm
7.75 mm
7.80 mm
7.90 mm | 0.302000
0.303149
0.305117
0.307086
0.311023 | | 1.15 mm | 0.045275 | no 33 | 0.113000 | no 6 | 0.204000 | 5/g in | 0.312500 | | no 56 | 0.046500 | 2.90 mm | 0.114173 | 5.20 mm | 0.204724 | 8.00 mm | 0.314960 | | 34 in | 0.046875 | no 32 | 0.116000 | no 5 | 0.205500 | Itr O | 0.316000 | | 1.20 mm | 0.047244 | 3.00 mm | 0.118110 | 5.25 mm | 0.206692 | 8.10 mm | 0.318897 | | 1.25 mm | 0.049212 | no 31 | 0.120000 | 5.30 mm | 0.208661 | 8.20 mm | 0.322834 | ^{*} From New Departure Handbook. #### Drill sizes continued | drill | inches | drill | inches | drill | inches | drill | inches | |---------------------|----------|----------------------|----------|---------------------|----------|----------------------------------|----------| | ltr P | 0.323000 | 9.60 mm | 0.377952 | 35/64 in | 0.546875 | 25∕6 in | 0.781250 | | 8.25 mm | 0.324802 | 9.70 mm | 0.381889 | 14.00 mm | 0.551180 | 20.00 mm | 0.787400 | | 8.30 mm | 0.326771 | 9.75 mm | 0.383857 | % in | 0.562500 | 51/64 in | 0.796875 | | 21/64 in | 0.328125 | 9.80 mm | 0.385826 | 14.50 mm | 0.570865 | 20.50 mm | 0.807085 | | 8.40 mm | 0.330708 | ltr W | 0.386000 | 87/64 in | 0.578125 | ¹³ ∕ ₁₆ in | 0.812500 | | itr Q | 0.332000 | 9.90 mm | 0.389763 | 15.00 mm | 0.590550 | 21.00 mm | 0.826770 | | 8.50 mm | 0.334645 | 25 ₆₄ in | 0.390625 | 19∕52 in | 0.593750 | 53%4 in | 0.828125 | | 8.60 mm | 0.338582 | 10.00 mm | 0.393700 | 19 ½ in
39 ¼ in | 0.609375 | 27√s2 in | 0.843750 | | ltr R | 0.339000 | ltr X | 0.397000 | 15.50 mm | 0.610235 | 21.50 mm | 0.846455 | | 8.70 mm | 0.342519 | îtr Y | 0.404000 | 5∕8 in | 0.625000 | 55%4 in | 0.859375 | | 11∕2 in | 0.343750 | 18∕2 in | 0.406250 | 16.00 mm | 0.629920 | 22.00 mm | 0.866140 | | 8.75 mm | 0.344487 | ltr Z | 0.413000 | 41/64 in | 0.640625 | 7∕8 in | 0.875000 | | 8.80 mm | 0.346456 | 10.50 mm | 0.413385 | 16.50 mm | 0.649605 | 22.50 mm | 0.885825 | | ltr S | 0.348000 | 27/64 in | 0.421875 | ²¹ ∕s₂in | 0.656250 | 57/64 in | 0.890625 | | 8.90 mm | 0.350393 | 11.00 mm | 0.433070 | 17.00 mm | 0.669290 | 23.00 mm | 0.905510 | | 9.00 mm | 0.354330 | 7√sin | 0.437500 | 43% in | 0.671875 | ²⁹ ∕s₂ in | 0.906250 | | ltr T | 0.358000 | 11.50 mm | 0.452755 | 11/16 in | 0.687500 | 5964 in | 0.921875 | | 9.10 mm | 0.358267 | 2964 in | 0.453125 | 17.50 mm | 0.688975 | 23.50 mm | 0.925195 | | ²³ 64 in | 0.359375 | 15 € in | 0.468750 | 45%4 in | 0.703125 | 15/ ₁₅ in | 0.937500 | | 9.20 mm | 0.362204 | 12.00 mm | 0.472440 | 18.00 mm | 0.708660 | 24.00 mm | 0.944880 | | 9.25 mm | 0.364172 | 31/64 in | 0.484375 | ²³ √2 in | 0.718750 | 61 ₆₄ in | 0.953125 | | 9.30 mm | 0.366141 | 12.50 mm | 0.492125 | 18.50 mm | 0.728345 | 24.50 mm | 0.964565 | | ltr U | 0.368000 | ½ in | 0.500000 | 47/64 in | 0.734375 | 31/32 in | 0.968750 | | 9.40 mm | 0.370078 | 13.00 mm | 0.511810 | 19.00 mm | 0.748030 | 25.00 mm | 0.984250 | | 9.50 mm | 0.374015 | 83 _{%4} in | 0.515625 | 3∕₄ in | 0.750000 | 63%4 in | 0.984375 | | 3∕8 in | 0.375000 | ¹⁷ ⁄a2 in | 0.531250 | 49%4 in | 0.765625 | 1 in | 1.000000 | | ĺtr V | 0.377000 | 13.50 mm | 0.531495 | 19.50 mm | 0.767715 | | | #### Sheet-metal gauges #### Systems in use Materials are customarily made to certain gauge systems. While materials can usually be had specially in any system, some usual practices are shown below. | material | sheet | wire | |--|--------------|-----------| | Aluminum | B&S | AWG (B&S) | | Brass, bronze, sheet | B&S | - | | Copper | B&S | AWG (B&S) | | Iron, steel, band and hoop | BWG | _ | | Iron, steel, telephone and telegraph wire | _ | BWG | | Steel wire, except telephone and telegraph | _ | W&M | | Steel sheet | US | - | | Tank steel | BWG | _ | | Zinc sheet | "Zinc gauge" | | | | proprietary | | #### Sheet-metal gauges continued #### Comparison of gauges* The following table gives a comparison of various sheet-metal-gauge systems. Thickness is expressed in decimal fractions of an inch. | gauge | AWG
B&S | Birming-
ham or
Stubs
BWG | Wash. &
Moen
W&M | British
standard
NBS
SWG | London or
old English | United
States
standard
US | American
Standard
preferred
thickness† | |--|--|---|---|---|---|---|---| | 0000000
000000
00000
0000
000
000
00 | 0.5800
0.5165
0.4600
0.4096
0.3648
0.3249 | 0.454
0.425
0.380
0.340 | 0.490
0.460
0.430
0.3938
0.3625
0.3310
0.3065 | 0.500
0.464
0.432
0.400
0.372
0.348
0.324 | 0.454
0.425
0.380
0.340 | 0.50000
0.46875
0.43750
0.40625
0.37500
0.34375
0.31250 | - | | 1
2
3
4
5 | 0.2893
0.2576
0.2294
0.2043
0.1819 | 0.300
0.284
0.259
0.238
0.220 | 0.2830
0.2625
0.2437
0.2253
0.2070 | 0.300
0.276
0.252
0.232
0.212 | 0.300
0.284
0.259
0.238
0.220 | 0.28125
0.265625
0.250000
0.234375
0.218750 | 0.224
0.200
0.180 | | 6
7
8
9 | 0.1620
0.1443
0.1285
0.1144
0.1019 | 0.203
0.180
0.165
0.148
0.134 | 0.1920
0.1770
0.1620
0.1483
0.1350 | 0.192
0.176
0.160
0.144
0.128 | 0.203
0.180
0.165
0.148
0.134 | 0.203125
0.187500
0.171875
0.156250
0.140625 | 0.160
0.140
0.125
0.112
0.100 | | 11
12
13
14
15 | 0.09074
0.08081
0.07196
0.06408
0.05707 | 0.120
0.109
0.095
0.083
0.072 | 0.1205
0.1055
0.0915
0.0800
0.0720 | 0.116
0.104
0.092
0.080
0.072 | 0.120
0.109
0.095
0.083
0.072 | 0.125000
0.109375
0.093750
0.078125
0.0703125 | 0.090
0.080
0.071
0.063
0.056 | | 16
17
18
19
20 | 0.05082
0.04526
0.04030
0.03589
0.03196 | 0.065
0.058
0.049
0.042
0.035 | 0.0625
0.0540
0.0475
0.0410
0.0348 | 0.064
0.056
0.048
0.040
0.036 | 0.065
0.058
0.049
0.040
0.035 | 0.0625000
0.0562500
0.0500000
0.0437500
0.0375000 |
0.050
0.045
0.040
0.036
0.032 | | 21
22
23
24
25 | 0.02846
0.02535
0.02257
0.02010
0.01790 | 0.032
0.028
0.025
0.022
0.020 | 0.03175
0.02860
0.02580
0.02300
0.02040 | 0.032
0.028
0.024
0.022
0.020 | 0.0315
0.0295
0.0270
0.0250
0.0230 | 0.0343750
0.0312500
0.0281250
0.0250000
0.0218750 | 0.028
0.025
0.022
0.020
0.018 | | 26
27
28
29
30 | 0.01594
0.01420
0.01264
0.01126
0.01003 | 0.018
0.016
0.014
0.013
0.012 | 0.01810
0.01730
0.01620
0.01500
0.01400 | 0.018
0.0164
0.0148
0.0136
0.0124 | 0.0205
0.0187
0.0165
0.0155
0.01372 | 0.0187500
0.0171875
0.0156250
0.0140625
0.0125000 | 0.016
0.014
0.012
0.011
0.010 | | 31
32
33
34
35 | 0,008928
0,007950
0,007080
0,006305
0,005615 | 0.010
0.009
0.008
0.007
0.005 | 0.01320
0.01280
0.01180
0.01040
0.00950 | 0.0116
0.0108
0.0100
0.0092
0.0084 | 0.01220
0.01120
0.01020
0.00950
0.00900 | 0.01093750
0.01015625
0.00937500
0.00859375
0.00781250 | 0.009
0.008
0.007
0.006 | | 36
37
38
39
40 | 0.005000
0.004453
0.003965
0.003531
0.003145 | 0.004

 | 0.00900
0.00850
0.00800
0.00750
0.00700 | 0.0076
0.0068
0.0060
0.0052
0.0048 | 0.00750
0.00650
0.00570
0.00500
0.00450 | 0.007031250
0.006640625
0.006250000 | = = = | ^{*} Courtesy of Whitehead Metal Products Co., Inc. [†] These thicknesses are intended to express the desired thickness in decimals. They have no relation to gauge numbers; they are approximately related to the AWG sizes 3-34. #### Commercial insulating materials* The tables on the following pages give a few of the important electrical and physical properties of insulating or dielectric materials. The dielectric constant and dissipation factor of most materials depend on the frequency and temperature of measurement. For this reason, these properties are given at a number of frequencies, but because of limited space, only the values at room temperature are given. The dissipation factor is defined as the ratio of the energy dissipated to the energy stored in the dielectric per cycle, or as the tangent of the loss angle. For dissipation factors less than 0.1, the dissipation factor may be considered equal to the power factor of the dielectric, which is the cosine of the phase angle by which the current leads the voltage. Many of the materials listed are characterized by a peak dissipation factor occurring somewhere in the frequency range, this peak being accompanied by a rapid change in the dielectric constant. These effects are the result of a resonance phenomenon occurring in polar materials. The position of the dissipation-factor peak in the frequency spectrum is very sensitive to * Most of the data listed in these tables have been taken from "Tables of Dielectric Materials," vols. I–IV, prepared by the laboratory for Insulation Research of the Massachusetts Institute of Technology, Cambridge, Massachusetts; January, 1953 and from, "Dielectric Materials and Applications," A. R. von Hipple, editor; John Wiley & Sons, Inc., New York, N. Y.: 1954. | | 1 | l i | | | 91919 | CIFIC C | onstant a | 1 | 1 | |--|--|----------------|---------------------|----------------------|----------------------|-----------------------|----------------------|--------------------------|--------------------------| | | | | | (fre | quenc | y in c | ycles/sec | ond) | | | material | composition | °C | 60 | 108 | 10 | 105 | ×10° | 2.5
×10 ¹⁰ | 60 | | ceramics
AlSiMag A-35
AlSiMag A-196
AlSiMag 211 | Magnesium silicate
Magnesium silicate
Magnesium silicate | 23
25
25 | 5.90 | 5.88 | 5.70 | 5.60 | 5.60
5.42
5.90 | 5.36
5.18 | 0.017
0.0022
0.012 | | AlSiMag 228
AlSiMag 243
Ceramic NPCT96 | Magnesium silicate
Magnesium silicate | 25
22
25 | 6.32 | 6.30 | 6.22 | | 5.97
5.78 | 5.83
5.75 | 0.0013
0.0015 | | Ceramic N750T96
Ceramic N1400T110
Coors AI-200 | Aluminum oxide | 25
25
25 | l — | 130.8 | | 83.4
130.0
8.80 | | = | Ē | | Crolite 29
Magnesium oxide
Porcelain | Oxides of aluminum, silicon, magnesium, calcium, barium Dry process | 24
25
25 | _ | 6.04
9.65
5.36 | 9.65 | 9.65 | 5.90
— | | 0.03 | | Porcelain
Steatite 410
Tam Ticon B | Wet process Barium titanate† | 25
25
26 | 6.5
5.77
1250 | | 5.77 | | 5.7
600 | <u>-</u> | 0.03 | | TamTicon MC
TamTicon C
TamTicon S | Magnesium titanate
Calcium titanate
Strontium titanate | 25
25
25 | 168 | | 13.9
167.7
232 | 13.9
167.7
232 | 13.8
165 | 13.7 | 0.006 | | TI-Pure R-200
Zirconium porcelain Zi-4 | Titanium dioxide (rutile) | 26
25 | | | | 100
6.30 | | | = | | T Dielectric constant and | d dissipation factor are dependent o | n ele | ectric | ai fie | id str | enath | 1 | | | [†] Dielectric constant and dissipation factor are dependent on electrical field strength. temperature. An increase in the temperature increases the frequency at which the peak occurs, as illustrated qualitatively in the sketch at the right. Nonpolar materials have very low losses without a noticeable peak; the dielectric constant remains essentially unchanged over the frequency range. Another effect that contributes to dielectric losses is that of ionic or electronic conduction. This loss, if present, is important usually at the lower end of the frequency range only, and is distinguished by the fact that the dissipation factor varies inversely with frequency. Increase in temperature increases the loss due to ionic conduction because of increased ionic mobility. The data given on dielectric strength are accompanied by the thickness of the specimen tested because the dielectric strength, expressed in volts/mil, varies inversely with the square root of thickness, approximately. The direct-current volume resistivity of many materials is influenced by changes in temperature or humidity. The values given in the table may be reduced several decades by raising the temperature toward the higher end of the working range of the material, or by raising the relative humidity of the air surrounding the material to above 90 percent. | | dissi | pation fac | tor at | | dielectric | dc volume | thermal ex- | | moisture | |-------------------------------|-------------------------------|-------------------------------|----------------------------|------------------|---|---|--|---------------------------|-------------------------------| | 103 | (frequen | cy in cycle | ss/second)
3
×10° | 2.5
×1010 | strength in
volts/mil at
25° C | resistivity in ohm-cm at 25° C | pansion
(linear) in
parts/°C | softening point
in ° C | absorp-
tion in
percent | | 0.0100
0.0059
0.0034 | 0.0038
0.0031
0.0005 | 0.0037
0.0016
0.0004 | 0.0041
0.0018
0.0012 | 0.0058
0.0038 | 225 (\frac{1}{2}) 240 (\frac{1}{2}) | >10 ¹⁴
>10 ¹⁴
>10 ¹⁴ | 8.7×10 ⁻⁶
8.9×10 ⁻⁶
9.2×10 ⁻⁶ | 1450
1450
1350 | <0.1
<0.1
0.1-1 | | 0.0020
0.00045
0.00049 | 0.0012
0.00037
0.00016 | 0.0010
0.0003
0.0002 | 0.0013
0.0006 | 0.0042
0.0012 | 200 (1") | >1014 | 6-8×10-6
10.5×10-6 | 1450
1450 | <0.05
<0.1 | | 0.00045
0.00055
0.00057 | 0.00022
0.00030
0.00033 | 0.00046
0.00070
0.00030 | - | = | = | = | = | = | = | | 0.0019
<0.0003
0.0140 | 0.0011
<0.0003
0.0075 |
<0.0003
0.0078 | 0.0024 | = | ======================================= | = | 7.7×10 ⁻⁶ | 1325
— | = | | 0.0180
0.0030
0.0130 | 0.0090
0.0007
0.0105 | 0.0135
0.0006 | 0 00089
0.30 | 0.60 | 75 | | = |
 | | | 0.0011
0.00044
0.0011 | 0.0004
0.0002
0.0002 | 0.0005
0.0001 | 0.0017
0.0023 | 0.0065 | 100
100 | 1012-1014
1012-1014 | - | 1510
1510 | <0.1
0.1 | | 0.0015
0.0040 | 0.0003
0.0023 | 0.00025
0.0025 | 0.0045 | = | = | = | _ | = | | ## Commercial insulating materials continued | | ! ! | 1 | | | | | | | | |--|---|----------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|---|----------------------------| | | | _ 1 | | (freq | vency | in cy | cles/sec | | | | material | composition | °C | 60 | 103 | 109 | 108 | ×10° | 2.5
×10 ¹⁰ | 60 | | glasses
Corning 0010
Corning 0120
Corning 1990 | Soda-potash-lead silicate ~20% lead oxide
 Soda-potash-lead silicate
 Iron-sealing glass | 24
23
24 | 6.70
6.76
8.41 | 6.63
6.70
8.38 | 6.65 | 6.33
6.65
8.20 | 6.10
6.64
7.99 | 5.87
6.51
7.84 | 0.0084
0.0050 | | Corning 1991
Corning 7040
Corning 7050 | Soda-potash-borosilicate
Soda-porosilicate | 24
25
25 | 8.10
4.85
4.90 | 8.10
4.82
4.84 | 8.08
4.73
4.78 | 8.00
4.68
4.75 | 7.92
4.67
4.74 | 4.52
4.64 | 0.0027
0.0055
0.0093 | | Corning 7060 (Pyrex)
Corning 7070
Corning 7720 | Soda-borosilicate
Low-alkali, potash-lithiaborosilicate
Soda-lead borosilicate | 25
23
24 | 4.00
4.75 | 4.97
4.00
4.70 | 4.84
4.00
4.62 | 4.84
4.00 | 4.82
4.00
4.60 | 4.65
3.9 | 0.0006
0.0093 | | Corning 7750
Corning 7900
Fused silica 915c | Soda-borosilicate ~ 80%
silicon dioxide
96% silicon dioxide
Silicon dioxide | 25
20
25 | 3.85 | 4.42
3.85
3.78 | 4.38
3.85
3.78 | 4.38
3.85
3.78 | 4.38
3.84
3.78 | 3.82 | 0.0006 | | Quartz (fused) | 100% silicon dioxide | 25 | 3.78 | 3.78 | 3.78 | 3.78 | 3.78 | 3.78 | 0.0009 | | plastics
Alkyd resin
Araldite CN-501
Araldite CN-504 | Foamed diisocynate
Epoxy resin
Epoxy resin | 25
25
25 | = | 1.223
3.67
3.99 | 1.218
3.62
3.69 | 1.20
3.35
3.39 | 1.20
3.09
3.15 | = | = | | Bakelite BM120
Bakelite BM250
Bakelite BM262 | Phenol-formaldehyde
Phenol-formaldehyde, 66% asbestos fiber,
preformed and preheated
Phenol-aniline-formaldehyde, 62% mica | 25
25
25 | 4.90 | 4.74
22
4.80 | 4.36
5.3
4.67 | 3.95
5.0
4.65 | 3.70
5.0 | 3.55
5.0
4.5 | 0.08 | | Bakelite BT-48-306
Beetle resin
Bureau of Standards casting
resin | 100% phenol-formaldehyde
Urea-formaldehyde, cellulose
32.5% polystyrene, 53.5% poly-2.5-di-
chlorostyrene, 13% hydrogenated ter- | 24
27 | 8.6
6.6 | 7.15
6.2 | 5.4
5.65 | 4.4
5.1 | 3.64
4.57 | = | 0.15
0.032 | | resin | phenyl, 0.5% divinyl-benzene | 25 | _ | 2.62 | 2.62 | 2.62 | 2.59 | | | | Catalin 200 base
Chemelec MI-405
Chemelec MI-407 | Phenol-formaldehyde
75% Teflon, 25% calcium fluoride
88% Teflon, 12% ceramic | 22
25
25 | 8.8
— | 8.2
2.50
3.02 | 7.0
2.50
2.71 | 2.50
2.63 | 4.89
2.50 | = | 0.05
—
— | | Chemelec MI-411
Chemelec MI-422
Cibanite | 75% Teflon, 25% Fibreglas
80% Teflon, 20% titanium dioxide
100% aniline-formaldehyde | 25
25
25 | 3.60 | 2.14
2.72
3.58 | 2.14
2.72
3.42 | 2.14
2.72
3.40 |
3.40 | ======================================= | 0.0030 | | DC 996 | Methyl, phenyl, and methyl-phenyl polysiloxane resin | 25 | _ | 2.90 | 2.90 | 2.90 | _ | _ | _ | | DC 2104 laminate XL-269
Dilectene-100 | 35% methyl and phenyl polysiloxaneresin,
65% ECC-181 Fibreglas
100% aniline-formaldehyde | 25
25 |
3.70 | 4.14
3.68 | 4.13
3.58 | 4.10
3.50 | 4.07
3.44 | _ | 0.0033 | | Dilecto (Mecoboard) | 45% cresol-phenol formaldehyde, 15% tung | | | | | | | | | | Dilecto (Teflon laminate
GB-112T)
Durez 1601 natural | oil, 15% nylon
65-68% Teflon, 32-35% continuous-
filament glass base
Phenol-formaldehyde, 67% mica | 25
25
26 | _
5.1 | 2.74
4.94 | 3.46
2.73
4.60 | 3.23
2.73
4.51 | 3.11

4.48 | = | 0.03 | | Durite 500 Epon resin RN-48 Formica FF-41 | Phenol-formaldehyde, 65% mica, 4% lubricants Epoxy resin Melamine-formaldehyde, 55% filler | 24
25
26 | 5.1 | 5.03
3.63
6.00 | 4.78
3.52
5.75 | 4.72
3.32
5.5 | 4.71
3.04 | = | 0.015 | | Formica XX
Formvar E | Phenol-formaldehyde, 50% paper laminate
Polyvinyl formal | 26
26 | 5.25
3.20 | 5.15
3.12 | 4.60
2.92 | 4.04
2.80 | 3.57
2.76 | 2.7 | 0.025
0.003 | | | frequency | ation facto | | | dielectric
strength in | dc volume
resistivity in | thermal ex- | | moisture
absorp- | |------------------|-------------------|-------------------|-------------------|------------------|---------------------------|---|--|---------------------------|---------------------| | - 1 | | 1 | 3 | 2.5 | volts/mil at | ohm-cm at | (linear) in | softening point
in ° C | tion in | | 103 | 106 | 108 | ×109 | ×1010 | 25° C | 25° C | parts/°C | IN C | percent | | 0.00535 | 0.00165 | 0.0023 | 0.0060 | 0.0110 i | | 10º at 250° | 90×10-7 | 626 | _ (*) | | 0.0033 | 0.00103 | 0.0023 | 0.0041 | 0.0127 | = | 1010 at 250° | 87×10 ⁻⁷ | 630 | _ | | 0.0004 | 0.0005 | 0.0009 | 0.00199 | 0.0112 | _ | 1010 at 250° | 132×10⁻⁻፣ | 484 | Poor | | 0.0009 | 0.0005 | 0.0012 | 0.0038 | _ | _ | 4×10° at 250° | 128×10-7 | 527 | _ | | 0.0034 | 0.0019
0.0027 | 0.0027
0.0035 | 0.0044 | 0.0073
0.0083 | = | 5×10° at 250°
10° at 250° | 49×10 ⁻⁷
46×10 ⁻⁷ | 697
703 | _ | | 0.0036 | 0.0021 | 0.0033 | 0.0002 | 0.0035 | | 10- 20- | | | | | 0.0055 | 0.0036 | 0.0030 | 0.0054 | 0.0090 | - | 7×107 at 250° | 50×10 ⁻⁷ | 693
746 | _ | | 0.0005 | 0.0008 | 0.0012 | 0.0012 | 0.0031 | = | 10 ¹¹ at 250°
6×10 ⁸ at 250° | 31×10 ⁻⁷
36×10 ⁻⁷ | 756 | _ | | | | | | | | | | | | | 0.0033 | 0.0018 | 0.0006 | 0.0043
0.00068 | 0.0013 | = 1 | 3×10° at 250°
5×10° at 250° | 42×10 ⁻⁷
8×10 ⁻⁷ | 701
1450 | _ | | 0.00026 | 0.00001 | 0.00003 | 0.0001 | - 0.0015 | _ | | - | | _ | | 0.00075 | 0.0001 | 0.0002 | 0.00006 | 0.00025 | 410 (1") | >1019 | 5.7×10 ⁻⁷ | 1667 | | | 0.000101 | 0.0001 | 0.0002 | 0.0000001 | 0.00020 | 210 (2) | 710 | 1 0.17(20 1 | 2001 | | | | | | | | - 1 | | | | | | 0.00147 | 0.0041 | 0.0038 | 0.0034 | - | 405 (1") | >3.8×107 | 4.77×10-5 | 109 (distortion) | 0.14 | | 0.0024 | 0.019 | 0.034 | 0.027
0.031 | _ | 402 (1.) | 23.5710 | - 10 | — (dissolvion) | - | | 0.0220 | 0.0280 | 0.0380 | 0.0438 | 0.0390 | 300 (1/) | 1011 | 30-40×10-4 | <135 (distortion) | <0.6 | | 0.370 | 0.125 | _ | _ | 0.032 | _ | | · _ | 145 (distortion) | _ | | 0.0082 | 0.0055 | 0.0057 | - | 0.0089 | 325-375 (1°) | 2×1014 | 10-20×10- | 100-115 (distortion) | 0.3 | | 0.082 | 0.060 | 0.077 | 0.052 | _ | 277 (1") | · _ | 8.3-13×10 ⁻⁵ | 50 (distortion) | 0.42 | | 0.024 | 0.027 | 0.050 | 0.0555 | _ | 375 (0.085*) | _ | 2.6×10⁻⁵ | 152 (distortion) | 2 | | 0.00150 | 0.00047 | 0.0011 | 0.000 | | | | _ ' | | ! _ | | 0.00156 | 0.00047 | 0.0011 | 0.0005 | | | | | | | | 0.0290 | 0.050 | | 0.108 | _ | 200 (1*) | <u> </u> | 7.5-15×10-6 | 40-60 (distortion) | - | | 0.00051
0.070 | 0.0005 | 0.0009
0.0158 | 0.00068 | _ | | = | = | _ | _ | | | | | | | | | | | | | 0.00096 | 0.0007
0.00020 | 0.0010
0.00024 | | _ | _ | = | _ | _ | _ | | 0.0041 | 0.0078 | 0.0039 | 0.0029 | - | 600 (1/2) | - | 6.49×10⁻⁵ | 126 | 0.05-0 0 | | | | | | | | | | | | | 0.0015 | 0.0018 | 0.00165 | _ | _ | _ | · - | _ | _ | - | | 0.0029 | 0.0022 | 0.0034 | 0.0071 | _ | | | | | | | 0.0032 | 0.0061 | 0.0033 | 0.0026 | | 810 (0.068") | >1010 | 5.4×10 ⁻⁵ | 125 | 0.06-0.0 | | 0.0044 | 0.0000 | 0.0010 | | | | | | | 1 | | 0.0344 | 0.0263 | 0.0216 | 0.0220 | _ | _ | - | | _ | _ | | 0.00061
0.021 | 0.00058 | 0.00118
0.0064 | 0.0062 | _ | _ | _ | 1 = | _ | _ | | | | | | | | | | | | | 0.0104 | 0.0082 | 0.0115 | 0.0126 | _ | | _ | | | _ | | 0.0038 | 0.0142 | 0.0264 | 0.021 | _ | - | _ | 175010-4 | _ | - | | 0.0119 | 0.0115 | 0.020 | | | | | 1.7×10-6 | | 0.6 | | 0.0165 | 0.034 | 0.057 | 0.060 | _ | _ | | | - | _ | | 0.0100 | 0.019 | 0.013 | 0.0113 | 0.0115 | 860 (0.034*) | >5×10 ¹⁶ | 7.7×10-5 | 190 | 1.3 | # Commercial insulating materials continued | | | 1 | | | | | nstant a | | | |---|--|----------------|--------------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------------| | moterial | composition | T | | (frec | venc | in cy | cles/sec | ond)
2.5 | | | | | °C | 60 | 103 | 100 | 108 | ×10° | ×1010 | 60 | | plastics—continued
Geon 2046 | 59% polyvinyl-chloride, 30% dioctyl
 phosphate, 6% stabilizer, 5% filler | 23 | 7.5 | 6.10 | 3.55 | 3.00 | 2.89 | _ | 0.08 | | Hardman 51 Permo potting
compound
Hydrogenated polystyrene | Alkyd resin
Polyvinylcyclohexane | 25
24 | | 2.95
2.25 | 2.70 | 2.59
2.25 | 2.53
2.25 | = | = | | Hysol 6020
Hysol 6030, flexible potting | Epoxy resin | 25 | _ | 3.90 | 3.54 | 3.29 | 3.01 | _ | _ | | compound
Kel-F | Epoxy resin
Polychlorotrifluoroethylene | 25
25 | 2.72 | 6.15
2.63 | | $\frac{3.61}{2.32}$ | 3.20
2.29 | 2.28 | 0.015 | | Kel-F, grade 300P25
Koroseal 5CS-243 | Plasticized polychlorotrifluoroethylene
63.7% polyvinyl-chloride, 33.1% di-2- | 25 | _ | 2.75 | 2.51 | 2.37 | 2.31 | _ | _ | | Lumarith 22361 | ethylhexyl-phthalate, lead silicate
Ethylcellulose, 13% plasticizer | 27
24 | 6.2
3.12 | 5.65
3.06 | 3.60
2.92 | 2.9
2.80 | 2.73
2.74 | 2.65 | 0.07 | | Marco resin MR-25C
Melmac molding compound | Unsaturated polyester
Melamine-formaldehyde, 40% wood flour, | 25 | | 3.24 | 3.10 | 2.90 | 2.77 | _ | | | 1500
Melmac resin 592 | 18% plasticizer
Melamine-formaldehyde, mineral filler | 25
27 | 8.0 | 6.31
6.25 | 5.85
5.20 | 5.10
4.70 | 4.20
4.67 | = | 0.08 | | Micarta 254
Nylon 610
Perinafil 3256 | Cresylic acid—formaldehyde, 50%
α-cellulose
Polyhexamethylene-adipamide
Cross-linked addition polymer | 25
25
24 | 5.45
3.7 | 4.95
3.50
4.22 | 4.51
3.14
3.86 | 3.85
3.0
3.5 | 3.43
2.84 | 3.21
2.73
3.0 | 0.098
0.018 | | Plaskon alkyd special
electrical granular
Plaskon melamine
Plaskon 911 | Alkyd resin
Melamine-formaldehyde, a-cellulose
Unsaturated polyester | 25
24
24 | _ | 5.10
7.57
3.81 | 4.76
7.00
3.56 | 4.55
6.0
3.25 | 4.50
4.93
3.07 | = | = | | Plasticell
Plastic CY-8
Plexiglass | Expanded polyvinyl chloride
97% poly-2,5-dichlorostyrene
Polymethyl methacrylate | 25
24
27 | 3.45 | 1.04
2.61
3.12 | 1.04
2.60
2.76 | 1.04
2.60 | 1.04
2.60
2.60 | 2.59 | 0.064 | | Polyethylene DE-3401 | 0.1% antioxidant | 25 | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | < 0.0002 | | Polyethylmethacrylate
Polyisobutylene | Ξ | 22
25 | 2.23 | 2.75
2.23 | 2.55
2.23 | 2.52
2.23 | $\frac{2.51}{2.23}$ | 2.5 | 0.0004 | | Polystyrene
Polystyrene fibers Q-107
Polyvinyl chloride W-174 | 1-micron-diam fibers
65% Geon 101, 35% Paraplex G-25 | 25
26
25 | 2.56 | 2.56
2.14
4.77 | 2.56
2.14
3.52 | 2.55
2.14
3.00 | 2.55
2.11 | 2.54 | <0.00005 | | Pyralin
Red Glyptal 1201
Rexoli
te 1422 | Cellulose nitrate, 25% camphor
Alkyd resin | 27
25
25 | 11.4 | 8.4
4.5
2.55 | 6.6
3.9
2.55 | 5.2
2.55 | 3.74
2.54 | = | 2.0 | | Saran B-115
Styraloy 22
Styrofoam 103.7 | Vinylidene-vinyl ehloride copolymer
Copolymer of butadiene, styrene
Foamed polystyrene, 0.25% filler | 23
23
25 | 5.0
2.4
1.03 | 4.65
2.4
1.03 | 3.18
2.4
1.03 | 2.82
2.4 | 2.71
2.4
1.03 | 2.40
1.03 | 0.042
0.001
<0.0002 | | Tefion . | Polytetrafluoroethylene | 22 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.08 | < 0.0005 | | Tenite I (008A, H ₄)
Tenite II (205A, H ₄) | Cellulose acetate, plasticized
Cellulose acetate-butyrate, plasticized | 26
26 | 4.59
3.60 | 4.48
3.48 | 3.90
3.30 | 3.40
3.08 | $\frac{3.25}{2.91}$ | 3.11 | 0.0075
0.0045 | | Vibron 140
Vinylite QYNA
Vinylite VG5901 | Cross-linked polystyrene
100% polyvinyl-chloride | 25
20 | 2.59
3.20 | 2.59
3.10 | 2.58
2.88 | 2.58
2.85 | 2.58
2.84 | = | 0.0004
0.0115 | | Vinylite VG5901 | 62.5% polyvinyl-chloride-acetate, 29% plasticizer, 8.5% misc | 25 | - | 5. 5 | 3.4 | 3.0 | 2.88 | _ | | | | dissi | ipation fac | tor at | | dielectric | dc volume | thermal ex- | ı | moisture | |-------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------|---|--|---|--|------------------------| | | | y in cycle | 3 | 2.5 | strength in
volts/mil at | resistivity in
ohm-cm at | pansion
(linear) in | softening point
in ° C | absorp-
tion in | | 102 | 106 | 108 | ×10° | ×10 ¹⁰ | 25° C | 25° C | parts/°C | in · C | percent | | 0.110 | 0.089 | 0.030 | 0.0116 | _ | 400 (0.075") | 8×10 ¹⁴ | _ | 60 (stable) | 0.5 | | 0.041 | 0.0124 | 0.0120 | 0.0115 | | 400 (0.075*) | 9×10 | | oo (stable) | 0.5 | | 0.0002 | < 0.0002 | <0.0002 | 0.00018 | _ | _ | = | | | | | 0.0113 | 0.0272 | 0.0299 | 0.0274 | _ | _ | _ | _ | - | _ | | $0.048 \\ 0.0270$ | 0.084
0.0082 | 0.090 | 0.038
0.0028 | 0.0053 | = | 1018 | = | _ | _ | | 0.0207 | 0.0175 | 0.0186 | 0.0093 | | _ | _ | _ | _ | | | 0.100
0.0048 | 0.093
0.0115 | 0.030
0.0160 | 0.0112
0.0196 | 0.630 | 522 (1/2") | 5×10 ¹⁶ | = | 51 (distortion) | 1.50 | | 0.0072 | 0.0138 | 0.0190 | 0.0130 | _ | _ | _ | _ | _ | _ | | 0.0173
0.0470 | 0.032
0.0347 | 0.050
0.0360 | 0.052
0.0410 | _ | 450 (1/2") | 3×1013 | 3.5×10⁻⁵ | 125 (distortion) | 0.1 | | 0.033
0.0186
0.0120 | 0.036
0.0218
0.030 | 0.055
0.0200
0.034 | 0.051
0.0117 | 0.038
0.0105
0.029 | 1020 (0.033#)
400 (1/2")
600 (0.060") | 3×10 ¹³
8×10 ¹⁴ | 3×10 ⁻⁶
10.3×10 ⁻⁶
10-13×10 ⁻⁵ | >125
65 (distortion)
>150 (distortion) | 1.2
1.5
0.07 | | 0.0236
0.0122
0.0125 | 0.0149
0.041
0.0240 | 0.0138
0.085
0.0220 | 0.0108
0.103
0.0175 | = | 300-400 | = | = | 99 (stable) | 0.4-0.6 | | 0.0011
<0.0002
0.0465 | 0.0010
<0.0002
0.0140 | 0.0010
0.00025 | 0.0055
0.00031
0.0057 | 0.0029 | 990 (0.030*) | _
>5×10 ¹⁶ |
8-9×10⁻⁵ | 70-75 (distortion) | 0.3-0.6 | | <0.0002 | < 0.0002 | 0.0002 | 0.00031 | 0.0006 | 1200 (0.033") | 1017 | 19×10-6 | 95-105 (distortion) | 0.03 | | $0.0294 \\ 0.0001$ | 0.0090
0.0001 | 0.0003 | 0.0075
0.00047 | 0.0083 | 600 (0.010*) | _ | (varys) | 60° (distortion)
25 (distortion) | Low
Low | | <0.00005
0.00063
0.0930 | 0.00007
0.0003
0.0550 | <0.0001
0.0004
0.0415 | 0.00033
0.00063 | 0.0012 | 500-700 (1/2) | 1018 | 6-8×10 ⁻⁶ | 82 (distortion)
70-80° (distortion) | 0.05
Slight | | 0.100
0.060
0.00011 | 0.064
0.032
0.00013 | 0.103 | 0.165
0.00048 | = | | = | 9.8×10 ⁻⁶ | = | 2.0 | | 0.063
0.0006
<0.0001 | 0.057
0.0012
<0.0002 | 0.0180
0.0052 | 0.0072
0.0032
0.0001 | 0.0018 | 300 (1//)
1070 (0.030//) | 1014-1016
6×1014 | 15.8×10 ⁻⁶
5.9×10 ⁻⁶ | 150
125
85 | <0.1
0.2-0.4
Low | | <0.0003 | < 0.0002 | < 0.0002 | 0.00015 | 0.0006 | 1000-2000 | 1017 | 9.0×10 ⁻⁶ | 66 (distortion, | 0.00 | | 0.0175
0.0097 | 0.039
0.018 | 0.038
0.017 | 0.031
0.028 | 0.030 | (0.005"-0.012")
290-600 (\frac{1}{2}")
250-400 (\frac{1}{2}") | = | 8-16×10 ⁻⁶
11-17×10 ⁻⁶ | stable to 300)
60-121
60-121 | 2.9
2.3 | | 0.0005
0.0185 | 0.0016
0.0160 | 0.0020
0.0081 | 0.0019
0.0055 | _ | 400 (1/2") | 1014 | 6.9×10-5 | 9×10-5 54 (distortion) | | | 0.118 | 0.074 | 0.028 | 0.0106 | _ | _ | _ | l _ | _ | | # Commercial insulating materials continued | | 1 | 1 | 1 | | dielec | tric co | nstant a | • | 1 | |--|--|----------|--------------|---------------------|---------------------|--------------------|--------------|--------------------------|---| | | | _ | | (freq | nenc | y in c | ycles/sec | | 0.0002
0.0001
0.0006
0.007
 | | material | composition | °C | 60 | 108 | 104 | 108 | ×10° | 2.5
×10 ¹⁰ | 60 | | plastics—continued | | | | | | | | | | | Vinylite VG5904 | 54% polyvinyl-chloride-acetate, 41% | 25 | | 7.5 | 4.3 | | 2.94 | | l | | Vinylite VYNW | Polymer of 95% vinyl-chloride, 5% | | | 1 | | 3.3 | | _ | - | | | vinyl-acetate | 20 | I — | 3.15 | 2.90 | 2.8 | 2.74 | _ | 1 - | | organic liquids | | | | | | | | | | | Aroclor 1254 Aviation gasoline | Pentachlorobiphenyl
100 octane | 25
25 | 5.05 | 5.05 | 3.70
1.94 | 2.75
1.94 | 2.70
1.92 | _ | 0.0002 | | Bayol-D | 77.6% paraffins, 22.4% naphthenes | 24 | 2.06 | 2.06 | | | 2.06 | _ | 0.0001 | | Benzene | Chemically pure, dried | 25 | 2.28 | 2.28 | 2.28 | 2,28 | 2.28 | 2.28 | <0.0001 | | Cable oil 5314
Carbon tetrachloride | Aliphatic, aromatic hydrocarbons | 25
25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.22 | _ | 0.0006 | | Carnon tetrachioride | | 25 | 2.17 | 2.17 | 2.17 | 2.17 | 2.17 | | 0.007 | | DC-550
DC-710 | Methyl and methyl-phonyl polysiloxane | 25 | | 2.90 | | | 2.77 | _ | - | | Ethyl alcohol | Methyl and methyl-phenyl polysiloxane
Absolute | 25
25 | = | 2.98 | 2.98
24.5 | $2.95 \\ 23.7$ | 2.79
6.5 | _ | = | | Ethylene glycol | | 25 | - | | 41 | | 10 | | | | Fraetol A | 57.4% paraffins, 42.6% naphthenes | 26 | 2.17 | | 41
2.17 | 41
2.17 | 12
2.17 | 2.12 | | | Halowax oil 1000 | 60% mon-, 40% di-, trichloronaphthalenes | 25 | 4.80 | 4.77 | 4.74 | _ | 3.52 | | 0.30 | | Ignition-sealing compound 4 | Organo-siloxane polymer | 25 | | | 2.75 | 2.74 | 2.65 | | | | IN-420
Jet fuel JP-3 | Chlorinated Indan | 24
25 | 5.77 | 5.71 | 2.08 | 2.08 | 2.04 | _ | 0.00004 | | W.1.72 | | - | | | | | | | | | Kel-F grease, grade 40
Kel-F oil, grade 1 | Polychlorotrifluoroethylene
Polychlorotrifluoroethylene | 25 | _ | 2.88
2.61 | 2.61 | 2.58 | 2.20
2.34 | _ | _ | | Mareol | 72.4% paraffins, 27.6% naphthenes | 24 | 2.14 | 2.14 | 2.14 | 2.14 | 2.14 | | < 0.002 | | Methyl alcohol | Absolute analytical grade | 25 | _ | _ | 31. | 31.0 | 23.9 | | _ | | Primol-D
Pyranol 1467 | 49.4% paraffins, 50.6% naphthenes
Chlorinated henzenes, diphenyls | 24
25 | | | | | 2.17
2.84 | | < 0.002 | | | | _ | | | | | | | | | Pyranol 1476
Pyranol 1478 | Isomeric pentachlorodiphenyls
Isomeric trichlorobenzenes | 26
26 | | 5.04
4.53 | 3.85
4.53 | 4.5 | 2.70
3.80 | _ | 0.02 | | Silicone fluid SF96-40 | _ | 25 | - | 2.71 | 2.71 | 2.71 | 2.70 | _ | - 0.02 | | Silicone fluid SF96-1000 | _ | 25 | _ | 2.73 | 2.73 | 2.73 | 2.71 | | _ | | Silicone fluid SC200
Silicone fluid SC500 | Methyl or ethyl siloxane polymer (1000 cs)
Methyl or ethyl siloxane polymer (0.65 cs) | 22
22 | 2.78
2.20 | 2.78
2.20 | 2.78
2.20 | 2.20 | 2.74
2.20 | 2.13 | 0.0001
<0.001 | | | | | | | | | | | | | Styrene dimer
Styrene N-100 | Monomeric styrene | 25
22 | 2.40 | 2.40 | 2.7
2.40 | 2.7
2.40 | 2.5
2.40 | _ | 0.01 | | Transil oil 10C | Aliphatic, aromatic hydrocarbons | 26 | 2.22 | 2.22 | 2.22 | 2.20 | 2.18 | | 0.001 | | Vaseline | _ | 25 | 2.16 | 2.16 | 2.16 | 2.16 | 2.16 | _ | 0.0004 | | waxes | | | | | | | | | | | Acrawax C
Beeswax, yellow | Cetylacetamide | 24
23 | 2.60
2.76 | $\frac{2.58}{2.66}$ | 2.54 | 2.52 | 2.48 | 2.44 | 0.025 | | Ceresin, white | Vegetable and mineral waxes | 25 | 2.3 | 2.3 | 2.3 | 2.3 | 2.25 | | 0.0009 | | Halowax 11-314 | Dichloronaphthalenes | 23 | 3.14 | 3.04 | 2.98 | 2.93 | 2.89 | _ | 0.10 | | Halowax 1001, cold-molded
Kel-F-wax 150 | Tri- and tetrachloronaphthalenes Polychlorotrifluoroethylene | 26
25 | 5.45 | 5.45
2.97 | $\frac{5.40}{2.52}$ | $\frac{4.2}{2.25}$ | 2.92
2.23 | 2.84 | 0.002 | | Mei-r-wax 150 | 1 diyendrow in do to en yiene | | | | | 2.20 | 2.20 | | | | Opalwax
Paraffin wax, 132° ASTM | Mainly 12-hydroxystearin Mainly C22 to C29 aliphatic, saturated | 24 | 14.2 | 10.3 | 3.2 | 2.7 | 2.55 | 2.5 | 0.12 | | Vistawax | hydrocarbons
Polybutene | 25
25 | 2.25
2.34 | $\frac{2.25}{2.34}$ | 2.25 | 2.25
2.30 | 2.25 | 2.2 | < 0.0002 | | 1 10 no Mary | 1 OIJ DESCRIC | 20 | 2.01 | 4.04 | 2.04 | 2.00 | 2.21 | - | 0.0002 | | | dissi | pation fac | tor at | | dielectric | dc volume | thermal ex- | | moisture | |---------------------|-------------------|------------------|-------------------|--------------------------|-----------------------|--------------------|-------------------------|---------------------------|--------------------| | | (frequenc | y in cycle | s/second) | | strength in | resistivity in | pansion | | obsorp- | | 103 | 105 | 108 | ×10° | 2.5
×10 ¹⁰ | volts/mil at
25° C | ohm-cm at
25° C | (linear) in
parts/°C | softening point
in ° C | tion in
percent | | | | | | | | | | | |
| 0.071 | 0.140 | 0.067 | 0.034 | - | - | - | | _ | | | 0.0165 | 0.0150 | 0.0080 | 0.0059 | _ ! | | - | | _ | - | | | | | | | | | | | | | 0.00035 | 0.238 | 0.0170 | 0.0044 | _ | . – <u>,</u> | - | | - | _ | | < 0.0001 | < 0.0003 | 0.0001
0.0005 | 0.0014
0.00133 | _ | 300 (0.100*) | _ | 1×10⁻³ | -26 (pour point) | Slight | | | | | | | | | | | | | <0.0001
<0.00004 | <0.0001
0.0008 | <0.0001 | <0.0001
0.0018 | <0.0001 | 300 (0.100*) | _ | | -40 (pour point) | _ | | 0.0008 | <0.00004 | <0.0002 | 0.0004 | | | _ | | | | | 0.0170 | 0.00038 | _ | 0.021 | _ | - | _ | - | _ | _ | | 0.00016 | 0.0010
0.090 | 0.062 | 0.014
0.250 | _ | _ | _ | | _ | _ | | | | | | | | | | | | | < 0.0001 | <0.0003 | 0.045
0.0004 | 1.00
0.00072 | 0.0019 | 300 (0.100*) | _ | 7.06×10-4 | <-15 (pour point) | Slight | | 0.0050 | <0.0002 | | 0.25 | _ | | | 2.1×10 ⁻⁴ | -38 (melts) | _ | | 0.0006 | 0.0004 | 0.0015 | 0.0092 | _ | 500 (0.010*) | 1×1013 | 63×10⁻⁵ | | | | 0.0010 | 0.0001 | = | 0.0055 | = | | 1014 | _ | 10 (pour point) | = | | | | | | | | | | | | | 0.00038
0.00023 | 0.043
0.00020 | 0.014 | 0.014
0.087 | _ | = | = | | _ | _ | | < 0.0001 | < 0.0002 | _ | 0.00097 | _ | 300 (0.100*) | _ | 7.5×10 ⁻⁴ | -12 (pour point) | Slight | | _ | 0.20 | 0.038 | 0.64 | _ | _ | _ | | | _ | | <0.0001
0.0003 | <0.0002
0.0025 | 0.13 | 0.00077
0.12 | _ | 300 (0.100#) | _ | 6.91×10-4 | <-15 (pour point) | Slight | | | | | | | | | ļ | | | | 0.0006
0.0014 | 0.25
0.0002 | 0.014 | 0.0042
0.23 | | _ | _ | | 10 (pour point) | _ | | < 0.000003 | | | 0.0095 | _ | _ | - | _ | _ | _ | | < 0.000003 | < 0.0001 | | 0.0106 | | _ | _ | | _ | | | | < 0.0003 | 0.00014 | 0.0096
0.00145 | 0.0060 | | _ | 1.598×10 ⁻³ | -68 (melts) | Nil | | <u></u> | | 0.00014 | 0.00140 | | 250-300 (0:100) | | 1.000 \ 10 | -00 (merca) | - Nii | | 0.005 | 0.0003
<0.0003 | 0.0018 | 0.011
0.0020 | _ | 300 (0.100") | | _ | _ | 0.06 | | < 0.00001 | | 0.0048 | 0.0028 | _ | 300 (0.100″) | - | _ | -40 (pour point) | 0.00 | | 0.0002 | <0.0001 | < 0.0004 | 0.00066 | | | | | | | | 0.0002 | 1 20.0002 | , <0.0001 | . 0.00000 | ' | ' | • | • | | | | 0.0068 | 0.0020 | 0.0012 | 0.0015 | 0.0021 | | | I - | 137-139 (melts) | - | | 0.0140
0.0006 | 0.0092 | 0.0090 | 0.0075
0.00046 | | = | = | _ | 45-64 (melts)
57 | _ | | | | | | | | | | | | | 0.0110
0.0017 | 0.0003
0.0045 | 0.0017
0.27 | 0.0037
0.058 | 0.020 | _ | = | = | 35-63 (melts)
91-94 | Nil
Low | | 0.0093 | 0.054 | 0.027 | 0.0113 | _ | - | - | _ | | | | 0.21 | 0.145 | 0.027 | 0.0167 | 0.0160 | _ | _ | _ | 86-88 (melts) | _ | | < 0.0002 | | < 0.0002 | 0.0002 | <0.0003 | 1060 (0.027*) | >5×1016 | 13.0×10⁻⁵ | 36 | Very low | | | | 0.00133 | | - | _ ′ | _ | | | | # Commercial insulating materials continued | | 1 | | dielectric constant at | | | | | ł | | |---|--|------------------|------------------------|------------------------------|----------------------|----------------------|----------------------|--------------------|----------------------------| | | | | | | | y in cycles/second) | | ond) | | | mat o rial | composition | °C | 60 | 103 | 106 | 108 | 3
 ×10° | 2.5
×1010 | 60 | | rubbers | | | | | | | | | | | GR-I (butyl rubber) | Copolymer of 98-99% isobutylene, 1-2% isoprene | 25 | 2.39 | 2.38 | 2.35 | 2.35 | 2.35 | - | 0.0034 | | GR-I compound | 100 pts polymer, 5 pts zinc oxide, 1 pt
tuads, 1.5 pts sulfur
Styrene-butadiene copolymer, fillers, lubri- | 25 | 2.43 | 2.42 | 2.40 | 2.39 | 2.38 | - | 0.005 | | GR-S (Buna S) cured | cants, etc. | 25 | 2.96 | 2.96 | 2.90 | 2.82 | 2.75 | | 0.0008 | | GR-S (Buna S) uncured
Gutta-percha
Hevea rubber | Copolymer of 75% butadiene, 25% styrene Pale crepe | 26
25
25 | 2.5
2.61
2.4 | 2.5
2.60
2.4 | 2.50
2.53
2.4 | | 2.45
2.40
2.15 | = | 0.0005
0.0005
0.0030 | | Hevea rubber, vulcanized
Hycar OR Cell-tite
Kralastic D Natural | 100 pts pale crepe, 6 pts sulfur
Based on butadiene polymer
Nitrile rubber | 27
25
25 | 2.94 | 2.94
1.40
3.54 | 1.38 | 1.38 | 1.38 | = | 0.005 | | Neoprene compound
Royalite 149-11 | 38% GN
Polystyrene-acrylonitrile and | | 6.7 | 6.60 | 6.26 | 4.5 | 4.00 | 4.0 | 0.018 | | SE-450 | polybutadiene-acrylonitrile
Silicone-rubber compound | 25
25 | = | 5.20
3.08 | | | 3.13
2.97 | = | = | | SE-972
Silastic 120 | Silicone-rubber compound
50% siloxane elastomer, 50% titanium | 25 | _ | 3.35 | 3.20 | 3.16 | 3.13 | _ | _ | | Silastic 152 | dioxide Siloxanc elastomer | 25
25 | 5.78
— | 5.76
2.95 | | | | = | 0.056 | | Silastic 181
Silastic 6167 | 45% siloxane elastomer, 55% silicon dioxide | 25 | - | 3.30 | 3.20 | 3.18 | 3.11 | _ | _ | | Thiokol FA | 33% siloxane elastomer, 67% titanium
dioxide
Organic polysulfide, fillers | 25
23 | _ | 10.1
2260 | 10
110 | 10
30 | 10
16 | 13.6 | = | | woods* Balsawood Douglas Fir Douglas Fir, plywood | = | 26
25
25 | 1.4
2.05
2.1 | 1.4
2.00
2.1 | 1.37
1.93
1.90 | | 1.22
1.82 | 1.78
1.6 | 0.058
0.004
0.012 | | Mahogany
Yellow Birch
Yellow Poplar | - | 25
25
25 | 2.42
2.9
1.85 | 2.40
2.88
1.79 | | 2.07
2.47 | 1.88
2.13
1.50 | 1.6
1.87
1.4 | 0.008
0.007
0.004 | | miscelloneous
Amber
Cenco Sealstix
Plicene cement | Fossil resin DeKhotinsky cement | 25
23
25 | 2.7
3.95
2.48 | 2.7
3.75
2.48 | 2.65
3.23
2.48 | | 2.6
2.96
2.40 | = | 0.0010
0.049
0.005 | | Gilsonite
Shellac (natural XL) | 99.9% natural bitumen
Contains ~ 3.5% wax | 26
28 | 2.69
3.87 | 2.66
3.81 | 2.58
3.47 | 2.56
3.10 | 2.86 | = | 0.006
0.006 | | Mycalex 400 | Mica, glass | 25 | - | 7.45 | 7.39 | - | - | - | - | | Mycalex K10
Mykroy, grade 8
Ruby mica | Mica, glass, titanium dioxide
Mica, glass
Muscovite | 24
25
26 | -
5.4 | 9.3
6.81
5.4 | 9.0
6.73
5.4 | 6.72
5.4 | 6.68
5.4 | 6.66 | 0.005 | | Paper, Royalgrey
Selenium
Quinterra | Amorphous
Asbestos fiber, chrysotile | 25
25
25 | 3.30 | 3.29
6.00
4. 80 | 2.99
6.00
3.1 | 2.77
6.00 | 2.70
6.00 | 6.00 | 0.010 | | Quinorgo 3000 | 85% chrysotile asbestos, 15% organic
material | 25 | | 6.4 | 3.3 | | | | | | Sodium chloride
Soil, sandy dry | Fresh crystals | 25
25 | = | 5.90
2.91 | 5.90
2.59 |
2.55 | 2.55 | 5.90 | = | | Soil, loamy dry
Ice
Snow | From pure distilled water
Freshly fallen snow | 25
-12
-20 | = | 2.83
3.33 | 2.53
4.15
1.20 | 2.48
3.45
1.20 | 2.44
3.20
1.20 | = | = | | Snow
Water | Hard-packed snow followed by light rain
Distilled | -6
25 | = | = | 1.55
78.2 | 78 | 1.5
76.7 | 34 | = | ^{*} Field perpendicular to grain. | dissipation factor at | | | | dielectric | de volume | thermal ex- | 1 | moisture | | |--|----------------------------|---------------------|----------------------------|-------------------------|-----------------------|--------------------|-------------------------|---------------------------|-----------| | (frequency in cycles/second) | | | | strength in | resistivity in | pansion | | absorp- | | | 103 | 105 | 108 | ×10° | ×1010 | volts/mil at
25° C | ohm-cm at
25° C | (linear) in
parts/°C | softening point
in ° C | percent | | | | | | | | | | | | | 0.0035 | 0.0010 | 0.0010 | 0.0009 | _ | _ | _ | - | _ | _ | | 0.0060 | 0.0022 | 0.0010 | 0.00093 | - | - | _ | - [| _ | - | | 0.0024 | 0.0120 | 0.0080 | 0.0057 | | 870 (0.040*) | 2×1015 | | | | | 0.0009 | 0.0038
0.0042 | 0.0071 | 0.0044 | _ | - | 1015 | - | _ | - | | 0.0004
0.0018 | 0.0018 | 0.0120
0.0050 | 0.0060 | | _ = | | | | | | 0.0024
0.0058 | 0.0446
0.0056 | 0.0180
0.0047 | 0.0047 | _ | | _ | _ | - | _ | | 0.0052 | 0.053 | 0.027 | 0.0039 | _ | _ | _ | | = | _ | | 0.011 | 0.038 | 0.090 | 0.034 | 0.025 | 300 (1/2) | 8×10 ¹² | | - | Nil | | $\begin{array}{c} 0.0165 \\ 0.00072 \end{array}$ | 0.108
0.0011 | 0.0030 | 0.020
0.0158 | _ | = | | = | = | = | | 0.0067 | 0.0030 | 0.0032 | 0.0097 | | _ | | | _ | _ | | 0.0030
0.000 52 | 0.0008
0.00054 | 0.0027
0.0020 | 0.0254
0.0100 | = | 350 (}") | Ξ | = | _ | = | | 0.0067 | 0.0037 | 0.0029 | 0.0100 | _ | 450 (1") | | | _ | _ | | $0.0026 \\ 1.29$ | 0.00095
0.39 | 0.0027
0.28 | 0.045
0.22 | 0.10 | = | Ξ | = | Ξ | = | | 0.0040
0.0080
0.0105 | 0.0120
0.026
0.0230 | 0.0135
0.033 | 0.100
0.027 | 0.032
0.0220 | = | = | = | Ξ | = | | 0.0120
0.0090
0.0054 | 0.025
0.029
0.019 | 0.032
0.040 | 0.025
0.033
0.015 | 0.020
0.026
0.017 | = . | = | = | = | = | | 0.0018
0.0335
0.00355 | 0.0056
0.024
0.00255 |
0. 00 15 | 0.0090
0.021
0.00078 | Ξ | 2300 (1/2) | Very high | 9.8×10 ⁻⁴ | 200
80–85
60–65 | = | | $\begin{array}{c} 0.0035 \\ 0.0074 \end{array}$ | 0.0016
0.031 | 0.0011
0.030 | 0.0254 | = | = | 1016 | = | 155 (melts)
80 | Low after | | 0.0019 | 0.0013 | - | - | - | _ | | - | _ | baking — | | 0.0125
0.0066 | 0.0026
0.0026 | 0.0025 | 0.0040
0.0038 | 0.0081 | _ | _ | | 400 | < 0.5 | | 0.0006 | 0.0020 | 0.0025 | 0.0003 | 0.0081 | 3800-5600(.040*) | 5×10 ¹² | = | = | | | 0.0077
0.0004
0.15 | 0.038
<0.0003
0.025 | 0.066
<0.0002 | 0.056
0.00018
— | 0.0013 | 202 (1 ") | = | = | = | = | | 0.231
<0.0001
0.08 | 0.087
<0.0002
0.017 | = | 0.0062 | <0.0005 | _ | = | | = | = | | 0.05 | 0.018 | | 0.0011 | | | | | _ | | | 0.492 | 0.12
0.0215 | 0.035 | 0.0009
0.00029 | _ | = | _ | = | = | _ | | _ | 0.29 | 0.005 | 0.0009
0.157 | 0.2650 | _ | 106 | | - | | ### **Ferrites** Ferrite is the common term that has come to be applied to a wide
range of different ceramic ferromagnetic materials. Specifically, the term applies to those materials with the spinel crystal structures having the general formula XFe_2O_4 , where X is any divalent metallic ion having the proper ionic radius to fit in the spinel structure. To date, ferrites have been prepared in which the divalent ion has been manganese, iron, cobalt, nickel, copper, cadmium, zinc, and magnesium. All of the known ferrites are mutually soluble in each other without limit; a wide range of magnetic and electrical properties can be obtained from specially formulated mixed ferrites that can be thought of as solid solutions of any two of the simple ferrites described above. Thus nickel—zinc ferrite can be prepared with the composition $Ni_{1-\delta}Zn_{\delta}Fe_2O_4$, where δ can take any value from zero to unity. Several ceramic ferromagnetic materials have been prepared that do not have the basic formula XFe₂O₄ but common usage has included them in the family of ferrite materials. Thus, "lithium ferrite" has been prepared; the chemical formula of this material can be written as (Li_{0.5}Fe_{0.5}) Fe₂O₄. It can be seen that in this compound, the divalent X ion has been replaced by equal amounts of monovalent lithium and trivalent iron. Certain microwave applications have made it important to obtain ferrites with high Curie temperatures and lower saturation moments than can be obtained from any of the mixed ferrites discussed above. This has been accomplished by replacing part of the trivalent iron by some other trivalent ion such as aluminum. Thus a typical composition might be NiAl_xFe_{2-x}O₄, where x could, in principle, vary from zero to two. Strictly speaking, these materials are not ferrites, but common usage includes them in the ever-arowing list of ferrite materials. This substance can be thought of as a solid solution of nickel aluminate in nickel ferrite. Both materials have the spinel crystal structure and like all spinels, are completely soluble in each other. The spinel crystal structure consists of a cubic close-packed oxygen lattice throughout which the metallic ions are distributed.* Two types of interstices exist in the oxygen lattice that will accommodate the metallic ions. In one of these interstices, the metallic ion is surrounded by four oxygen ions that occur at the corners of a regular tetrahedron. In the other, the metallic ion is surrounded by six oxygen ions occurring at the corners of a regular octahedron. The tetrahedral positions are commonly referred to as the A positions and the octahedral as the B positions, following the notation of Néel who developed the first satisfactory theory† explaining the mag- ^{*} For a very clear and concise description of the spinel structure see: A. F. Wells, "Structural Inorganic Chemistry," Oxford University Press, London, England; 1946: pp. 85–87 and 379–385. † L. Néel, "Magnetic Properties of Ferrites: Ferromagnetism and Antiferromagnetism," Annales de Physique, volume 3, pp. 137–198; 1948. ### **Ferrites** continued netic properties of these materials. There are twice as many B positions occupied in the spinel lattice as there are A positions; a spinel is known as a normal or inverse spinel depending upon how the metallic ions are distributed between the A and B positions. Thus, if both trivalent ions in the molecule are in the B positions and the divalent ion is in the A position, the spinel is normal. Many ferrites, however, are inverse spinels, and in these the trivalent iron ions are equally divided between the A and B positions, and the divalent metallic ion is in the B position. The distribution of ions can be inferred from magnetic data, but neutron-diffraction experiments give the most direct and unequivocal evidence available today for determining the ionic distribution. Evidence from both sources indicates that zinc, cadmium, and manganese ferrites are normal spinels, while all other known ferrites except magnesium are inverse. Magnesium is partially inverse and partially normal, the exact distribution of ions between the two sites depending upon the exact heat treatment of a particular sample. The presently accepted theory of ferrites, verified to some extent by neutron-diffraction experiments, indicates that the magnetic moment of the ions in the A sites is aligned antiparallel to the magnetic moment of the ions in the B sites. Thus, basically, ferrites belong to the class of antiferromagnetic rather than ferromagnetic materials. However, they constitute a special class of antiferromagnetic substances, since the magnetic moment in one site normally is larger than that in the other site and hence there is a net magnetic moment in one direction. Thus, even though ferrites are fundamentally antiferromagnetic, macroscopically they exhibit the properties of ferromagnetism. Néel has suggested that materials that exhibit this property of uncompensated antiferromagnetism constitute a special class of materials and has proposed the name of ferrimagnetism to describe the phenomenon. In most of their important macroscopic properties, however, ferrites can be treated as ordinary ferromagnetic materials. This theory quite accurately accounts for the saturation moment of most ferrites, and in addition, it explains how it is possible to add a diamagnetic ion such as divalent zinc to nickel ferrite and to increase the saturation moment of the material. Thus in pure nickel ferrite, half of the trivalent iron ions are in the A sites and half are in the B sites, while all of the divalent nickel is in the B sites. Since the magnetic moment of the ions in the A sites is aligned antiparallel to the moments in the B sites, the magnetic moments of the iron ions effectively cancel each other and the net saturation moment of nickel ferrite is due to the nickel ions alone. Since divalent nickel has two unpaired electrons, it is expected that the saturation moment of nickel ferrite should be 2 Bohr magnetons per molecule. It is experimentally measured to be 2.3 Bohr magnetons. When zinc is added to nickel ferrite | _ | | |-------|--| | 0 | | | nuec | | | ontio | | | ŏ | | | | | | | | | 74 | CHAPTER 3 | | | | | | | |--------------------|---|---|--|--|--|---|--| | continued Ferrites | saturation
magnetostriction $\lambda_s imes 10^6$ | -22
-18.5
-15.0 | 8.3
- 1.0
- 14 | +41
-250 | 1 11 | 111 | 11 | | cont | first-order
anisotropy
constant K ₁ | -0.06 | - 0.004
- 0.04 | -0.004
-0.135
+2000 | - 0.05 | 111 | 11 | | | lattice | 8.34 | 8.50 | 8.38
8.38 | (a = 8.24
(a = 8.68
8.33
8.36
8.36 | 8.28 | 8.2 5
8.20 | | | X-ray
density | 5.38 | 5.00 | 5.24 | 5.35
4.75
4.52 | 111 | 5.00 | | | saturation
moment
in Bohr
magnetons | 2.3
3.5
4.8 | 0.4
0.0
0. | 6.0
9.8
8.8 | 2.6
1.1 | 0.3
1.30
0.61 | 0.64 | | | Curie
temperature
in °C | 585
460
360 | 290
85
300 | 100
58 5
520 | 455
670
440 | 506
465 | 360 | | | saturation
moment
in gausses | 3400
4600
5800 | 5500
2600
5200 | 9000 | 1700
3900
1400 | 1300
000 | 0 006 | | | ferrite | Ni Fe ₂ O ₄
Nio.8 Zno.2 Fe ₂ O ₄
Nio.6 Zno.4 Fe ₂ O ₄ | Nio.s Zno.4 Fe2 O.4
Nio.3 Zno.s Fe2 O.4
Mn Fe2 O.4 | Mno.s Zno.s Fe2 O4
Fe Fe2 O4
Co Fe2 O4 | Cu Fe ₂ O ₄
Li _{0.5} Fe _{2.5} O ₄
Mg Fe ₂ O ₄ | Mg Al Fe O4
Ni Alo-2s Fe1-7s O4
NI Alo-4s Fe1-5s O4 | Ni Al ₀₋₆₂ Fe ₁₋₃₈ O ₄
Ni Al Fe O ₄ | #### Ferrites continued to form the mixed ferrite, Ni_{1- δ}Zn_{δ}Fe₂O₄, the zinc enters the A site and displaces δ ions of trivalent iron, forcing them over to the B sites. Thus in this material, the A sites are occupied by δ ions of zinc and $(1-\delta)$ ions of iron per molecule and the B sites are occupied by $(1+\delta)$ ions of iron and $(1-\delta)$ ions of nickel. Since trivalent iron has 5 unpaired electrons, giving it a magnetic moment of 5 Bohr magnetons, it is to be expected that the saturation moment of nickel-zinc ferrite will be $(2+8\delta)$ Bohr magnetons per molecule. It is found experimentally that the moment of nickel-zinc ferrite follows this formula approximately until about half the nickel has been replaced by zinc (i.e., $\delta=0.5$). On further additions of zinc, the exchange fields that account for the ferromagnetic property become so greatly weakened that the material rapidly becomes paramagnetic at room temperature. The behavior of the conductivity and dielectric constant of ferrites is not well understood. They behave as if they consisted of large regions of fairly low-resistance material separated by thin layers of a relatively poor conductor. Therefore, the dielectric constant and conductivity show a relaxation as a function of frequency with the relaxation frequency varying from 1000 cycles/second to several megacycles/second. Most ferrites appear to have relatively high resistivities ($\approx 10^6$ ohm—centimeters) if they are prepared carefully so as to avoid the presence of any divalent iron in the material. However, if the ferrite is prepared with an appreciable amount of divalent iron, then both the conductivity and dielectric constant are very high. Relative dielectric constants as high as 100,000 and resistivities less than 1 ohm—centimeter have been measured in several ferrites having a small amount of divalent iron in their composition. The
accompanying table lists some of the pertinent information with respect to the more-important ferrites. Properties such as electrical conductivity and dielectric constant, which are extremely structure-sensitive, are not listed since slight changes in method of preparation can cause these properties to change by several orders of magnitude. Also not included in the table is the initial permeability of ferrite materials since this is also a structure-sensitive property. The initial permeability of most ferrites lies between 100 and 2000. In general, the ferrites listed in the table have the following properties in common. Thermal conductivity = 1.5×10^{-2} calorie/second/centimeter²/degree C Specific heat = 0.2 calorie/gram/degree C Young's modulus = $1.5 \times 10^{12} \, \mathrm{dynes/centimeter^2}$ ## Standards in general Standardization of electronic components or parts is handled by several cooperating agencies. The Radio-Electronics-Television Manufacturers' Association (RETMA) and the American Standards Association (ASA) are active in the commercial field. Electron-tube standardization is handled by the Joint Electron Tube Engineering Council (JETEC), a cooperative effort of RETMA and the National Electrical Manufacturers Association (NEMA). Military (MIL) standards are issued by the U. S. Department of Defense or one of its agencies such as the Armed Services Electro-Standards Agency (ASESA). These organizations establish standards for electronic components or parts (and in some cases, for equipments) for the purpose of providing: interchangeability among different manufacturers' products as to size, performance, and identification; minimum number of sizes and designs; uniform testing of products for acceptance; and minimum manufacturing costs. In this chapter is presented a brief outline of the requirements, characteristics, and designations for the major types of component parts used in electronic equipment. #### Color coding The color code of Fig. 1 is used for marking electronic components. | Fia. | 1-Standard | electronics-industry | v color code. | |------|------------|----------------------|---------------| | | | | | | color | significant
figure | decimal
multiplier | tolerance
in percent* | voltage
rating | character-
istic | |---------------------------|-----------------------|----------------------------------|---------------------------|---------------------|---------------------| | Black
Brown | 0 | 1 | ±20 (M) | 100 | A
B | | Red | 2 | 100 | ±2 (G) | 200 | c | | Orange
Yellow
Green | 3
4
5 | 1,000
10,000
100,000 | ±3
GMV‡
±5† | 300
400
500 | D
E
F | | Blue
Violet
Gray | 6
7
8 | 1,000,000
10,000,000
0.01† | ±6
±12.5
±30 | 600
700
800 | G
-
I | | White
Gold
Silver | 9 | 0.1†
0.1
0.01 | ±10†
±5 (J)
±10 (K) | 900
1000
2000 | J
 | | No color | - | | 士20 | 500 | _ | ^{*} Letter symbol is used at end of type designations in RETMA standards and MIL specifications to indicate tolerance. ± 3 , ± 6 , ± 12.5 , and ± 30 percent are tolerances for ASA 40-, 20-, 10-, and 5-step series. [†] Optional coding where metallic pigments are undesirable. [‡] GMV is -0-to-+100-percent tolerance or Guaranteed Minimum Value. #### Standards in general continued #### Tolerance The maximum deviation allowed from the specified nominal value is known as the tolerance. It is usually given as a percentage of the nominal value, though for very small capacitors, the tolerance may be specified in micromicrofarads ($\mu\mu$ f). For critical applications it is important to specify the permissible tolerance; where no tolerance is specified, components are likely to vary by ± 20 percent from the nominal value. #### Preferred values To maintain an orderly progression of sizes, preferred numbers are frequently used for the nominal values. A further advantage is that all components manufactured are salable as one or another of the preferred values. Each preferred value differs from its predecessor by a constant multiplier, and the final result is conveniently rounded to two significant figures. The ASA has adopted as an "American Standard" a series of preferred numbers based on $\sqrt[5]{10}$ and $\sqrt[10]{10}$ as listed in Fig. 2. This series has been widely used for fixed wire-wound power-type resistors and for time-delay fuses. Because of the established practice of ± 20 -, ± 10 -, and ± 5 -percent tolerances in the electronics-component industry, a series of values based on $\sqrt[6]{10}$, $\sqrt[12]{10}$, and $\sqrt[24]{10}$ has been adopted by the RETMA and is widely used for small electronics components, as fixed composition resistors and fixed ceramic, mica, and molded paper capacitors. These values are listed in Fig. 2. ## Voltage rating Distinction must be made between the breakdown-voltage rating (test volts) and the working-voltage rating. The maximum voltage that may be applied (usually continuously) over a long period of time without causing failure of the component determines the working-voltage rating. Application of the test voltage for more than a very few minutes, or even repeated applications of short duration, may result in permanent damage or failure of the component. #### Characteristic This term is frequently used to include various qualities of a component such as temperature coefficient of capacitance or resistance, Q value, maximum permissible operating termperature, stability when subjected to ## Standards in general continued repeated cycles of high and low temperature, and deterioration experienced when the component is subjected to moisture either as humidity or water immersion. One or two letters are assigned in RETMA or MIL type designations, and the characteristic may be indicated by color coding on the component. An explanation of the characteristics applicable to a component will be found in the following sections covering that component. Fig. 2—ASA and RETMA preferred values. The RETMA series is standard in the electronics industry. | | America | n Standard | RETMA standard* | | | | |-------------------|--------------------------------------|------------------------|-----------------------|------------------------|------------------------|--| | Name of series | "5" | "10" | ±20% | ±10% | ±5% | | | Percent step size | 60 | 25 | ≈40 | 20 | 10 | | | Step multiplier | $\sqrt[5]{10} = 1.58$ | $\sqrt[10]{10} = 1.26$ | $\sqrt[6]{10} = 1.46$ | $\sqrt[12]{10} = 1.21$ | $\sqrt[24]{10} = 1.10$ | | | Values in the | | | | | | | | series | 10 | 10 | 10 | 10 | 10 | | | | - | 12.5 | - | - | 11 | | | | - | (12) ∫ | - | 12 | 12 | | | | - | - | - | - | 13 | | | | 16 | - | 15 | 15 | 15 | | | | 16 | 16 | - | - | 16 | | | | - | - | - | 18 | 18 | | | | 25

40 | 20 | - | - | 20 | | | | - | - | 22 | 22 | 22 | | | | - | - | - | | 24 | | | | 25 | 25 | - | - | - | | | | } - | - | - | 27 | 27 | | | | - | 31.5) | 1 - | - | 30 | | | | - | (32) } | - | _ | | | | | - | - | 33 | 33 | 33 | | | | - | - | - | 1 - | 36 | | | | - | - | - | 39 | 39 | | | | 40 | 40 | - | - | _ | | | | - | - | - | - | 43 | | | | - | - | 47 | 47 | 47 | | | | - | 50 | - | - | - | | | | - | - | - | - | 51 | | | | - | - |] - | 56 | 56 | | | | - | - | - | - | 62 | | | | 63 | 63 | - | - | - | | | | - | _ | 68 | 68 | 68 | | | | 63 | - | - | - | 75 | | | | - | 80 | - | - | - | | | | - | - | - | 82 | 82 | | | | _ | - | - | - | 91 | | | | 100 | 100 | 100 | 100 | 100 | | ^{*}Use decimal multipliers for smaller and larger values. Associate the tolerance $\pm 20\%$, $\pm 10\%$, or $\pm 5\%$ only with the values listed in the corresponding column: Thus, 1200 ohms may be either ± 10 or ± 5 , but not ± 20 percent; 750 ohms may be ± 5 , but neither ± 20 nor ± 10 percent. ## Resistors—fixed composition #### Color code RETMA-standard and MIL-specification requirements for color coding of fixed composition resistors are identical (Fig. 3). The exterior body color of insulated axial-lead composition resistors is usually tan, but other colors, except black, are permitted. Noninsulated, axial-lead composition resistors have a black body color. Radial-lead composition resistors may have a body color representing the first significant figure of the resistance value. Fig. 3—Resistor color coding. Colors of Fig. 1 determine values. Examples: Code of Fig. 1 determines resistor values. Examples are | | band designation | | | | | | | | | |-------------------------------------|------------------|--------|-------|------------------|--|--|--|--|--| | resistance in ohms
and tolerance | A | В | с | D | | | | | | | 3300 ± 20% | Orange | Orange | Red | Black or no band | | | | | | | 510 ± 5% | Green | Brown | Brown | Gold | | | | | | | 1.8 megohms ± 10% | Brown | Gray | Green | Silver | | | | | | #### Tolerance Standard resistors are furnished in ± 20 -, ± 10 -, and ± 5 -percent tolerances, and in the preferred-value series previously tabulated. "Even" values, such as 50,000 ohms, may be found in old equipment, but they are seldom used in new designs. ### Resistors—fixed composition continued #### Temperature and voltage coefficients Resistors are rated for maximum wattage at an ambient temperature of 40 or 70 degrees centigrade; above these temperatures it is necessary to operate at reduced wattage ratings. Resistance values are found to be a function of voltage as well as temperature; current MIL specifications allow a maximum voltage coefficient of 0.035 percent/volt for $\frac{1}{4}$ - and $\frac{1}{2}$ -watt ratings, and 0.02 percent/volt for larger ratings. Specification MIL-R-11A permits a resistance-temperature characteristic as in Fig. 4. Fig. 4-Temperature coefficient of resistance. | | charac-
teristic | per | percent maximum allowable change from resistance
at 25 degrees centigrade | | | | | | | |----------------------------------
---------------------|-----------------|--|--------------------------|---------------------------|------------------------|---------------------------|--|--| | Nominal
resistance
in ohms | | 0
to
1000 | >1000
to
10,000 | >10,000
to
0.1 meg | >0.1 meg
to
1.0 meg | >1 meg
to
10 meg | > 10 meg
to
100 meg | | | | At -55 deg | F | ±6.5 | ±10 | ±13 | ±20 | ±26 | ±35 | | | | At +105 deg | F | ±5 | ±6 | ±7.5 | ±10 | 土18 | ±22 | | | The separate effects of exposure to high humidity, salt-water immersion (applied to immersion-proof resistors only), and a 1000-hour rated-load life test should not exceed a 10-percent change in the resistance value. Soldering the resistor in place may cause a maximum resistance change of ± 3 percent. Simple temperature cycling between -55 and +85 degrees centigrade for 5 cycles should not change the resistance value as measured at 25 degrees centigrade by more than 2 percent. The above summary of composition-resistor performance indicates that tolerances closer than ± 5 percent may not be satisfactorily maintained in service; for a critical application, other types of small resistors should be employed. ## Resistors—fixed wire wound low power types ### Color coding Small wire-wound resistors in $\frac{1}{2}$ -, 1-, or 2-watt ratings may be color coded as described in Fig. 3 for insulated composition resistors, but band A will be twice the width of the other bands. ### Resistors—fixed wire wound low power types continued #### Maximum resistance For reliable continuous operation, it is recommended that the resistance wire used in the manufacture of these resistors be not less than 0.0015 inch in diameter. This limits the maximum resistance available in a given physical size or wattage rating as follows: $\frac{1}{2}$ -watt: 470 ohms 1-watt: 2200 ohms 2-watt: 3300 ohms #### Wattage Wattage ratings are determined for a temperature rise of 70 degrees in free air at a 40-degree-centigrade ambient. If the resistor is mounted in a confined area, or may be required to operate in higher ambient temperatures, the allowable dissipation must be reduced. #### Temperature coefficient The temperature coefficient of resistance over the range -55 to +110 degrees, referred to 25 degrees centigrade, may have maximums as follows: | value | RETMA | MIL | |-----------------|--------------------|--------------------| | Above 10 ohms | ± 0.025 percent/°C | ± 0.030 percent/°C | | 10 ohms or less | ± 0.15 percent/°C | ± 0.065 percent/°C | Stability of these resistors is somewhat better than that of composition resistors, and they may be preferred except where a noninductive resistor is required. ## Resistors—fixed film Film-type resistors employ a thin layer of resistive material deposited on an insulating core. The low-power types are more stable than the usual composition resistors. Except for high-precision requirements, film-type resistors are a good alternative for accurate wire-wound resistors, being both smaller and less expensive. The power types are similar in size and performance to conventional wire-wound power resistors. While their 200-degree-centigrade maximum operating temperature limits the power rating, the maximum resistance value available for a given physical size is much higher than that of the corresponding wire-wound resistor. ### Resistors-fixed film continued #### Construction For low-resistance values, a continuous film is applied to the core, a range of values being obtained by varying the film thickness. Higher resistances are achieved by the use of a spiral pattern, a coarse spiral for intermediate values and a fine spiral for high resistance. Thus, the inductance is greater in high values, but it is likely to be far less than in wire-wound resistors. Special high-frequency units having greatly reduced inductance are available. #### Resistive films Resistive-material films currently used are microcrystalline carbon, boron-carbon, and various metallic oxides or precious metals. Deposited-carbon resistors have a negative temperature coefficient of 0.01 to 0.05 percent/degree centigrade for low-resistance values and somewhat larger for higher values. Cumulative permanent resistance changes of 1 to 5 percent may result from soldering, overload, low-temperature exposure, and aging. Additional changes up to 5 percent are possible from moisture penetration and cyclic temperatures. The introduction of a small percentage of boron in the deposited-carbon film results in a more stable unit. A negative temperature coefficient of 0.005 to 0.02 percent/degree centigrade is typical. Similarly, a metallic dispersion in the carbon film provides a negative coefficient of 0.015 to 0.03 percent/degree centigrade. In other respects, these materials are similar to standard deposited carbon. Carbon and boron—carbon resistive elements have the highest random noise of the film-type resistors. Metallic oxide and precious-metal-alloy films permit higher operating temperatures. Their noise characteristics are excellent. Temperature coefficients are predominantly positive, varying from 0.03 to as little as 0.0025 percent/degree centigrade. ## **Applications** Power ratings of film resistors are based on continuous direct-current or on root-mean-square operation. Power derating is necessary for the standard units above 40 degrees centigrade; for hermetically-sealed resistors, above 70 degrees centigrade. In pulse applications, the power continued dissipated during each pulse and the pulse duration are more significant than average power conditions. Short high-power pulses may cause instantaneous local heating sufficient to alter or destroy the film. Excessive peak voltages may result in flashover between turns of the film element. Derating under these conditions must be determined experimentally. Film resistors are fairly stable up to about 10 megacycles. Because of the extremely thin resistive film, skin effect is small. At frequencies above 10 megacycles, it is advisable to use only unspiraled units if inductive effects are to be minimized (these are available in low resistance values only). Under extreme exposure, deposited-carbon resistors deteriorate rapidly unless the element is protected. Encapsulated or hermetically sealed units are preferred for such applications. Open-circuiting in storage as the result of corrosion under the end-caps is frequently reported in all types of film resistors. Silver-plated caps and core-ends effectively overcome this problem. #### Capacitors—fixed ceramic Ceramic-dielectric capacitors of one grade are used for temperature compensation of tuned circuits and have many other applications. In certain styles, if the temperature coefficient is unimportant (i.e., general-purpose applications), they are competitive with mica capacitors. Another grade of ceramic capacitors offers the advantage of very high capacitance in a small physical volume; unfortunately this grade has other properties that limit its use to noncritical applications such as bypassing. #### Color code If the capacitance tolerance and temperature coefficient are not printed on the capacitor body (Fig. 5), the color code of Fig. 6 may be used. Fig. 5—Type designation for ceramic capacitors. RETMA class is omlited on MILspecification capacitors. #### Capacitors—fixed ceramic continued Fig. 6-Color code for fixed ceramic capacitors. ## Capacitance and capacitance tolerance Preferred-number values on RETMA and MIL specifications are standard for capacitors above 10 micromicrofarads ($\mu\mu$ f). The physical size of a capacitor is determined by its capacitance, its temperature coefficient, and its class. Note that the capacitance tolerance is expressed in $\mu\mu$ f for nominal capacitance values below $10\mu\mu$ f and in percent for nominal capacitance values of $10~\mu\mu$ f and larger. ## Temperature coefficient The change in capacitance per unit capacitance per degree centigrade is the temperature coefficient, usually expressed in parts per million parts per degree centigrade $(ppm/^{\circ}C)$. Preferred temperature coefficients are those listed in Fig. 6. ## Capacitors—fixed ceramic continued Temperature-coefficient tolerance: Because of the nonlinear nature of the temperature coefficient, specification of the tolerance requires a statement of the temperature range over which it is to be measured (usually -55 to +85 degrees centigrade, or +25 to +85 degrees centigrade), and a Fig. 7—Quality of fixed ceramic capacitors. Summary of test requirements. | | | | RETMA clas | | | i\$ | | |----------------------------------|---|--|---|-----------|--------------------------|----------------|--| | | | specification
MIL-C-20 | 1 | 2 | 3 | 4 | | | Minimum init
sistance in | ial insulation re-
megohms | >7500 | 7500 | | | | | | | for C $>$ 30 $\mu\mu$ f B for smaller C) | >1000 | 1000 | 500 | 350 | 250 | | | tance dri
ture cycl | llowable capaci-
ift with tempera-
ing (percent or
lever is greoter) | 0.2%
or
0.25 μμf | 0.3% | % or 0.25 | δμμf | _ | | | | pacitance change
over range — 55 | _ | | | | ±25 | | | Working v | oltage = sum of
eak ac | _ | 500 | | | 350 | | | Humidity tes | t | 100 hours | exposure | at 40°C, | 95% rel | ative humidity | | | Life test at 8 | 5°C | 1000 hours,
750 vdc plus
250 vac at
100 cycles
or less | at 1000 hours, 1000 volts 750 | | 1000 hours,
750 volts | | | | After | Minimum Q (C $> 30 \mu\mu f$) | $>$ $\frac{1}{2}$ initial limits | 3 | 150 | 170 | 50 | | | humidity
test or
life test | Minimum insula-
tion resistance
in megohms | >1000 | 1000 | | 100 | | | |
After life test | Maximum
capacitance
change | 1% | 1% or 0.5 μμf | | | ıμf | | | Application | | 1 ' | perature compen-
on; stable, general-
oose uses | | | | High-capacitance
general-purpose,
noncritical uses
only | | Volume effic | iency (μμf/inch³) | low | low High | | | High | | ### Capacitors—fixed ceramic continued statement of the measuring procedure to be employed. Standard tolerances based on +25 to +85 degrees centigrade are symmetrical: | Tolerance in ppm/°C | ±15 | ±30 | ±60 | ±120 | ±250 | ±500 | |---------------------|-----|-----|-----|------|------|------| | Code | (F) | (G) | (H) | (J) | (K) | (L) | The smaller tolerances can be supplied only for capacitors of 10 $\mu\mu$ f or larger, and only for the smaller temperature coefficients. #### Quality Insulation resistance, internal loss (conveniently expressed in terms of Q), capacitance drift with temperature cycling, together with the permissible effects of humidity and accelerated life tests, are summarized in Fig. 7. These data will be a guide to the probable performance under favorable or moderately severe ambient conditions. Fig. 8—Minimum Q requirements for ceramic capacitors where capacitance < 30 $\mu\mu f$. ### General-purpose ceramic capacitors Ceramic materials suitable for temperature-compensating capacitors must have nearly linear temperature characteristics in the operating temperature range and high dielectric properties. Only low- and medium-K (dielectric-constant) ceramics meet these limitations. For many circuit applications, nonlinear capacitance-temperature characteristics and power factors of 1 to 2 percent are not objectionable. Capacitors having high-K ceramic bodies (up to K=6000) fall in this class. The high dielectric constant results in an extremely small unit. Generally, the higher the K, the greater the nonlinearity and the greater the power factor. Six basic styles are manufactured. In lead-mounted types, tubular and disc configurations are available. Feedthrough and standoff types are made in both tubular and discoidal constructions. Inductance in the leads and element causes parallel resonance in the megacycle region. The user is advised to exercise care in their application ### Capacitors—fixed ceramic continued above about 50 megacycles for tubular styles and about 500 megacycles for disc types. Precise frequency limits cannot be cited because of the indeterminate inductive effects of lead length, lead dress, and variations in construction. ### Capacitors—molded mica dielectric #### Type designation Small fixed mica capacitors in molded plastic cases are manufactured to performance standards established by the RETMA or in accordance with a MIL specification. A comprehensive numbering system, the type designation, is used to identify the component. The mica-capacitor type designations are of the form shown in Fig 9. Fig. 9-Type designation for mica-dielectric capacitors. Component designation: Fixed mica-dielectric capacitors are identified by the symbol CM for MIL specification, or RCM for RETMA standard. Case designation: The case designation is a two-digit symbol that identifies a particular case size and shape. Characteristic: The MIL characteristic or RETMA class is indicated by a single letter in accordance with Fig. 10. Capacitance value: The nominal capacitance value in micromicrofarads is indicated by a 3-digit number. The first two digits are the first two digits of the capacitance value in micromicrofarads. The final digit specifies the number of zeros that follow the first two digits. If more than two significant figures are required, additional digits may be used, the last digit always indicating the number of zeros. ### Capacitors—molded mica dielectric Capacitance tolerance: The symmetrical capacitance tolerance in percent is designated by a letter as shown in Fig. 1. continued #### Color coding The significance of the various colored dots for RETMA-standard and MIL-specification mica capacitors is explained by Fig. 12. The meaning of each color may be interpreted from Fig. 1. Fig. 10—Fixed-mica-capacitor requirements by MIL characteristic and RETMA class.* | | MIL-spec | ification requi | rements† | Cairn RETMA-standard regularments | | | | | |----------------------------------|---|--|---|-----------------------------------|--|--|--|--| | MIL char
or
RETMA
class | maximum
capacitance
drift in
percent | maximum
range of
lemperature
coefficient
(ppm/°C)‡ | minimum
Q | maximum
capacitance
drift | maximum
range of
temperature
coefficient
(ppm/°C)‡ | minimum
insulation
resistance
in
megohms | minimum
Q | | | A | - | _ | | = (5% +
البيم 1 | ±1000 | 3000 | 30% of
RETMA
value
in Fig. 11. | | | В | _ | | for | ±13% + 1 μμΩ | ±500 | | - <u>-</u> | | | C | ±0.5 | ±200 | values,
of assignatings | ± (0.5% + 0.5 μμf) | ±200 | | values,
to 1000 µµf | | | 1 | _ | | See Fig. 11, MIL values, for
all capacitors not assigned
specific current ratings | ±10.3% +
0.2 μμf) | -50 to
+150 | 6000 | WA val | | | D | ± 0.3 | ±100 | Fig. 1
capaci
cific cu | ± (0.3% + 0.1 μμf) | ±100 | | 1, RET! | | | J | _ | _ | Sec | ± (0.2% +
0.2 μμf) | -50 to
+100 | | See Fig. 11, RETMA
applicable only up | | | E | ± (0.1% +
0.1 μμf) | -20 to +100 | i i u | ±10.1% +
0.1 μμθ | -20 to
+100 | | Seg | | | F | ± (0.05% + 0.1 μμf) | 0 to +70 | , . | | - | _ | _ | | ^{*} Where no data are given, such characteristics are not included in that particular standard. Fig. 11—Minimum Q versus capacitance for MIL mica capacitors (Q measured at 1.0 megacycle), and for RETMA mica capacitors (Q measured at 0.5 to 1.5 megacycles). [†] Insulation resistance of all MIL capacitors must exceed 7500 megahms. $[\]ddagger ppm/^{\circ}C = parts/million/degree centigrade.$ ## Capacitors-molded mica dielectric continued Fig. 12-Standard code for fixed mica capacitors. See color code, Fig. 1. #### Examples | 1 | | top row | <u>, </u> | bottom row | | | | |-------------------------|----------------|-------------|---|--------------|---------------------|---------------------|--| | type | left | center | right | left | tolerance
center | multiplier
right | description | | RCM20A221M
CM30C681J | white
black | red
blue | red
gray | black
red | black
gold | brown | 220 μμf ± 20%, RETMA class A
680 μμf ± 5%, characteristic C | #### Capacitance Measured at 500 kilocycles for capacitors of 1000 $\mu\mu$ f or smaller; larger capacitors are measured at 1 kilocycle. ## Temperature coefficient Measurements to determine the temperature coefficient of capacitance and the capacitance drift are based on one cycle over the following temperature values (all in degrees centigrade). ## Dielectric strength Molded-mica capacitors are subjected to a test potential of twice their direct-current voltage rating. ## Humidity and thermal-shock resistance RETMA-standard capacitors must withstand a 120-hour humidity test: Five cycles of 16 hours at 40 degrees centigrade, 90-percent relative humidity, and 8 hours at standard ambient. Units must pass capacitance and dielectric-strength tests, but insulation resistance may be as low as 1000 megohms for class A, and 2000 megohms for other classes. ## Capacitors-molded mica dielectric continued MIL specification capacitors must withstand 5 cycles of +25, +85, +25, -55, +25 degree-centigrade thermal shock followed by 2 cycles of water immersion at +65 and +20 degrees centigrade. Units must pass capacitance and dielectric-strength tests, but insulation resistance may be as low as 3000 megohms. #### Life Capacitors are given accelerated life tests at 85 degrees centigrade with 150 percent of rated voltage applied. No failures are permitted before: 1000 hours for MIL specification; or 500 hours for RETMA standard. ## Capacitors—fixed mica dielectric button style #### Color code "Button" mica capacitors are color coded in several different ways, of which the two most widely used methods are shown in Fig. 13. Fig. 13—Color coding of button-mica capacitors. See Fig. 1 for color code. Commercial color code for characteristic not standardized; varies with manufacturer. #### Characteristic The table of characteristics for button-style mica capacitors is given in Fig. 14. Insulation resistance after moisture-resistance test should be at least 100 megohms for characteristic X capacitors; at least 500 megohms for all other MIL or commercial characteristics. ## Capacitors—fixed mica dielectric button style continued Initial Q values should exceed 500 for capacitors 5 to 50 $\mu\mu$ f; 700 for capacitors 51 to 100 $\mu\mu$ f; and 1000 for capacitors 101 to 5000 $\mu\mu$ f. Initial insulation resistance should exceed 10,000 megohms. Dielectric-strength tests should be made at twice rated voltage. Fig. 14—Requirements for button-style mica capacitors. | characteristic | | | | | |----------------|------------|---|--|--| | MIL | commercial | max range of temp coeff
(ppm/°C) | maximum capacitance
drift | | | _ | С | ±200 | ±0.5% | | | D or X | _ | ±100 | $\pm 0.3\%$ or 0.3 $\mu\mu\mathrm{f}$, whichever is greater | | | _ | D | $\pm 100 + 0.05 \mu\mu f$ | $\pm (0.3\% + 0.05 \mu\mu\text{f})$ | | | _ | E | $(-20 \text{ to } + 100) + 0.05 \mu\mu\text{f}$ | $\pm (0.1\% + 0.05 \mu\mu\text{f})$ | | | _ | F | $10 \text{ to } +70) + 0.05
\mu\mu\text{f}$ | $\pm (0.05\% + 0.05 \mu\mu f)$ | | ### Thermal-shock and humidity tests These are commercial requirements. After 5 cycles of +25, -55, +85, +25 degrees centigrade, followed by 96 hours at 40 degrees centigrade and 95-percent relative humidity, capacitors should have an insulation resistance of at least 500 megohms; a Q of at least 70 percent of initial minimum requirements; a capacitance change of not more than 2 percent of initial value; and should pass the dielectric-strength test. ## Capacitors—impregnated paper dielectric The proper application of paper capacitors is a complex problem requiring consideration of the equipment duty cycle, desired capacitor life, ambient temperature, applied voltage and waveform, and the capacitor-impregnant characteristics. From the data below, a suitable capacitor rating may be determined for a specified life under normal use. #### Life-voltage and ambient temperature Normal paper-dielectric-capacitor voltage ratings are for an ambient temperature of 40 degrees centigrade, and provide a life expectancy of approximately 1 year continuous service. For ambient temperatures outside ## Capacitors—impregnated paper dielectric continued #### MIL specification | MIL
char | watt-second
rating | voltage
rating | curve | |-------------|-----------------------|--|-------| | | >50 | Ali | 1 | | | 5-50 | All | 2 | | D
E
F | 0.5–5 | All, plus those ex-
cluded from group
of curve 4 | 3 | | | 0-0.5 | 1500 v and below—small cased tubular styles; 1000 v and below—other styles | 4 | | κ | 0-0.8 | 600 v and below—
small cased tubular
styles;
400 v and below—
other styles | 5 | #### RETMA standard | watt-second
rating | voltage
rating | curve | |-----------------------|-------------------|-------| | >50 | 1500 and
over | | | 5-50 | 2000 and
below | 6 | | 5-50 | 2500 and
above | 7 | | 0-5 | All | | | | | | Fig. 15—Life-expectancy rating for paper capacitors as a function of ambient temperature. ## Capacitors—impregnated paper dielectric continued the range 0 to +40 degrees centigrade, the applied voltage must be reduced in accordance with Fig. 15. The energy content of a capacitor may be found from $W = CE^2/2$ watt-seconds where C = capacitance in farads E = applied voltage in volts In multiple-section capacitors, the sum of the watt-second ratings should be used to determine the proper derating of the unit. Longer life in continuous service may be secured by operating at voltages lower than those determined from Fig. 15. Experiment has shown that the life of paper-dielectric capacitors having the usual oil or wax impregnants is approximately inversely proportional to the 5th power of the applied voltage: | desired life in years (at ambient ≈ 45°C) | 1 | 2 | 5 | 10 | 20 | |---|-----|----|----|----|----| | applied voltage in percent of rated voltage | 100 | 85 | 70 | 60 | 53 | The above life derating is to be applied together with the ambient-temperature derating to determine the adjusted-voltage rating of the paper capacitor for a specific application. #### Waveform Normal filter capacitors are rated for use with direct current. Where alternating voltages are present, the adjusted-voltage rating of the capacitor should be calculated as the sum of the direct voltage and the peak value of the alternating voltage. The alternating component must not exceed 20 percent of the rating at 60 cycles, 15 percent at 120 cycles, 6 percent at 1000 cycles, or 1 percent at 10,000 cycles. Where alternating-current rather than direct-current conditions govern, this fact must be included in the capacitor specification, and capacitors specially designed for alternating-current service should be procured. Where heavy transient or pulse currents are present, standard capacitors may not give satisfactory service unless an allowance is made for the unusual conditions. Capacitors — impregnated paper dielectric continued Fig. 16—Characteristics of impregnants for paper capacitors. | Chlorinated Chlorinated Silica | | | - | _ | - | | Halowax | X | | | |---|-------------------|-----------------------------------|---------------------------------|--------|------------|---|--------------|-----|-------------|--| | From Specification D | | | | castor | mineral | askarels*
(chlorinated
synthetic) | | | mineral | polytsoburenes, silicone fluids, or polyesters | | From RETMA standard | | property | | _ | _ | | | | _ | | | Megohns X, microfarads‡ Nominal nautation minimum 1500 2000 1500 2000 15 | | | From Specification
MIL—C-25A | | | | | | 1 | × | | Megohms X. microfarads‡ Nominal minimum 1500 7000 6000 3000 15,000 Minimum insulation resistance in megohms 1500 2000 3000 15,000 | naracteristic | | From DETMA standard | - | _ | | | | ı | 1 | | Megohns X. Incominal Nominal minimum 500 2000 1500 1500 1500 2000 — Minimum insulation resistance in megohns 1500 600 c/s 1500 600 c/s 0.3 c/s.3 0.5 to 3 0.5 to 1.5 Power factor 60 c/s - =1 - =2 - High-ambient test temperature in degrees 85 85 85 85 85 centigrade Nominal 10 40 30 15 100 50 Minimum insulation resistance in megohns 150 600 450 150 1000 - Power factor in percent 2 to 6 0.3 to 1.6 1 to 5 1 to 3 1 to 5 1 to 5 Percent capacitrance change from value ±5 ±5 ±5 -4.5 to 0 -10 to -6 | | | | 150 | 7000 | 0009 | 3000 | | 15,000 | 20,000 | | Minimum insulation resistance in megohms 500 2000 3000 1500 6000 | easure- | Megohms X | Nominal | 2 | | | | | | 4000 | | Minimum insulation resistance in megohms 1500 6000 4500 1500 6000 ———————————————————————————————————— | ments at 25°C | microtaraast | Specification minimum | 200 | 2000 | | | + | | 98 5 | | Power factor 60 c/s <0.2 0.3 <0.5 to 3 0.5 to 3 0.5 to 1.5 Power factor 1000 c/s — =1 — =2 — High-ambient test temperature in degrees 85 85 85 85 85 85 High-ambient test temperature in degrees 85 85 85 85 85 85 Megohms X, migrade Nominal 10 40 30 15 100 50 Minimum insulation resistance in megohms 150 600 450 150 1000 — Power factor in percent 2 to 6 0.3 to 1.6 1 to 5 1 to 3 0.2 to 1.5 Percent capacitance change from value ±5 ±5 ±5 0.3 to 1.6 +5 -4.5 to 0 -10 to -6 | ambient | Adiamim insulation | resistance in megohms | 1500 | 0009 | | | | ! | 12,000 | | Power factor 0.0 C/s =1 =2 = In percent 1000 c/s =2 = = High-ambient test temperature in degrees 85 85 85 85 85 High-ambient test temperature in degrees 85 85 85 85 85 85 85 Megohms X Nominal 10 40 30 150 100 50 Minimum insulation resistance in megohms 150 600 450 150 1000 — Percent capacitance change from value ±5 ±5 ±5 1 to 3 0.2 to 1.5 Percent capacitance change from value ±5 ±5 ±5 0.3 to 1.6 ±5 -4.5 to 0 -10 to -6 | | | s/2 U7 | < 0.2 | 0.3 | < 0.3 | 0.5 to | ო | 0.5 to 1.5 | ≈ 0.5 | | High-ambient test temperature in degrees as sering and earliers are the percent contigrade. High-ambient test temperature in degrees as sering and earlier e | | Power tactor
in percent | 5/200 | | 1 | | ≈ | | I | =1 | | High-ambient test temperature in degrees centigrade High-ambient test set of the condition th | | | 1000 c/s | | . | | | - | | | | Megohms X Nominal 10 40 30 150 50 100 50 100
100 | easure- | High-ambient test | temperature in degrees | 8.5 | 82 | 8 | | | 88 | 125 | | Megohms X Nominal 10 | ments at
high- | centigrade | | ! | 9 | 30 | ğ | | 20 | 20 | | microfarads‡ Specification minimum 5 20 30 15 100 1000 — Minimum insulation resistance in megohms 150 600 450 150 1000 — Power factor in percent capacitance change from value at 25 degrees centigrade ±5 ±5 ±5 −4.5 to 0 −10 to −6 | ambient | Megohms X | Nominal | 2 | F | | | - | | 5 | | Minimum insulation resistance in megohms 150 600 450 150 1000 — Power factor in percent actor action central capacitance change from value at 25 degrees centigrade ±5 ±5 ±5 ±5 -4.5 to 0 -10 to -6 | tempera- | | muminim acitocolicos | in | | | | 0 | , | 2 | | 150 000 430 100 110 5 110 3 0.2 to 1.5 | ture | | specification internal | | | <u> </u> | <u> </u>
 | 8 | 1 | 150 | | 2 to 6 0.3 to 1.6 1 to 5 1 to 3 0.2 to 1.5
±5 ±5 ±5 = 5 = 5 -4.5 to 0 -10 to -6 | | Minimum insulatio | on resistance in megohms | 150 | 8 | 닉 | | - | | | | nge from value ±5 ±5 =5 0 -10 to -6 | | 1 | percent | 2 to 6 | 0.3 to 1.6 | 1 to 5 | | 63 | 0.2 to 1.5 | 5. | | | | Percent capacite at 25 degrees of | ance change from value | # # | #
| H-5 | -4.5 | 0 0 | - 10 to - 6 | +1 to +3 | | | | | | | | | | | | | | | | 1 | 1 | ı | ٠ | 1 | 1 | |--|---|-------------------------|---------------------------------|---|--|--|---| | | -55 | £
≅ | -5 to -2 | 01 - | -55 to +125 | 135 | General-
purpose dc;
high-temp.
applications | | | - 55 | 3 to 4 | -6 to -2 | I | 10 +85 | 135 | General-
purpose dc
over wider
temp. range
than Halo-
wax units
allow | | | -20 | 0.5 to 4 | -10 to -5 | 01 – | -55 to +85 -20 to +55 | 801 | General-
purpose dc
over limited
tempera-
ture range | | | - 40 | 3 | -20 | + ÷ | +85 | | dc
dble | | | - 55 | 0.8 to 3 | -30 to -20 | -30 | 5 5 to | 001 | General-
purpose dc
and ac.
Non-
inflammable | | | - 40 | 8 0 | +2 | # | | <u></u> | General- purpose dc and ac; high-temp. applications. stability re- quirements | | | -55 | 0.5 to 3 | -10 to +2 | - 15 | -55 to +85 | 135 | | | - | - 40 | 9 4 | + 4 | + o + 30 | +85 | | | | | -55 | 1.5 to 4 | -20 to +4 | -30 | -55 to +85 | 100 | General-
purpose dc.
Also ac if
temperature
range is
imited | | | emperature in | srcent | Nominal | Specification maximum | oient temperature
entigrade | volume (for units
ce) | | | | Low-ambient test temperature in
degrees centigrade | Power factor in percent | Percent capaci-
tance change | from value at
25 degrees
centigrade | Recommended ambient temperature
range in degrees centigrade | Relative capacitor volume (for units of equal capacitance) | Recommended uses | | Measure- ments at low- ambient tempera- ture | | | | | Application
data | | 1 | Bold figures in tabulation are Specification MIL-C-25A or RETMA-standard limits for that property. *Trade names Aroclor, Pyranol, Dykanol A, Inerteen etc. ‡ At 25 degrees centigrade, applies to capacitors of approximately $\frac{1}{2}$ microfard or larger. At any test temperature, capacitors are not expected to show megohm X microfarad products in excess of the insulation-resistance requirements. MI-C-25A characteristics A and B (not tabulated above) are essentially long-life versions of MIL characteristics E and F, respectively. ## Capacitors—impregnated paper dielectric continued ### Capacitor impregnants Fig. 16 lists the various impregnating materials in common use together with their distinguishing properties. At the bottom will be found recommendations for application of capacitors according to their impregnating material. #### Insulation resistance For ordinary electronic circuits, the exact value of capacitor insulation resistance is unimportant. In many circuits little difference in performance is observed when the capacitor is shunted by a resistance as low as 5 megohms. In the very few applications where insulation resistance is important (e.g., some RC-coupled amplifiers), the capacitor value is usually small and megohm×microfarad products of 10 to 20 are adequate. The insulation resistance of a capacitor is a function of the impregnant; its departure from maximum value is an indication of the care taken in manufacture to avoid undesirable contamination of the impregnant. For example, if an askarel-impregnated capacitor has the same insulation resistance as a good castor-oil-impregnated capacitor of equal rating, the askarel impregnant is strongly contaminated, and the capacitor life will be considerably reduced. Measurements are made with potentials between 100 and 500 volts, and a maximum charging time of 2 minutes. #### Power factor This is a function of the capacitor impregnant. In most filter applications where a specified maximum capacitor impedance at a known frequency may not be exceeded, the determining factor is the capacitor reactance and not the power factor. A power factor of 14 percent will increase the impedance only 1 percent, a negligible amount. For alternating-current applications, however, the power factor determines the capacitor internal heating. Consideration must be given to the alternating voltage and the operating temperature. Power factor is a function of the voltage applied to the capacitor; any specification should include actual capacitor operating conditions, rather than arbitrary bridge-measurement conditions. For manufacturing purposes, power factor is measured at room temperature (\approx 25 degrees centigrade), with 1000 cycles applied to capacitors of 1 μ f or less, rated 3000 volts or less; and with 60 cycles applied to capacitors #### Capacitors—impregnated paper dielectric continued larger than 1 μ f, or rated higher than 3000 volts. Under these conditions the power factor should not exceed 1 percent. #### Temperature coefficient of capacitance Depending upon the impregnant characteristics, low temperature may cause an appreciable drop in capacitance. Due allowance for this must be made if low-temperature operation of the equipment is to be satisfactory. This temperature effect is nonlinear. #### Life tests Accelerated life tests run on paper capacitors are based on 250-hour operation at the high-ambient-temperature limit shown in Fig. 16 with an applied direct voltage determined by the watt-second and 40-degree-centigrade voltage ratings. ### Capacitors—metalized paper When dielectric breakdown occurs in conventional paper—foil capacitors, conducting particles or carbonized areas in the paper establish conduction between the foils. Since the foils are capable of carrying substantial current, sustained conduction results, carbonizing a large area of paper, and permanently short-circuiting the capacitor. In the metalized-paper capacitor (construction shown in Fig. 17), the metallic film is extremely thin. On breakdown, this film immediately burns away, leaving the capacitor operable, but with slightly reduced capacitance. This phenomena results in self-healing capacitors. Minor defects (pin holes, thin spots, and conducting particles) are unavoidably present in all capacitor papers. Therefore, conventional paper capacitors employ not less than two layers of paper. Since the metalized-paper types are self healing, a single layer may be used. Metalized-paper capacitors designed to operate just below the dielectric-breakdown potential are appreciably smaller than conventional-construction paper capacitors. Fig. 17—Construction of conventional and metalized-type paper capacitors. ## Capacitors—metalized paper continued #### Characteristics Characteristics of metalized-paper capacitors may best be illustrated by comparing them with conventional paper capacitors. The space saving possible with metalized-paper capacitors is their outstanding characteristic. At 200-volts rating they are one-quarter the volume Fig. 18—From top to bottom, voltage derating, capacitance change, and power factor as a function of temperature for metalized-paper capacitors. of conventional paper construction; at 600-volts rating, the ratio increases to 0.8. Above 600-volts rating, metalized-paper capacitors provide no size advantages. Electrical performance, including temperature characteristics, depends largely on the impregnant. Since an occasional arcover is normal, the impregnant must be one that does not break down as the result of arcing. This limits impregnants to mineral waxes and oils and, for high-temperature use, certain polyester resins. Except for upper-temperature operation, these
impregnants give similar results. continued The insulation resistance is significantly lower than that of paper-foil construction, being in the order of 500 megohm-microfarads, compared to 6000 for paper-foil. Capacitance change at high- and low-temperature limits normally does not exceed 5 to 6 percent for mineral-wax- or oil-impregnated capacitors and 10 to 20 percent for polyester-resin-impregnated capacitors. The power factor at 1000 cycles/second is about 0.03 at low temperature and 0.01 to 0.02 at room temperature and above. For operation at elevated temperatures, voltage derating is recommended; see Fig. 18. The variation of capacitance and power factor is also indicated in Fig. 18. ### **Applications** Internal noise is probably the greatest deterrent to the general use of metalized-paper capacitors. This characteristic limits their use to bypassing and filtering. When operated at 75 percent of rated voltage, random arcing is negligible, but space advantage is less significant. To be sure that faults will burn out, it is important that sufficient volt—amperes be available in the circuit. Similarly, it is necessary to limit the resistance in series with the capacitor. Most faults have a resistance of between 1 and 100 ohms. While a voltage of about 4 volts or a current of 10 milliamperes will eventually clear the capacitor, higher values are recommended for reliable performance. ## Capacitors—plastic film Where extreme-stability, low-loss, high-temperature, or high-frequency operation is required, paper capacitors offer, at best, marginal performance. Mica capacitors in high-capacitance values are large and expensive. One or more of these operating characteristics are obtainable in a superior degree, in certain of the plastic-film capacitors. Other plastic-film capacitors are practical for general use, because of space factor, price, and performance under moderate conditions. Fig. 19 shows capacitance—temperature and voltage-derating curves, while Fig. 20 lists general characteristics of the various film types. Since some conflict exists between sources, the information is conservatively stated. # Capacitors—plastic film continued Fig. 19—Top, voltage derating and below, capacitance variation as a function of temperature for plastic-film capacitors, CA = cellulose acetate, MY = Mylar, PE = polyethylene, PS = polystyrene, and TE = Teflon. ### Capacitors—plastic film continued Fig. 20—Characteristics of hermetically sealed plastic-film capacitors. | property | | cellulose
acetate | poly-
ethylene | poly-
styrene | Mylar | Teflon | |--|-----------------|-------------------------------|-----------------------|-----------------------|-----------------------|------------------------| | Operating tempe
range in °C | rature | -60
to
+105 | -60
to
+75 | -90
to
+85 | -60
to
+140 | -60
to
+200 | | Relative
size | Below
1000 V | 1.25 | 2.50 | 4.50 to 6.50 | 0.75 | 1.70 to 2.10 | | compared
to paper | Above
1000 V | 0.80 to 0.85 | 0.50 to 0.75 | _ | 0.30 to 0.35 | 0.70 to 1.60 | | Voltage range in volts | | 600 to
30,000 | 1000 to
30,000 | 100 to
1000 | 300 to
8000 | 200 to
30,000 | | Insulation resistance in megohms X microfarads | 25°C | 4000 | 105 | 3.5 x 10 ⁷ | 106 | 2.5 x 10 ⁵ | | | High
temp | 10 | 104 | 4 × 10 ⁵ | 6.5 x 10 ⁸ | 105 | | Power factor
at
o0 cycles/
second | Low | 0.02 | 0.0003 | 0.0002 | 0.015 | 0.0005 | | | 25°C | 0.01 | 0.0005 | 0.0002 | 0.005 | 0.0005 | | | High
temp | 0.01 | 0.001 | 0.00075 | 0.015 | 0.002 | | Dielectric
absorption | Low
temp | 5 | 0.01 to 0.02 | 0.05 | 0.5 | 0.01 to 0.05 | | in percent | High
temp | | 0.3 | 0.35 to 1.1 | 8 | _ | | Normal life at rated voltage | | 10,000 hrs
at 8 5°C | 10,000 hrs
at 65°C | 2000 hrs
at 75°C | 2000 hrs
at 125°C | 10,000 hrs
at 150°C | ## Capacitors—electrolytic The electrolytic capacitor consists essentially of two electrodes immersed in an electrolyte with a chemical film that constitutes the dielectric on one (Fig. 21) or both electrodes. Extremely thin dielectric films are practical because of the substantial dielectric properties and the uniformity of this chemical layer. Since the electrolyte is conductive, the effective electrode spacing is small and the capacitance correspondingly large. An electrolytic capacitor is characterized by a very-high volume efficiency. ### Capacitors—electrolytic continued #### Construction The dielectric film, which is formed by applying a potential between electrodes, is unidirectional, having high resistance in one direction and being conductive in the other. Thus, when only one plate is "formed," the capacitor is polarized and must be operated with one electrode positive with respect to the other. By forming both plates, a nonpolar unit results. This unit, because of the double film, has half the capacitance of the equivalent polar type. For a given case size, the capacitance can be increased by a factor of 2 to 4 by etching the formed electrode prior to assembly. By substituting metalized cloth gauze or a porous slug for the conventional foil electrode, similar results are obtained. These units are electrically inferior to plain foil (unetched), having larger power factors, higher low-temperature impedances, and greater capacitance change with temperature. Fig. 21—Basic cell and simplified equivalent circuit for polar electrolytic capacitor. ### Types The ideal electrode metal is one whose dielectric film provides perfect "valve" action; that is, has zero direct-current resistance in one direction and infinite resistance in the other. This metal must also be completely insoluble in the electrolyte and have high conductivity. While not ideal, aluminum and tantalum approach these requirements, with tantalum being superior to aluminum. Aluminum-foil electrolytic capacitors have a space factor of approximately 1/6 that of paper capacitors. For low voltages (under 100 volts), this space advantage is even greater. Single aluminum e ectrolytic cells are practical up to 450 direct volts, above which cells must be used in series and the space factor then approaches that of paper capacitors. By using tantalum in place of aluminum, further size reduction is achieved, the space factor being only 1/20 that of paper capacitors. The performance of these exceeds the aluminum type in such characteristics as film stability, temperature range, leakage current, power factor, and life. In one type of tantalum capacitor, foil construction and a neutral electrolyte are employed. These units will operate at temperatures up to 125 degrees centigrade and are available in polar and nonpolar types. A single cell is not practical above 150 volts. Their outstanding feature is the reduced possibility of leakage and danger of corrosion. Another type of tantalum electrolytic capacitor employs a porous slug of tantalum as the anode (formed electrode), the cathode being the silver-plated can. In these, sulphuric acid is the electrolyte. Only polar construction is feasible, with single-cell voltages up to about 80 volts. Because of the type of electrolyte, operation up to 175 degrees centigrade is possible, provided voltage is derated and a provided voltage is defated and a substantial life reduction can be tolerated. A third type of tantalum capacitor has a coiled tantalum wire as the anode. It is a low-voltage, polar device being useful primarily for microminiature assemblies where temperature fluctuations are small and operating conditions moderate. #### Performance Electrolytic capacitors have definite limitations. Compared to other types of capacitors, losses are large (large leakage currents and high power factor). The capacitance change with temperature is large. With increasing frequency, the capacitance decreases, while power factor becomes greater. At subzero temperatures, the series resistance increases sharply, while capacitance falls off. (See Figs. 22 and 23.) Thus, at low temperatures, Fig. 22—Typical 120-cycle/second impedance diagrams for aluminum (AI) and tantalum (Ta) plain-foil polar electrolytic capacitors of 150-volt rating at low, high, and room temperatures. Resistance and reactance are drawn to same arbitrary scale for all charts. ## Capacitors—electrolytic continued the impedance (Fig. 23) is substantially larger than at room temperature. Aside from electrical considerations, the freezing and boiling temperatures of the electrolyte determine absolute temperature limits. Referring to Fig. 21, R₁ represents the lumped series resistance of leads, electrodes, and electrolyte. In a well-constructed unit, only the resistance Fig. 23—Top, capacitance and below, 120-cycle/second impedance as a function of temperature for aluminum (AI) and tantalum (Ta) electrolytic capacitors. #### Capacitors—electrolytic c continued of the electrolyte is significant. Resistance R_2 , which is many times greater than R_1 , represents the leakage path through the imperfect dielectric. With direct voltage impressed on the capacitor, leakage current through R_2 accounts for practically all the internal heating. However, when an alternating-current component is present, the resultant charging current flowing through R_1 generates additional heat in the electrolyte. The effect of ripple heating, therefore, is determined by the ripple current. Heat tolerance and heat dissipation (the latter, largely a factor of case size) determine ripple-current limits #### **Applications** Space factor and price account for the extensive use of electrolytic capacitors. Electrical performance usually limits electrolytic capacitors to circuit applications such as bypassing at power and audio frequencies where circuit requirements are satisfied by minimum rather than precise capacitance values. For the polar type, when operated within maximum ripple-current limits, the large power factor and
associated losses generally present no problem. Except for some reduction in maximum operating temperature, the resultant internal heating is not serious. However, for the nonpolar unit, internal heating, when operated in alternating-current circuits, limits the capacitor to an intermittant cycle. A duty cycle of twenty 3-second periods/hour is typical. The dielectric film is not completely stable, particularly in aluminum electrolytics. Therefore, some film deterioration occurs in storage. When voltage is applied, the film reforms; but, while reforming, high leakage current flows. In extreme cases, the resultant heating may generate vapor and burst the case. Because of the film instability, extensive voltage derating of electrolytics is impractical. A 450-volt capacitor operated on 300 volts eventually becomes a 300-volt capacitor. Surge-voltage limitations must also be observed, since high leakage (and heating) will occur during surges. Where such limits may be exceeded, protective circuitry must be provided or another type of capacitor substituted. When these capacitors are used in series, it is imperative that equalizing resistors be provided. An equalizing resistor, shunted across each capacitor, prevents unequal voltage distribution across the capacitor chain. #### Capacitors—electrolytic continued Since the case is in contact with the electrolyte, there is a conducting path between the case and the element. This condition makes necessary external insulation between the case and the chassis, whenever the chassis and the negative terminal are not at the same potential. ### IF transformer frequencies¹ Recognized standard frequencies for receiver intermediate-frequency transformers are Very-, ultra-, and super-high-frequency equipment....30, 60, 100 megacycles (common practice) ### Color codes for transformer leads #### Radio power transformers² General Use Primary Black If tapped: Filament No. 1. Green Common Black Center top Green-Yellow Tap Black-Yellow Filament No. 2 Brown Finish Black-Red Center tap Brown-Yellow Filoment No. 3 Slate Rectifier Center tap Slate-Yellow Plate Center tap Red Red-Yellow Filament Center tap Yellow Yellow-Blue ## Intermediate-frequency transformers³ For full-wave transformer: Primary Plate Blue Second diade Violet B+Red Old standard4 is same as above, except: Secondary Grid return Black Grid or diode Green Second diode Green-Black Grid return White ¹ RETMA Standard REC-109-C. ² Old RMA Standard M4-505. ⁸ RETMA Standard REC-114. Old RMA Standard M4-506. #### **Printed circuits** A printed circuit consists of a conductive circuit pattern applied to one or both sides of an insulating base. Printed circuits have several advantages over conventional methods of assembly using chassis and wiring harnesses. Soldering is done in one operation instead of connection-by-connection. **Uniformity:** A more uniform product is produced because wiring errors are eliminated and because distributed capacitances are constant from one production unit to another. **Automation:** The printed-circuit method of construction lends itself to automatic assembly and testing machinery. Flexibility: The printed circuit consists of printed wiring but may also include printed components such as capacitors and inductors. Capacitors may be produced by printing conducting areas on opposite sides of the wiring board, using the board material as the dielectric. Spiral-type inductors may also be printed. Both types of components are illustrated in Fig. 24. Fig. 24—Formation of reactive elements by printed-circuit methods. #### Printed-circuit base materials Printed-circuit base materials are available in thicknesses varying from 1/64 to 1/2 inch. The important properties of the usual materials are tabulated in Fig. 25. For special applications, other laminates are available having base insulation of: - a. Glass-cloth Teflon (polytetrafluoroethylene). - **b.** Kel-F (polymonochlorotrifluoroethylene). - c. Silicone rubber (flexible). - d. Glass-mat-polyester-resin. The most widely used base material is NEMA-XXXP paper-base phenolic. ## Printed circuits continued Fig. 25-Properties of typical printed-circuit dielectric base materials. | material | punch-
ability | me-
chanical
strength | mois-
ture
resist-
ance | insula-
tion | arc
resist-
ance | abra-
sive
action
on
tools | maxi-
mum
temper-
ature
in deg C | |--|---------------------|-----------------------------|----------------------------------|-----------------|------------------------|--|--| | NEMA type-P
paper-base
phenolic | Good | Good | Poor | Fair | Poor | No | _ | | NEMA type-XXXP
paper-base
phenolic | Fair Good Good Good | | Fair | No | 125 | | | | NEMA type-G5
glass-cloth
melamine | Fair | Excellent | Poor* | Good | Good | Yes | 135 | | NEMA type-G6
glass-cloth
silicone | Fair | Good | ood Good Excellent Good | | Good | Yes | 200 | | NEMA type-G7
glass-cloth
silicone | Fair | Good | Poor* | Excellent | Good | Yes | 200 | | Glass-cloth
epoxy
resin | _ | | Excellent | Excellent | Good | Yes | 160 | ^{*} Along glass fibers. #### Conductor materials Conductor materials available are silver, brass, aluminum, and copper; copper is the most widely used. Laminates are available with copper foil on one or both sides and are furnished in the thicknesses of foil listed in Fig. 26. The current-carrying capacity in amperes for copper conductors 1/16-inch wide are also listed in Fig. 26. Fig. 26-Weight of foil and current-carrying capacity. | | 1 | current-carrying capacity in amperes | | | | | | | |------------------|------------------------------------|--------------------------------------|---------------|---------------|--|--|--|--| | inches thickness | weight in ounces/foot ² | for 10°C rise | for 20°C rise | for 40°C rise | | | | | | 0.0013 | 1 | 2 | 4 | 6 | | | | | | 0.0027 | 2 | 3.5 | 6 | 8 | | | | | #### Printed circuits continued #### Manufacturing processes The most widely used production methods are: Etching process, wherein the desired circuit is printed on the metal-clad laminate by photographic, silk-screen, photo-offset, or other means, using an ink or lacquer resistant to the etching bath. The board is then placed in an etching bath that removes all of the unprotected metal (ferric chloride is a commonly used mordant for copper-clad laminates). After the etching is completed, the ink or lacquer is removed to leave the conducting pattern exposed. Plating process, wherein the designed circuit pattern is printed on the unclad base material using an electrically conductive ink and, by electroplating, the conductor is built up to the desired thickness. This method lends itself to plating through punched holes in the board for the purpose of making connections from one side of the board to the other. Other processes, including metal spraying and die stamping. #### Circuit-board finishes Conductor protective finishes are required on the circuit pattern to improve shelf-storage life of the circuit boards and to facilitate soldering. Some of the most widely used finishes are: - **a.** Hot-solder coating (done by dip-soldering in a solder bath) is a low-cost method and gives good results where coating thickness is not critical. - **b.** Silver plating is used as a soldering aid but is subject to tarnishing and has a limited shelf life. - c. Hot-rolled or plated solder coat gives good solderability and uniform coating thickness. - **d.** Other finishes for special purposes are: Gold plate for corrosion resistance and solderability and electroplated rhodium over nickel for wear resistance. Nonmetallic finishes, such as acrylic sprays and epoxy and silicone-resin coatings, are sometimes applied to circuit boards to improve moisture resistance. On two-sided circuit boards, where the possibility of components shorting out the circuit patterns exists, a thin sheet of insulating material is sometimes laminated over the circuit before the parts are inserted. ## Printed circuits continued #### **Design considerations** Diameter of punched holes in circuit boards should not be less than 2/3 the thickness of the base material. Distance between punched holes or between holes and the edge of the material should not be less than the material thickness. **Punched-hole tolerance** should not be less than ± 0.005 inch on the diameters. **Hole sizes** should be approximately 0.010 inch larger than the diameter of the wire to be inserted in the hole. **Tolerances** on fractional dimensions under 12 inches should not be less than $\pm 1/64$ inch; over 12 inches, not less than $\pm 1/32$ inch. Copperconductor widths should not be less than 1/16 inch unless absolutely necessary. Conductor spacing should not be less than 1/16 inch unless absolutely necessary. In spacing conductors carrying high voltages, a good rule of thumb is to allow 5000 volts/inch for XXXP phenolic. ## Preparation of art work Workmanship: In preparing the master art work for printed circuits, careful workmanship and accuracy are important. When circuits are reproduced by photographic means, considerable retouching time is saved if care is taken with the original art work. Materials: Art work should be prepared on a dimensionally stable glasscloth tracing cloth using a good grade of permanent black ink. Where tolerances will permit, a less stable material such as good-quality tracing paper or high-grade bristol board may be used for the art work. Scale: Art work should be prepared to a scale that is two to five times oversize. Photographic reduction to final negative size should be possible, however, in one step. **Bends:** Avoid the use of sharp corners when laying out the circuit. See Fig. 27. Fig. 27—Proper design of bends for printed-circuit conductors. ## Printed circuits continued **Holes** to be
drilled or punched in the circuit board should have their centers indicated by a circle of 1/32-inch diameter (final size after reduction). See Fig. 28. Fig. 28-Indication for hole. Registration of reverse side: When drawing the second side of a printed circuit board, corresponding centers should be taken directly from the back of the drawing of the first side. Reference marks: In addition to the illustration of the circuit pattern, the trim line, registration marks, and two scale dimensions at right angles should be shown. Nomenclature, reference designations, operating instructions, and other information may also be added. #### Assembly All components should be inserted on one side of the board if practicable. In the case of boards with the circuit on one side only, the components should be inserted on the side opposite the circuit. This allows all connections to be soldered simultaneously by dip-soldering. **Dip-soldering** consists of applying a flux, usually a rosin—alcohol mixture, to the circuit pattern and then placing the board in contact with molten solder. Slight agitation of the board will insure good fillets around the wire leads. A five-second dip in a 60/40 tin—lead solder bath maintained at a temperature of 450 degrees fahrenheit will give satisfactory results. After solder-dipping, the residual flux should be removed by a suitable solvent. #### **■** Fundamentals of networks # Inductance of single-layer solenoids* The approximate value of the *low-frequency* inductance of a single-layer solenoid ist $L = Fn^2d$ microhenries where F =form factor, a function of the ratio d/l. Value of F may be read from t the accompanying chart, Fig. 1. n = number of turns d = diameter of coil (inches), between centers of conductors I = length of coil (inches) = n times the distance between centers of adjacent turns. The formula is based on the assumption of a uniform current sheet, but the correction due to the use of spaced round wires is usually negligible for practical purposes. For higher frequencies, skin effect alters the inductance slightly. This effect is not readily calculated, but is often negligibly small. However, it must be borne in mind that the formula gives approximately the true value of inductance. In contrast, the apparent value is affected by the shunting effect of the distributed capacitance of the coil. **Example:** Required a coil of 100 microhenries inductance, wound on a form 2 inches diameter by 2 inches winding length. Then d/l = 1.00, and F = 0.0173 in Fig. 1. $$n = \sqrt{\frac{L}{Fd}} = \sqrt{\frac{100}{0.0173 \times 2}} = 54 \text{ turns}$$ Reference to magnet-wire data, Fig. 2, will assist in choosing a desirable size of wire, allowing for a suitable spacing between turns according to the application of the coil. A slight correction may then be made for the increased diameter (diameter of form plus two times radius of wire), if this small correction seems justified. # Approximate formula For single-layer solenoids of the proportions normally used in radio work, the inductance is given to an accuracy of about 1 percent by $$L = n^2 \frac{r^2}{9r + 10I}$$ microhenries where r = d/2. ^{*} Calculation of copper losses in single-layer solenoids is treated in F. E. Terman, "Radio Engineers Handbook," 1st edition, McGraw-Hill Book Company, Inc., New York, N. Y.; 1943; pp. 77–80. [†] Formulas and chart (Fig. 1) derived from equations and tables in Bureau of Standards Circular No. C74. #### General remarks In the use of various charts, tables, and calculators for designing inductors, the following relationships are useful in extending the range of the devices. They apply to coils of any type or design. **a.** If all dimensions are held constant, inductance is proportional to n^2 . **b.** If the proportions of the coil remain unchanged, then for a given number of turns the inductance is proportional to the dimensions of the coil. A Fig. 2-Magnet-wire data. | | bare | enam | i | | ļ | ı | ı | 1 | l be | 210 | enan | neled | |---------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | AWG
B&S
gauge | nom
diam
in
inches | nom
diam
in
inches | SCC*
diam
in
inches | DCC*
diam
in
inches | SCE*
diam
in
inches | SSC*
diam
in
inches | DSC*
diam
in
inches | SSE*
diam
in
inches | min
diam
inches | max
diam
inches | min
diam
inches | diam*
in
inches | | 10
11
12 | .1019
.0907
.0808 | .1039
.0927
.0827 | .1079
.0957
.0858 | .1129
.1002
.0903 | .1104
.0982
.0882 | = | = | = | .1009
.0898
.0800 | .1029
.0917
.0816 | .1024
.0913
.0814 | .1044
.0932
.0832 | | 13
14
15 | .0720
.0641
.0571 | .0738
.0659
.0588 | .0770
.0691
.0621 | .0815
.0736
.0666 | .0793
.0714
.0643 | .0591 | .0611 | .0613 | .0712
.0634
.0565 | .0727
.0647
.0576 | .0726
.0648
.0578 | .0743
.0664
.0593 | | 16 | .0508 | .0524 | .0558 | .0603 | .0579 | .0528 | .0548 | .0549 | .0503 | .0513 | .0515 | .0529 | | 17 | .0453 | .0469 | .0503 | .0548 | .0523 | .0473 | .0493 | .0493 | .0448 | .0457 | .0460 | .0473 | | 18 | .0403 | .0418 | .0453 | .0498 | .0472 | .0423 | .0443 | .0442 | .0399 | .0407 | .0410 | .0422 | | 19 | .0359 | .0374 | .0409 | .0454 | .0428 | .0379 | .0399 | .0398 | .0355 | .0363 | .0366 | .0378 | | 20 | .0320 | .0334 | .0370 | .0415 | .0388 | .0340 | .0360 | .0358 | .0316 | .0323 | .0326 | .0338 | | 21 | .0285 | .0299 | .0335 | .0380 | .0353 | .0305 | .0325 | .0323 | .0282 | .0287 | .0292 | .0303 | | 22 | .0253 | .0266 | .0303 | .0343 | .0320 | .0273 | .0293 | .0290 | .0251 | .0256 | .0261 | .0270 | | 23 | .0226 | .0238 | .0276 | .0316 | .0292 | .0246 | .0266 | .0262 | .0223 | .0228 | .0232 | .0242 | | 24 | .0201 | .0213 | .0251 | .0291 | .0266 | .0221 | .0241 | .0236 | .0199 | .0203 | .0208 | .0216 | | 25 | .0179 | .0190 | .0224 | .0264 | .0238 | .0199 | .0219 | .0213 | .0177 | .0181 | .0186 | .0193 | | 26 | .0159 | .0169 | .0204 | .0244 | .0217 | .0179 | .0199 | .0192 | .0158 | .0161 | .0166 | .0172 | | 27 | .0142 | .0152 | .0187 | .0227 | .0200 | .0162 | .0182 | .0175 | .0141 | .0144 | .0149 | .0155 | | 28 | .0126 | .0135 | .0171 | .0211 | .0183 | .0146 | .0166 | .0158 | .0125 | .0128 | .0132 | .0138 | | 29 | .0113 | .0122 | .0158 | .0198 | .0170 | .0133 | .0153 | .0145 | .0112 | .0114 | .0119 | .0125 | | 30 | .0100 | .0108 | .0145 | .0185 | .0156 | .0120 | .0140 | .0131 | .0099 | .0101 | .0105 | .0111 | | 31 | .0089 | .0097 | .0134 | .0174 | .0144 | .0109 | .0129 | .0119 | .0088 | .0090 | .0094 | .0099 | | 32 | .0080 | .0088 | .0125 | .0165 | .0135 | .0100 | .0120 | .0110 | .0079 | .0081 | .0085 | .0090 | | 33 | .0071 | .0078 | .0116 | .0156 | .0125 | .0091 | .0111 | .0100 | .0070 | .0072 | .0075 | .0080 | | 34 | .0063 | .0069 | .0108 | .0148 | .0116 | .0083 | .0103 | .0091 | .0062 | .0064 | .0067 | .0071 | | 35 | .0056 | .0061 | .0101 | .0141 | .0108 | .0076 | .0096 | .0083 | .0055 | .0057 | .0059 | .0063 | | 36 | .0050 | .0055 | .0090 | .0130 | .0097 | .0070 | .0090 | .0077 | .0049 | .0051 | .0053 | .0057 | | 37 | .0045 | .0049 | .0085 | .0125 | .0091 | .0065 | .0085 | .0071 | .0044 | .0046 | .0047 | .0051 | | 38 | .0040 | .0044 | .0080 | .0120 | .0086 | .0060 | .0080 | .0066 | .0039 | .0041 | .0042 | .0046 | | 39 | .0035 | .0038 | .0075 | .0115 | .0080 | .0055 | .0075 | .0060 | .0034 | .0036 | .0036 | .0040 | | 40
41
42 | .0031
.0028
.0025 | .0034
.0031
.0028 | .0071 | .0111 | .0076 | .0051 | .0071 | .0056 | .0030
.0027
.0024 | .0032
.0029
.0026 | .0032
.0029
.0026 | .0036
.0032
.0029 | | 43
44 | .0022
.0020 | .0025
.0023 | = | = | = | $\equiv 1$ | ΞΙ | Ξ | .0021 | .0023
.0021 | .0023
.0021 | .0026
.0024 | ^{*} Nominal bare diameter plus maximum additions. For additional data on copper wire, see pp. 50-57 and p. 278. coil with all dimensions m times those of a given coil (having the same number of turns) has m times the inductance of the given coil. That is, inductance has the dimensions of *length*. ## Decrease of solenoid inductance by shielding* When a solenoid is enclosed in a cylindrical shield, the inductance is re- * RCA Application Note No. 48; June 12, 1935. Fig. 3—Curves for determination of inductance decrease when a solenoid is shielded. duced by a factor given in the accompanying chart, Fig. 3. This effect has been evaluated by considering the shield to be a short-circuited single-turn secondary. The curves in Fig. 3 are reasonably accurate provided the clearance between each end of the coil winding and the corresponding end of the shield is at least equal to the radius of the coil. For square shield cans, take the equivalent shield diameter (for Fig. 3) as being 1.2 times the width of one side of the square. **Example:** Let the coil winding length be 1.5 inches and its diameter 0.75 inch, while the shield diameter is 1.25 inches. What is the reduction of inductance due to the shield? The proportions are (winding length) / (winding diameter) = 2.0 (winding diameter) / (shield diameter) = 0.6 Referring to Fig. 3, the actual inductance in the shield is 72 percent of the inductance of the coil in free space. #### Reactance charts Figs. 4, 5, and 6 give the relationships of capacitance, inductance, reactance, and frequency. Any one value may be determined in terms of two others by use of a straight edge laid across the correct chart for the frequency under consideration. **Example:** Given a capacitance of $0.001~\mu f$, find the reactance at 50 kilocycles and inductance required to resonate. Place a straight edge through
these values and read the intersections on the other scales, giving 3180 ohms and 10.1 millihenries. See Fig. 5. ## Reactance charts continued Fig. 4—Chart covering 1 cycle to 1000 cycles. # Reactance charts continued Fig. 5—Chart covering 1 kilocycle to 1000 kilocycles. # Reactance charts continued Fig. 6—Chart covering 1 megacycle to 1000 megacycles. # Impedance formulas ## Parallel and series circuits and their equivalent relationships Parallel circuit Conductance $$G = \frac{1}{R_n}$$ Susceptance $$B = -\frac{1}{X_p}$$ $$= \omega C_p - \frac{1}{\omega L_p}$$ $$\omega = 2\pi f$$ Reactance $$X_p = \frac{\omega L_p}{1 - \omega^2 L_p C_p}$$ Admittance $$Y = \frac{I}{E} = \frac{1}{Z} = G + jB$$ $$= \sqrt{G^2 + B^2} \angle - \phi = |Y| \angle - \phi$$ Impedance $$Z = \frac{E}{I} = \frac{1}{Y}$$ $$= \frac{R_p X_p}{R_p^2 + X_p^2} (X_p + jR_p)$$ $$= \frac{R_p X_p}{\sqrt{R_n^2 + X_n^2}} \angle \phi = |Z| \angle \phi$$ Phase angle $$-\phi = \tan^{-1} \frac{B}{G}$$ $$= \cos^{-1}\frac{G}{|Y|} = -\tan^{-1}\frac{R_p}{X_n}$$ ## Impedance formulas continued #### Series circuit Resistance = R_* Reactance $$X_* = \omega L_* - \frac{1}{\omega C_*}$$ mpedance $$Z = \frac{E}{I} = R_s + jX_s = \sqrt{R_s^2 + X_s^2} \angle \phi = |Z| \angle \phi$$ Phase angle $$\phi = \tan^{-1} \frac{X_s}{R_s} = \cos^{-1} \frac{R_s}{|Z|}$$ #### For both circuits Vectors E and I, phase angle ϕ , and Z, Y are identical for the parallel circuit and its equivalent series circuit $$Q = |\tan \phi| = \frac{|X_{\bullet}|}{R_{\bullet}} = \frac{R_{p}}{|X_{p}|} = \frac{|B|}{G}$$ $$(pf) = \cos \phi = \frac{R_{\bullet}}{|Z|} = \frac{|Z|}{R_{p}} = \frac{G}{|Y|} = \sqrt{\frac{R_{\bullet}}{R_{p}}} = \frac{1}{\sqrt{Q^{2} + 1}} = \frac{(kw)}{(kva)}$$ $$Z^{2} = R_{\bullet}^{2} + X_{\bullet}^{2} = \frac{R_{p}^{2} X_{p}^{2}}{R_{p}^{2} + X_{p}^{2}} = R_{\bullet} R_{p} = X_{\bullet} X_{p}$$ $$Y^{2} = G^{2} + B^{2} = \frac{1}{R_{p}^{2}} + \frac{1}{X_{p}^{2}} = \frac{G}{R_{\bullet}}$$ $$R_{\bullet} = \frac{Z^{2}}{R_{p}} = \frac{G}{Y^{2}} = R_{p} \frac{X_{p}^{2}}{R_{p}^{2} + X_{p}^{2}} = R_{p} \frac{1}{Q^{2} + 1}$$ $X_e = \frac{Z^2}{X_-} = -\frac{B}{Y^2} = X_p \frac{R_p^2}{R_n^2 + X_n^2} = X_p \frac{1}{1 + 1/Q^2}$ # Impedance formulas $$R_p = \frac{1}{G} = \frac{Z^2}{R_s} = \frac{R_s^2 + X_s^2}{R_s} = R_s (Q^2 + 1)$$ $$X_{p} = -\frac{1}{B} = \frac{Z^{2}}{X_{s}} = \frac{R_{s}^{2} + X_{s}^{2}}{X_{s}} = X_{s} \left(1 + \frac{1}{Q^{2}}\right) = \frac{R_{s}R_{p}}{X_{s}} = \pm R_{p} \sqrt{\frac{R_{s}}{R_{p} - R_{s}}}$$ ## Approximate formulas Reactor $$R_s = \frac{X^2}{R_p}$$ and $X = X_s = X_p$ (See Note 1, p. 123) Resistor $$R = R_s = R_p$$ and $X_s = \frac{R^2}{X_p}$ (See Note 2, p. 123) ## Simplified parallel and series circuits $$X_p = \omega L_p$$ $B = -\frac{1}{\omega L_p}$ $X_s = \omega L_s$ $$\tan \, \phi = \frac{\omega L_s}{R_s} = \frac{R_p}{\omega L_p}$$ $$Q = \frac{\omega L_s}{R_s} = \frac{R_p}{\omega L_p}$$ $$(pf) = \frac{R_e}{\sqrt{R_e^2 + \omega^2 L_e^2}}$$ $$= \frac{\omega L_p}{\sqrt{R_e^2 + \omega^2 L_e^2}}$$ $$R_s = R_p \frac{1}{\Omega^2 + 1}$$ $$L_{a} = L_{p} \frac{1}{1 + 1/Q^{2}} \qquad L_{p} = L_{a} \left(1 + \frac{1}{Q^{2}} \right) \qquad Y = \frac{1}{R_{c}} \frac{1 - jQ}{1 + Q^{2}}$$ $$L_p = L_s \left(1 + \frac{1}{Q^2} \right)$$ $$R_p = R_s (Q^2 + 1)$$ $Z = R_p \frac{1 + jQ}{1 + Q^2}$ $$Y = \frac{1}{R_1} \frac{1 - jG}{1 + G^2}$$ # Impedance formulas contin $$X_p = \frac{-1}{\omega C_p}$$ $B = \omega C_p$ $X_s = \frac{-1}{\omega C_s}$ $$\tan \phi = \frac{-1}{\omega C_p R_p} = -\omega C_p R_p$$ $$Q = \frac{1}{\omega C_{p}R_{p}} = \omega C_{p}R_{p}$$ (pf) = $$\frac{\omega C_{\bullet}R_{\bullet}}{\sqrt{1 + \omega^2 C_{\bullet}^2 R_{\bullet}^2}} = \frac{1}{\sqrt{1 + \omega^2 C_{\bullet}^2 R_{\bullet}^2}}$$ $$(pf) \approx \frac{1}{Q}$$ (See Note 3) $$R_{\bullet} = R_{p} \frac{1}{Q^{2} + 1}$$ $R_{p} = R_{\bullet} (Q^{2} + 1)$ $$C_{\mathfrak{s}} = C_{\mathfrak{p}} \left(1 + \frac{1}{Q^2} \right) \qquad C_{\mathfrak{p}} = C_{\mathfrak{s}} \, \frac{1}{1 + 1/Q^2}$$ $$Z = R_p \frac{1 - jQ}{1 + Q^2}$$ $Y = \frac{1}{R_0} \frac{1 + jQ}{1 + Q^2}$ # Approximate formulas Inductor $R_s = \omega^2 L^2/R_p$ and $L = L_p = L_s$ (See Note 1) Resistor $R = R_{\rm e} = R_{\rm p}$ and $L_{\rm p} = R^2/\omega^2 L_{\rm e}$ (See Note 2) Capacitor $R_s = 1/\omega^2 C^2 R_p$ and $C = C_p = C_s$ (See Note 1) Resistor $R = R_s = R_p$ and $C_s = 1/\omega^2 C_p R^2$ (See Note 2) Note 1: (Small resistive component) Error in percent $=-100/Q^2$ (for Q = 10, error = 1 percent low) Note 2: (Small reactive component) Error in percent $= -100 Q^2$ (for Q = 0.1, error = 1 percent low) Note 3: Error in percent $= + 50/Q^2$ approximately (for Q = 7, error = 1 percent high) Impedance $\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}$ ohms phase angle $\phi = an^{-1} rac{ extbf{X}}{ extbf{R}}$ admittance $Y = \frac{1}{Z}$ mhos | | admittance Y | L 18 | $-1\frac{1}{\omega l}$ |)wC | $-\int_{\omega}^{1} \frac{1}{(l_1+l_2\pm 2M)}$ | C ₁ C ₂
V ₁ + C ₃ | $\frac{R-f\omega L}{R^2+\omega^2 L^2}$ | $\frac{R+J\frac{1}{\omega C}}{R^2+\frac{1}{\omega^2C^2}}$ | $\frac{\omega C}{1-\omega^2 lC}$ | $\frac{R-J\left(\omega l-\frac{1}{\omega C}\right)}{R^2+\left(\omega l'-\frac{1}{\omega C}\right)^2}$ | |---|--------------------|------|------------------------|------------------|--|--|--|--|---|---| | admittance $Y = \frac{1}{Z}$ mhos | phase angle ϕ | 0 | + 2 | - 1 2 | +
#164 | 7 214 | $ an^{-1} rac{\omega l}{R}$ | $-\tan^{-1}\frac{1}{\omega CR}$ | # T | $\log^{-1}\left(\frac{\omega l-\frac{1}{\omega C}}{R}\right)$ | | | magnitude Z | Οx | lω | - 2 | ω(L ₁ + L ₂ ± 2M) | $\frac{1}{\varepsilon}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)$ | $[R^2 + \omega^2 L^2]^{\frac{1}{2}}$ | $\frac{1}{\omega^{C}}[1+\omega^{2}C^{2}R^{2}]^{\frac{1}{2}}$ | $\left(\omega l - \frac{1}{\omega C}\right)$ | $\left[R^2 + \left(\omega l - \frac{1}{\omega C}\right)^2\right]^{\frac{1}{2}}$ | | magnifude $ \mathbf{Z} = [\mathbf{R}^2 + \mathbf{X}^2]^{\frac{1}{2}}$ ohms | Impedance Z | œ | kol | 1 / 1 / n | Jω (L ₁ + L ₂ ± 2M) | $-i\frac{1}{\omega}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)$ | R + Jul | R - J - J - J - J - J - J - J - J - J - | $\int_{C} \left(\omega l - \frac{1}{\omega C} \right) l$ | $R + J \left(\omega l - \frac{1}{\omega C} \right)$ | | E | diagram | , a | o r |) | L. M. M. C. | 0,1 | gww-wr ^c | 0 BWW-160 | 0 | ofww/mm/(6 | | $\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ | $- j \frac{1}{\omega} \left[\frac{L_1 + L_2 \mp 2M}{L_1 L_2 - M^2} \right]$ | jw (C ₁ + C ₂) | $\frac{1}{R} - f \frac{1}{\omega L}$ | $\frac{1}{\tilde{R}} + j\omega C$ | $J\left(\omega C-\frac{1}{\omega L}\right)$ | $\frac{1}{R} + i \left(\omega C - \frac{1}{\omega L} \right)$ | $R_1(R_1 + R_2) + \omega^2 L^2 - j\omega_1 R_2$ $R_2(R_1^2 + \omega^2 L^2)$ | |--|--|---|---|--|---|---|--| | 0 | #10
+ | - 1
2 | $\tan^{-1} \frac{R}{\omega L}$ | — tan ^{–1} ωCR | `⊭1 0 | $\tan^{-1} R\left(\frac{1}{\omega L} - \omega C\right)$ | $tan^{-1} rac{\omega L R_2}{R_1 \; (R_1 + R_2) \; + \; \omega^2 L^2}$ | | $\frac{R_1R_2}{R_1+R_2}$ | $\omega \left[\frac{l_1 l_2 - M^2}{l_1 + l_2 \mp 2M} \right]$ | $\frac{1}{\omega \left(C_{1}+C_{2}\right) }$ | $\frac{\omega!R}{[R^2+\omega^2L^2]^{\frac{1}{2}}}$ | $\frac{R}{[1+\omega^2C^2R^2]^{\frac{1}{2}}}$ | $\frac{\omega l}{1-\omega^2 lC}$ | $\left[\left(\frac{1}{R} \right)^{\frac{1}{2}} + \left(\omega C - \frac{1}{\omega L} \right)^{\frac{1}{2}} \right]^{\frac{1}{2}}$ | $R_{2} \left[\frac{R_{1}^{2} + \omega_{2} L^{2}}{(R_{1} + R_{2})^{2} + \omega^{2} L^{2}} \right]^{\frac{1}{2}}$ | | $\frac{R_1R_3}{R_1+R_2}$ | $\int_{\omega} \left[rac{t_1}{t_1} rac{t_2}{t_1} - M^2 ight]$ | $-j\frac{1}{\omega \left(C_1+C_2 ight)}$ | ω LR $\left[\frac{\omega l + jR}{R^2 + \omega^2 l^2}\right]$ | $\frac{R(1-j\omega CR)}{1+\omega^2C^2R^2}$ | $\frac{\omega L}{1 - \omega^2 LC}$ | $\frac{\frac{1}{R} - j\left(\omega C - \frac{1}{\omega L}\right)}{\left(\frac{1}{R}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}$ | $R_2 \frac{R_1 (R_1 + R_2) + \omega^2 L^2 + j \omega_1 R_2}{(R_1 + R_2)^2 + \omega^2 L^2}$ | | مَا يُحْدُ | | | o R | S C C C C C C C C C C C C C C C C C C C | | | R. P. | magnitude $|\mathbf{Z}| = [\mathbf{R}^2 + \mathbf{X}^2]^{\frac{1}{2}}$ ohms Impedance $\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}$ ohms phase angle $\phi=\tan^{-1}\frac{X}{R}$ admittance $Y = \frac{1}{Z}$ mhos | Z esi | Z ep | ngle ϕ ρ | R - $J\omega[L(1-\omega^2LC)-CR^2]$ ree Y $R^2+\omega^2L^2$ | | | ngle ϕ for $\frac{R_2^2 + X_2(X_1 + X_2)}{X_1R_2}$ | $R_2X_3 - J(R_2^2 + X_2^2 + X_1X_2)$ | | |-------------|--------------|---|---|-------------|--------------|---|--------------------------------------|--| | Impedance Z | magnitude Z | phase angle ϕ | admittance Y | impedance Z | magnitude Z | phase angle ϕ |
admittance Y | | | oped w | R magnitu | 1 | admitta | spedui | , x magnitu | ر ک <mark>ہ</mark>
* | ottimbo | | | $\frac{R_1R_2(R_1+R_2)+\omega^2 L^2R_2+\frac{R_1}{\omega^2C^2}}{(R_1+R_2)^2+\left(\omega L-\frac{1}{\omega C}\right)^2} \frac{Note: \ \text{When } R_1=R_2=\sqrt{L/C}, \\ \frac{R_1R_2(R_1+R_2)}{\omega C} + \frac{1}{I} \frac{\omega LR_2^2-\frac{R_1^2}{\omega C}-\frac{L}{C}\left(\omega L-\frac{1}{\omega C}\right)}{(R_1+R_2)^2+\left(\omega L-\frac{1}{\omega C}\right)^2} \frac{1}{\text{sistance at any frequency where }} $ sistance at any frequency where the size $\frac{1}{I} + \frac{1}{I} \frac{1}{$ | $\left[\frac{(R_1^2+\omega^3L^2)\left(R_2^2+\frac{1}{\omega^3C^2}\right)}{(R_1+R_2)^2+\left(\omega L-\frac{1}{\omega C}\right)^2}\right]^{\frac{1}{2}}$ | $\tan^{-1} \left[\frac{\omega L R_2^2 - \frac{R_1^2}{\omega C} - \frac{L}{C} \left(\omega l - \frac{1}{\omega C} \right)}{R_1 R_2 (R_1 + R_2) + \omega^2 l^2 R_2 + \frac{R_1}{\omega^2 C^2}} \right]$ | $\frac{R_1 + \omega^2 C^2 R_1 R_2 (R_1 + R_2) + \omega^4 L^2 C^2 R_2}{(R_1^2 + \omega^2 L^2) (1 + \omega^2 C^2 R_2^2)} + \rho_0 \left[\frac{C R_1^2 - L + \omega^2 L C (L - C R_2^2)}{(R_1^2 + \omega^2 L^2) (1 + \omega^2 C^2 R_2^2)} \right]$ | $\frac{(R_1R_2 - X_1X_2) + J(R_1X_2 + R_2X_1)}{(R_1 + R_2) + J(X_1 + X_2)}$ | $\left[\frac{(R_1^2 + X_1^3)(R_2^2 + X_2^3)}{(R_1 + R_2)^2 + (X_1 + X_2)^2}\right]^{\frac{1}{2}}$ | $\tan^{-1}\frac{X_1}{R_1} + \tan^{-1}\frac{X_2}{R_2} - \tan^{-1}\frac{X_1 + X_2}{R_1 + R_2}$ | $\frac{1}{R_1 + JX_1} + \frac{1}{R_2 + JX_2}$ | |---|---|---|--|---|---|--|---| | Impedance Z | magnitude [Z | phase angle ϕ | admittance Y | impedance Z | magnitude Z | phase angle ϕ | admittance Y | | | | | * Week | , | | | | ## Skin effect ## **Symbols** A = correction coefficient D = diameter of conductor in inches f = frequency in cycles/second R_{ac} = resistance at frequency f $R_{dc} = \text{direct-current resistance}$ R_{sq} = resistance per square T = thickness of tubular conductor in inches T_1 = depth of penetration of current $\delta = skin depth$ λ = free-space wavelength in meters μ_r = relative permeability of conductor material (μ_r = 1 for copper and other nonmagnetic materials) ρ = resistivity of conductor material at any temperature $ho_c=$ resistivity of copper at 20 degrees centigrade = 1.724 microhm-centimeter ## Skin depth The skin depth is that distance below the surface of a conductor where the current density has diminished to 1/e of its value at the surface. The thickness of the conductor is assumed to be several (perhaps at least three) times the skin depth. Imagine the conductor replaced by a cylindrical shell of the same surface shape but of thickness equal to the skin depth; with uniform current density equal to that which exists at the surface of the actual conductor. Then the total current in the shell and its resistance are equal to the corresponding values in the actual conductor. The skin depth and the resistance per square (of any size), in meter-kilogram-second (rationalized) units, are $$\delta = (\lambda/\pi\sigma\mu c)^{\frac{1}{2}}$$ meter $$R_{sq} = 1/\delta\sigma$$ ohm where $$c = velocity of light in vacuo = 2.998 \times 10^8 meters/second$$ $$\mu = 4\pi \times 10^{-7} \, \mu_{\tau} \, \text{henry/meter}$$ $$1/\sigma = 1.724 \times 10^{-8} \rho/\rho_c$$ ohm-meter ## Skin effect continued For numerical computations: $$\delta = (3.82 \times 10^{-4} \ \lambda^{1/2}) \ k_1 = (6.61/f^{1/2}) k_1$$ centimeter $\delta = (1.50 \times 10^{-4} \ \lambda^{1/2}) \ k_1 = (2.60/f^{1/2}) k_1$ inch $\delta_m = (2.60/f_{mc}^{1/2}) \ k_1$ mils $$R_{eq} = (4.52 \times 10^{-3}/\lambda^{1/2}) \ k_2 = (2.61 \times 10^{-7} \ f^{1/2}) \ k_2 \text{ ohm}$$ where $$k_1 = [(1/\mu_r) \ \rho/\rho_c]^{\frac{1}{2}}$$ $k_2 = (\mu_r \rho/\rho_c)^{\frac{1}{2}}$ $k_1, k_2 = \text{unity for copper}$ **Example:** What is the resistance/foot of a cylindrical copper conductor of diameter *D* inches? $$R = \frac{12}{\pi D} R_{sq} = \frac{12}{\pi D} \times 2.61 \times 10^{-7} \text{ (f)}^{\frac{1}{2}}$$ $$= 0.996 \times 10^{-6} \text{ (f)}^{\frac{1}{2}}/D \text{ ohm/foot}$$ If $$D = 1.00 \text{ inch}$$ $$f = 100 \times 10^{6} \text{ cycles/second,}$$ $$R = 0.996 \times 10^{-6} \times 10^{4} \approx 1 \times 10^{-2} \text{ ohm/foot.}$$ #### General considerations Fig. 7 shows the relationship of R_{ac}/R_{dc} versus $D\sqrt{f}$ for copper, or versus $D\sqrt{f}\sqrt{\mu_r\rho_c/\rho}$ for any conductor material, for an isolated straight solid conductor of circular cross section. Negligible error in the formulas for R_{ac} results when the conductor is spaced at least 10D from adjacent conductors. When the spacing between axes of parallel conductors carrying the same current is 4D, the resistance R_{ac} is increased about 3 percent, when the depth of penetration is small. The formulas are accurate for concentric lines due to their circular symmetry. For values of $D\sqrt{f} \sqrt{\mu_r \rho_c/\rho}$ greater than 40, $$\frac{R_{ac}}{R_{dc}} = 0.0960 \ D\sqrt{f} \ \sqrt{\mu_r \rho_c/\rho} + 0.26$$ (1) ## Skin effect continued Fig. 7—Resistance ratio for isolated straight solid conductors of circular cross section. #### Skin effect continued The high-frequency resistance of an isolated straight conductor: either solid or tubular for T < D/8 or $T_1 < D/8$; is given in equation (2). If the current flow is along the inside surface of a tubular conductor, D is the inside diameter. $$R_{ac} = A \frac{\sqrt{f}}{D} \sqrt{\mu_r \frac{\rho}{\rho_c}} \times 10^{-6} \text{ ohm/foot}$$ (2) The values of the correction coefficient A for solid conductors and for tubular conductors are shown in Fig. 8. Fig. 8—Skin-effect correction coefficient A for solid and tubular conductors. | solid conductors | | tubular conductors | | | |--|--------------------------|---|-----------|-----------------| | $\mathbf{D} \sqrt{\hat{f}} \sqrt{\mu_r \frac{\rho_c}{\rho}}$ | A | $T\sqrt{f}\sqrt{\mu_r \frac{\rho_c}{\rho}}$ | A | R_{ac}/R_{dc} | | > 370 | 1.000
1.005 | = B where $B > 3.5$ | 1.00 | 0.384 B | | 160 | 1.010 | 3.5 | 1.00 |
1.35 | | | | 3.15 | 1.01 | 1.23 | | 98 | 1.02 | 2.85 | 1.05 | 1.15 | | 48 | 1.05 | | | | | 26 | 1.10 | 2.60 | 1.10 | 1.10 | | | | 2.29 | 1.20 | 1.06 | | 13 | 1.20 | 2.08 | 1.30 | 1.04 | | 9.6 | 1.30 | | | | | 5.3 | 2.00 | 1.77 | 1.50 | 1.02 | | < 3.0 | $R_{ae} \approx R_{de}$ | 1.31 | 2.00 | 1.00 | | $R_{de} = \frac{10.37}{D^2} \frac{\rho}{\rho_e} \times 1$ | 0 ⁻⁶ ohm/foot | = 8 where $ 8 < 1.3$ | 2.60
B | 1.00 | The value of $T\sqrt{f}\sqrt{\mu_r\rho_e/\rho}$ that just makes A=1 indicates the penetration of the currents below the surface of the conductor. Thus, approximately, $$T_1 = \frac{3.5}{\sqrt{f}} \sqrt{\frac{\rho}{\mu_T \rho_c}} \text{ inches.}$$ (3) When $T_1 < D/8$ the value of R_{ac} as given by equation (2) (but not the value of R_{ac}/R_{dc} in Fig. 8, "tubular conductors") is correct for any value $T \geqslant T_1$. Under the limitation that the radius of curvature of all parts of the cross section is appreciably greater than T_1 , equations (2) and (3) hold for isolated # Skin effect continued straight conductors of any shape. In this case the term $D = \text{(perimeter of cross section)}/\pi$. #### Examples - **a.** At 100 megacycles, a copper conductor has a depth of penetration $T_1 = 0.00035$ inch. - **b.** A steel shield with 0.005-inch copper plate, which is practically equivalent in R_{ac} to an isolated copper conductor 0.005-inch thick, has a value of A=1.23 at 200 kilocycles. This 23-percent increase in resistance over that of a thick copper sheet is satisfactorily low as regards its effect on the losses of the components within the shield. By comparison, a thick aluminum sheet has a resistance $\sqrt{\rho/\rho_c}=1.28$ times that of copper. ### Network theorems #### Reciprocity theorem If an emf of any character whatsoever located at one point in a linear network produces a current at any other point in the network, the same emf acting at the second point will produce the same current at the first point. Corollary: If a given current flowing at one point of a linear network produces a certain open-circuit voltage at a second point of the network, the same current flowing at the second point will produce a like open-circuit voltage at the first point. #### Thévenin's theorem If an impedance Z is connected between two points of a linear network, the resulting steady-state current I through this impedance is the ratio of the potential difference V between the two points prior to the connection of Z, and the sum of the values of (1) the connected impedance Z, and (2) the impedance Z_1 of the network measured between the two points, when all generators in the network are replaced by their internal impedances: $$I = \frac{V}{Z + Z_1}$$ Corollary: When the admittance of a linear network is Y_{12} measured be- #### Network theorems continued tween two points with all generators in the network replaced by their internal impedances, and the current which would flow between the points if they were short-circuited is I_{ec} , the voltage between the points is $V_{12} = I_{ec}/Y_{12}$. #### Principle of superposition The current that flows at any point in a network composed of constant resistances, inductances, and capacitances, or the potential difference that exists between any two points in such a network, due to the simultaneous action of a number of emf's distributed in any manner throughout the network, is the sum of the component currents at the first point, or the potential differences between the two points, that would be caused by the individual emf's acting alone. (Applicable to emf's of any character.) In the application of this theorem, it is to be noted that for any impedance element Z through which flows a current I, there may be substituted a virtual source of voltage of value -ZI. ## Formulas for simple R, L, and C networks* Self-inductance of circular ring of round wire at radio frequencies, for nonmagnetic materials $$L = \frac{a}{100} \left[7.353 \log_{10} \frac{16a}{d} - 6.386 \right]$$ microhenries where a = mean radius of ring in inches d = diameter of wire in inches $$\frac{a}{d} > 2.5$$ ## 2. Capacitance a. For parallel-plate capacitor $$C = 0.0885\epsilon_r \frac{(N-1) A}{t} = 0.225 \epsilon_r \frac{(N-1) A''}{t''} \text{ micromicrofarads}$$ ^{*} Many formulas for computing capacitance, inductance, and mutual inductance will be found. In Bureau of Standards Circular No. C74, obtainable from the Superintendent of Documents, Government Printing Office, Washington 25, D.C. where A = area of one side of one plate in square centimeters A'' = area in square inches N = number of plates t = thickness of dielectric in centimeters t'' = thickness in inches ϵ_r = dielectric constant relative to air This formula neglects "fringing" at the edges of the plates. ## b. For coaxial cylindrical capacitor. Per unit axial length, $$C = \frac{2\pi\epsilon_r\epsilon_v}{\log_e (b/a)}$$ $$= \frac{5 \times 10^6 \epsilon_r}{c^2 \log_e (b/a)} \text{ farad/meter}$$ where c = velocity of light in vacuo, meters per second (see pp. 34-35) ϵ_r = dielectric constant relative to air $\epsilon_v = \text{permittivity of free space in farad/meter (see p. 35)}$ $$C = \frac{0.2416 \ \epsilon_r}{\log_{10} \ (b/a)} \ \text{micromicrofarad/centimeter}$$ $$= \frac{0.614 \ \epsilon_r}{\log_{10} \ (b/a)} \ \text{micromicrofarad/inch}$$ $$=\frac{7.36~\epsilon_{r}}{\log_{10}~(b/a)}~\text{micromicrofarad/foot}$$ When 1.0 < (b/a) < 1.4, then with accuracy of one percent or better, $$C = 8.50 \epsilon_r \frac{(b/a) + 1}{(b/a) - 1}$$ micromicrofarad/foot #### 3. Reactance of an inductor $X = 2\pi f L$ ohms #### where $$f = frequency in cycles/second$$ $$L = inductance in henries$$ or f in kilocycles and L in millihenries; or f in megacycles and L in microhenries; $$X = 1000 \text{ ohms}$$ $$X = 377.0 \text{ ohms}$$ ## 4. Reactance of a capacitor $$X = -\frac{1}{2\pi fC}$$ ohms #### where $$f = frequency in cycles/second$$ This may be written $$X = -\frac{159.2}{fC}$$ ohms #### where $$f = frequency in kilocycles/second$$ or $$f$$ in megacycles and C in millimicrofarads (0.001 μ f). $$X = -1000 \text{ ohms}$$ $$X = -2653$$ ohms # 5. Resonant frequency of a series-tuned circuit $$f = \frac{1}{2\pi\sqrt{LC}}$$ cycles/second #### where $$L = inductance in henries$$ This may be written $LC = \frac{25,330}{f^2}$ f = frequency in kilocycles L = inductance in millihenries $C = \text{capacitance in millimicrofarads (0.001 <math>\mu$ f)} or f in megacycles, L in microhenries, and C in micromicrofarads; or f in cycles, L in henries, and C in microfarads. At 60 cycles LC = 7.036 henries X microfarads ## 6. Dynamic resistance of a parallel-tuned circuit at resonance $$r = \frac{X^2}{R} = \frac{L}{CR} \text{ ohms}$$ where $$X = \omega L = 1/\omega C$$ $$R = r_1 + r_2$$ = resistance in ohms L = inductance in henries C = capacitance in farads The formula is accurate for engineering purposes provided X/R > 10. # 7. Parallel impedances If Z_1 and Z_2 are the two impedances that are connected in parallel, then the resultant impedance is $$Z=\frac{Z_1Z_2}{Z_1+Z_2}$$ Refer also to page 127. Given one impedance Z_1 and the desired resultant impedance Z, the other impedance is $$Z_2 = \frac{ZZ_1}{Z_1 - Z}$$ ## 8. Input impedance of a 4-terminal network* $$Z_{11} = R_{11} + jX_{11}$$ is the impedance of the first circuit, measured at terminals 1-1 with terminals 2-2 open-circuited. $$Z_{22} = R_{22} + jX_{22}$$ is the impedance of the second circuit, measured at terminals 2-2 with load Z_2 removed and terminals 1-1 open-circuited. $$Z_{12} = R_{12} + jX_{12}$$ is the transfer impedance between the two pairs of terminals, i.e., the open-circuit voltage appearing at either pair when unit current flows at the other pair. into terminals $z = z_1$ in z_2 z_3 z_4 z_4 z_5 z_5 z_6 z_6 z_7 z_8 Then the impedance looking into terminals 1-1 with load $Z_{\rm 2}$ across terminals 2-2 is $$Z_{1}' = R_{1}' + jX_{1}' = Z_{11} - \frac{Z_{12}^{2}}{Z_{22} + Z_{2}} = R_{11} + jX_{11} - \frac{R_{12}^{2} - X_{12}^{2} + 2jR_{12}X_{12}}{R_{22} + R_{2} + j(X_{22} + X_{2})}$$ When $$R_{12} = 0$$ $$Z_{1}' = R_{1}' + jX_{1}' = Z_{11} + \frac{X_{12}^{2}}{Z_{22} + Z_{2}}$$ **Example:** A transformer with tuned secondary and negligible primary resistance. $$Z_{11} = j\omega L_1$$ $$Z_{22} + Z_2 = R_2$$ since $X_{22} + X_2 = 0$ $$Z_{12} = i\omega M$$ Then $$Z_1' = j\omega L_1 + \frac{\omega^2 M^2}{R_2}$$ ^{*} Scope and limitations: The formulas for 4-terminal networks, given in paragraphs 8 to 12 inclusive, are applicable to any such network composed of linear passive elements. The elements may be either lumped or distributed, or a combination of both kinds. # 9. Input admittance of a 4-terminal network* Y₁₁ = admittance measured at terminals 1 - 1 with terminals 2 - 2 shortcircuited. $Y_{22}=$ admittance measured at terminals 2-2 with load Y_2 disconnected, and terminals 1-1 short-circuited. Y_{12} = transfer admittance, i.e., the short-circuit current that would flow at one pair of terminals when unit voltage is impressed across the other pair. Then the admittance looking into terminals 1-1 with load Y_2 connected across 2-2 is $$Y_{1}' = G_{1}' + jB_{1}' = Y_{11} - \frac{Y_{12}^{2}}{Y_{22} + Y_{2}}$$ ## 10. 4-terminal network with loads equal to image impedances* When Z_1 and Z_2 are such that $Z'=Z_1$ and $Z''=Z_2$ they are called the image impedances. Let the input impedance measured at terminals 1-1 with terminals 2-2 open-circuited be Z'_{oc} and with 2-2 short-circuited be Z'_{sc} . Similarly Z''_{oc} and Z''_{sc} measured at terminals 2-2. Then equivalent sircuit $$Z' = [Z'_{oc}Z'_{sc}]^{\frac{1}{2}} = \left[Z_{11}\left(Z_{11} - \frac{Z^{2}_{12}}{Z_{22}}\right)\right]^{\frac{1}{2}} = \left[Y_{11}\left(Y_{11} - \frac{Y^{2}_{12}}{Y_{22}}\right)\right]^{-\frac{1}{2}} = \left(\frac{AB}{CD}\right)^{\frac{1}{2}}$$ $$Z'' = [Z''_{oc}Z''_{sc}]^{\frac{1}{2}} = \left[Z_{22}\left(Z_{22}
- \frac{Z^{2}_{12}}{Z_{11}}\right)\right]^{\frac{1}{2}} = \left[Y_{22}\left(Y_{22} - \frac{Y^{2}_{12}}{Y_{11}}\right)\right]^{-\frac{1}{2}} = \left(\frac{BD}{AC}\right)^{\frac{1}{2}}$$ $$tanh (\alpha + j\beta) = \pm \left[\frac{Z'_{sc}}{Z'_{oc}}\right]^{\frac{1}{2}} = \pm \left[\frac{Z''_{sc}}{Z''_{oc}}\right]^{\frac{1}{2}} = \pm \left[1 - \frac{Z^{2}_{12}}{Z_{11}Z_{22}}\right]^{\frac{1}{2}}$$ $$= \pm \left[1 - \frac{Y^{2}_{12}}{Y_{11}Y_{12}}\right]^{\frac{1}{2}} = \pm \left(\frac{BC}{AD}\right)^{\frac{1}{2}}$$ See footnote on p. 137. The quantities Z_{11} , Z_{22} , and Z_{12} are defined in paragraph 8, above, while Y_{11} , Y_{22} , and Y_{12} are defined in paragraph 9. $(\alpha + j\beta)$ is called the image transfer constant, defined by $$\left(\frac{\text{complex volt-amperes into load from 2-2}}{\text{complex volt-amperes into network at 1-1}} \right) = \frac{v_2 i_2}{v_1 i_1} = \frac{v_2^2 Z_1}{v_1^2 Z_2} = \frac{i_2^2 Z_2}{i_1^2 Z_1}$$ $$= \epsilon^{-2 (\alpha + j\beta)} = \epsilon^{-2\alpha} / -2\beta$$ when the load is equal to the image impedance. The quantities α and β are the same irrespective of the direction in which the network is working. When Z_1 and Z_2 have the same phase angle, α is the attenuation in nepers and β is the angle of lag of i_2 behind i_1 . #### 11. Currents in a 4-terminal network* $$i_{1} = \frac{e_{1}}{Z_{1}'}$$ $$= e_{1} \frac{Z_{22}}{Z_{11}Z_{22} - Z^{2}_{12}}$$ $$= e_{1} \frac{R_{22} + jX_{22}}{(R_{11}R_{22} - X_{11}X_{22} - R^{2}_{12} + X^{2}_{12}) + j(R_{11}X_{22} + R_{22}X_{11} - 2R_{12}X_{12})}$$ $$i_{2} = e_{1} \frac{Z_{12}}{Z_{11}Z_{22} - Z^{2}_{12}}$$ ## 12. Voltages in a 4-terminal network* Let i_{1ac} = current that would flow between terminals 1-1 when they are short-circuited. Y₁₁ = admittance measured across terminals 1 - 1 with generator replaced by its internal impedance, and with terminals 2 - 2 short-circuited. ^{*} See footnote on p. 137. Y_{22} = admittance measured across terminals 2-2 with load connected and terminals 1-1 short-circuited. Y_{12} = transfer admittance between terminals 1 - 1 and 2 - 2 (defined in paragraph 9 above). Then the voltage across terminals 1-1, which are on the end of the network nearest the generator, is $$v_1 = \frac{i_{1sc}Y_{22}}{Y_{11}Y_{22} - Y_{12}^2}$$ The voltage across terminals 2-2, which are on the load end of the network is $$v_2 = \frac{i_{18c}Y_{12}}{Y_{11}Y_{22} - Y_{12}^2}$$ ## 13. Power transfer between two impedances connected directly Let $Z_1 = R_1 + jX_1$ be the impedance of the source, and $Z_2 = R_2 + jX_2$ be the impedance of the load. The maximum power transfer occurs when $$R_2 = R_1$$ and $X_2 = -X_1$ $$\frac{P}{P_m} = \frac{4R_1R_2}{(R_1 + R_2)^2 + (X_1 + X_2)^2}$$ P = power delivered to the load when the impedances are connected directly. P_m = power that would be delivered to the load were the two impedances connected through a perfect impedance-matching network. # 14. Power transfer between two meshes coupled reactively In the general case, X_{11} and X_{22} are not equal to zero and X_{12} may be any reactive coupling. When only one of the quantities X_{11} , X_{22} , and X_{12} can be varied, the best power transfer under the circumstances is given by: For X₂₂ variable $$X_{22}= rac{X^2_{12}X_{11}}{R^2_{11}+X^2_{11}}$$ (zero reactance looking into load circuit) For X₁₁ variable $$X_{11} = \frac{X^2_{12}X_{22}}{R^2_{22} + X^2_{22}}$$ (zero reactance looking into source circuit) For X₁₂ variable $$X_{12}^2 = \sqrt{(R_{11}^2 + X_{11}^2)(R_{22}^2 + X_{22}^2)}$$ When two of the three quantities can be varied, a perfect impedance match is attained and maximum power is transferred when $$X_{12}^2 = \sqrt{(R_{11}^2 + X_{11}^2)(R_{22}^2 + X_{22}^2)}$$ and $$\frac{X_{11}}{R_{11}} = \frac{X_{22}}{R_{22}}$$ (both circuits of same Q or phase angle) For perfect impedance match the current is $$i_2 = \frac{e_1}{2\sqrt{R_{11}R_{22}}} \angle \tan^{-1} \frac{R_{11}}{X_{11}}$$ In the most common case, the circuits are tuned to resonance $X_{11}=0$ and $X_{22}=0$. Then $X_{12}^2=R_{11}R_{22}$ for perfect impedance match. # 15. Optimum coupling between two circuits tuned to the same frequency From the last result in paragraph 14, maximum power transfer (or an impedance match) is obtained for $\omega^2 M^2 = R_1 R_2$ where M is the mutual inductance between the circuits, and R_1 and R_2 are the resistances of the two circuits. # Coefficient of coupling—geometrical consideration By definition, coefficient of coupling k is $$k = \frac{M}{\sqrt{L_1 L_2}}$$ where M = mutual inductance, and L_1 and L_2 are the inductances of the two coupled circuits. Coefficient of coupling of two coils is a geometrical property, being a function of the proportions of the configuration of coils, including their relationship to any nearby objects that affect the field of the system. As long as these proportions remain unchanged, the coefficient of coupling is independent of the physical size of the system, and of the number of turns of either coil. #### 17. $T-\pi$ or $Y-\Delta$ transformation The two networks are equivalent, as far as conditions at the terminals are concerned, provided the following equations are satisfied. Either the impedance equations or the admittance equations may be used: $$Y_1 = 1/Z_1$$, $Y_c = 1/Z_c$, etc. ## Impedance equations $$Z_{c} = \frac{Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3}}{Z_{3}}$$ $$Z_{a} = \frac{Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3}}{Z_{2}}$$ $$Z_{b} = \frac{Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3}}{Z_{2}}$$ $$Z_1 = \frac{Z_a Z_c}{Z_a + Z_b + Z_c}$$ $$Z_2 = \frac{Z_b Z_c}{Z_a + Z_b + Z_c}$$ $$Z_3 = \frac{Z_a Z_b}{Z_a + Z_b + Z_c}$$ # Admittance equations $$Y_{c} = \frac{Y_{1}Y_{2}}{Y_{1} + Y_{2} + Y_{3}}$$ $$Y_{a} = \frac{Y_{1}Y_{3}}{Y_{1} + Y_{2} + Y_{3}}$$ $$Y_{b} = \frac{Y_{2}Y_{3}}{Y_{1} + Y_{2} + Y_{3}}$$ $$Y_{1} = \frac{Y_{a}Y_{b} + Y_{a}Y_{c} + Y_{b}Y_{c}}{Y_{b}}$$ $$Y_{2} = \frac{Y_{a}Y_{b} + Y_{a}Y_{c} + Y_{b}Y_{c}}{Y_{a}}$$ $$Y_{3} = \frac{Y_{a}Y_{b} + Y_{a}Y_{c} + Y_{b}Y_{c}}{Y_{c}}$$ These relationships can be written as six equations in matrix form. Included are the transformations between the open-circuit impedances and short-circuit admittances, paragraphs 8, 9, and 19. $$\begin{bmatrix} Z_1 & Z_2 & Z_3 \\ Z_{11} & Z_{22} & Z_{12} \end{bmatrix} = \begin{bmatrix} Y_b & Y_a & Y_e \\ Y_{bb} & Y_{aa} & Y_{ab} \end{bmatrix} \div \mid Y \mid$$ and $$|Y| = 1/|Z|$$ where the determinants |Y| and |Z| are given in the tabulations of T and π sections, paragraph 19. #### 18. General circuit parameters Linear passive four-terminal network with source and load. $$\begin{cases} V_1 &= AV_2 + BI_2 \\ I_1 &= CV_2 + DI_2 \end{cases}$$ $$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$ $$V_1 &= E_1 - Z_{10} I_1$$ $$V_2 &= Z_{20} I_2$$ $$\begin{cases} V_2 &= DV_1 + B (-I_1) \\ (-I_2) &= CV_1 + A (-I_1) \end{cases}$$ $$\begin{bmatrix} V_2 \\ -I_2 \end{bmatrix} = \begin{bmatrix} D & B \\ C & A \end{bmatrix} \times \begin{bmatrix} V_1 \\ -I_1 \end{bmatrix}$$ The determinant of the matrix of the general circuit parameters is equal to unity $$AD - BC = 1$$ When a network is symmetrical $$A = D$$ Two two-terminal-pair networks in cascade $$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \times \begin{bmatrix} V_3 \\ I_3 \end{bmatrix}$$ The expansion of this product and other operations of matrix algebra are given in the section, "Matrix algebra", of chapter "Mathematical formulas", pp. 1090-1097. ### 19. Tabulation of matrixes | description | diagram | matrix | |-----------------------------------|--|---| | Series
impedance | o | $\begin{bmatrix} A & B \\ \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & Z \\ \\ 0 & 1 \end{bmatrix}$ | | Shunt
admittance | ° | [1 0]
[Y 1] | | Ideal transformer n = turns ratio | 0————————————————————————————————————— | $\begin{bmatrix} 1/n & 0 \\ 0 & n \end{bmatrix}$ | | description | diagram | matrix | |---
---|---| | Inductively
coupled
elements | L ₁ } {L ₂ | $egin{bmatrix} egin{bmatrix} egi$ | | Symmetrical
lattice
or bridge
section | Z_{m} | $\begin{bmatrix} Z_n + Z_m & 2Z_m Z_n \\ Z_n - Z_m & Z_n - Z_m \end{bmatrix}$ $\frac{2}{Z_n - Z_m} \frac{Z_n + Z_m}{Z_n - Z_m}$ | | T section $\begin{cases} V_1 = Z_{11}I_1 + Z_{12}(-I_2) \\ V_2 = Z_{21}I_1 + Z_{22}(-I_2) \end{cases}$ Determinant of the impedances: $ Z = Z_{11}Z_{22} - Z_{12}^2 \\ = Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3} \\ = (Y_1 + Y_2 + Y_3)/Y_1Y_2Y_3 \\ = 1/ Y = B/C$ | Z_1 Z_2 Z_2 Z_3 Z_4 Z_5 Z_5 Z_5 Z_7 Z_8 | $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} (1+Z_1/Z_3) & Z /Z_3 \\ 1/Z_3 & (1+Z_2/Z_3) \end{bmatrix}$ $= \begin{bmatrix} Z_{11}/Z_{12} & Z /Z_{12} \\ 1/Z_{12} & Z_{22}/Z_{12} \end{bmatrix}$ | | description | diagram | matrix | |--|---|---| | $\pi \text{ section}$ $\begin{cases} I_1 = Y_{aa}V_1 + Y_{ab}(-V_2) \\ I_2 = Y_{ba}V_1 + Y_{bb}(-V_2) \end{cases}$ Determinant of the admittances: $ Y = Y_{aa}Y_{bb} - Y_{ab}^2$ | 1, | $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} (1+Y_b/Y_c) & 1/Y_c \\ Y /Y_c & (1+Y_a/Y_c) \end{bmatrix}$ | | $= Y_a Y_b + Y_a Y_c + Y_b Y_c$ $= (Z_a + Z_b + Z_c) / Z_a Z_b Z_c$ $= 1 / Z = C/B$ | $Y_{aa} = Y_a + Y_c = D/B$ $Y_{bb} = Y_b + Y_c = A/B$ $Y_{ab} = Y_{ba} = Y_c = 1/B$ | $= \begin{bmatrix} Y_{bb}/Y_{ab} & 1/Y_{ab} \\ Y /Y_{ab} & Y_{aa}/Y_{ab} \end{bmatrix}$ | | Tronsmission
line | | See pp. 555 and 557 | # **Example 1:** Determine the ABCD parameters for a T section. Method 1: Consider the section under open- or short-circuit conditions at either pair of terminals. The parameters in the equations for V_1 and I_1 at the beginning of paragraph 18 can then be found by inspection. With output open-circuited, $I_2 = O$ and $$A = V_1/V_2 = (Z_1 + Z_3)/Z_3$$ $$C = I_1/V_2 = 1/Z_3$$ With input open-circuited, $I_1 = O$ and $$D = CV_2/(-I_2) = (Z_2 + Z_3)/Z_3$$ With input short-circuited, $V_1 = O$ and $$B = AV_2/(-I_2) = \frac{Z_1 + Z_3}{Z_3} \left(Z_2 + \frac{Z_1Z_3}{Z_1 + Z_3} \right)$$ $$= (Z_1Z_2 + Z_2Z_3 + Z_1Z_3)/Z_3$$ Method 2: Start with the impedance equations for V_1 and V_2 in terms of I_1 and I_2 . Translate into the ABCD form for V_1 and I_2 in terms of V_2 and I_2 . Method 3: Combine the individual series-impedance and shunt-admittance elements by multiplication of the matrixes. 147 # Formulas for simple R, L, and C networks continued **Example 2:** Determine the ABCD parameters for a symmetrical lattice section. Refer to the diagrams of the lattice in the tabulation of matrixes. In accordance with the definitions in paragraph 8, page 137, the open-circuit input and transfer impedances are $$Z_{11} = Z_{22} = (Z_m + Z_n)/2$$ $$Z_{12} = (Z_n - Z_m)/2$$ When these are substituted in the ABCD matrix for the T section, the matrix for the lattice results. # 20. Elementary R-C, R-L, and L-C filters and equalizers Simple attenuating sections of broad frequency-discriminating characteristics, as used in power supplies, grid-bias feed, etc. are shown in Figs. 9 and 10. The output load impedance is assumed to be high compared to the impedance of the shunt element of the filter. The phase angle ϕ is that of $E_{\rm out}$ with respect to $E_{\rm in}$. The relationships for low-pass filters are plotted in Figs. 11 and 12. Fig. 9—Circle diagrams for R-L and R-C filter sections. # Examples of low-pass R-C filters **a.** $$R = 100,000 \text{ ohms}$$ $$C = 0.1 \times 10^{-6} (0.1 \mu f)$$ Then $$T = RC = 0.01$$ second At $$f = 100$$ cps: $E_{out}/E_{in} = 0.16$ At $$f = 30,000$$ cps: $E_{out}/E_{in} = 0.00053$ Fig. 10—Simple filter sections containing R, L, and C. See also Fig. 9. | diagram | type | time constant
or
resonant freq | formula and approximation | |------------------------------------|-----------------------|--------------------------------------|--| | E _{in} C E _{out} | A
low-pass
R-C | T = RC | $\frac{E_{out}}{E_{in}} = \frac{1}{\sqrt{1 + \omega^2 T^2}} \approx \frac{1}{\omega T}$ $\phi_A = -\tan^{-1} \{R\omega C\}$ | | E _{in} R E _{out} | B
high-pass
R-C | T = RC | $\frac{E_{out}}{E_{in}} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 T^2}}} \approx \omega T$ $\phi_B = \tan^{-1} (1/R\omega C)$ | | E _{in} R E _{out} | C
low-pass
R-L | $T = \frac{L}{R}$ | $\frac{E_{out}}{E_{in}} = \frac{1}{\sqrt{1 + \omega^2 T^2}} \approx \frac{1}{\omega T}$ $\phi_C = -\tan^{-1} (\omega L/R)$ | | E _{in} L E _{out} | D
high-pass
R-L | $T = \frac{L}{R}$ | $\frac{E_{out}}{E_{in}} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 T^2}}} \approx \omega T$ $\phi_D = \tan^{-1} (R/\omega L)$ | | E _{in} C E _{out} | E
low-pass
L-C | $f_0 = \frac{0.1592}{\sqrt{LC}}$ | $\frac{E_{out}}{E_{in}} = \frac{1}{1 - \omega^2 LC} = \frac{1}{1 - f^2/f_0^2}$ $\approx -\frac{1}{\omega^2 LC} = -\frac{f_0^2}{f^2}$ $\phi = 0 \text{ for } f < f_0; \phi = \pi \text{ for } f > f_0$ | | C Ein L Eout | F
high-pass
L-C | $f_0 = \frac{0.1592}{\sqrt{LC}}$ | $\frac{E_{out}}{E_{in}} = \frac{1}{1 - 1/\omega^2 LC} = \frac{1}{1 - f_0^2/f^2}$ $\approx -\omega^2 LC = -\frac{f^2}{f_0^2}$ $\phi = 0 \text{ for } f > f_0; \phi = \pi \text{ for } f < f_0$ | R in ohms; L in henries; C in farads $(1\mu f = 10^{-6} \text{ farad})$. T= time constant (seconds), $f_0=$ resonant frequency (cps), $\omega=2\pi f$, $$2\pi = 6.28$$, $1/2\pi = 0.1592$, $4\pi^2 = 39.5$, $1/4\pi^2 = 0.0253$. Fig. 11—Low-pass R-C
and R-L filters. N is any convenient factor, usually taken as an integral power of 10. **b.** $$R = 1_6000 \text{ ohms}$$ $C = 0.001 \times 10^{-6} \text{ farad}$ $T = 1 \times 10^{-6} \text{ second} = 0.1/N, \text{ where } N = 10^5$ At $f = 10 \text{ megacycles} = 100 \times N$: $E_{out}/E_{in} = 0.016 - 10^5$ # Example of low-pass L-C filter At $$f=120$$ cps, required $E_{out}/E_{in}=0.03$ Then from curves: $LC=6\times 10^{-5}$ approximately. Whence, for $C = 4 \mu f$, we require L = 15 henries. Fig. 12—Low-pass L-C filters. N is any convenient factor, usually taken as an integral power of 10. # Effective and average values of alternating current (Similar equations apply to ac voltages) $$i = I \sin \omega t$$ Average value $$I_{av} = \frac{2}{\pi} I$$ which is the direct current that would be obtained were the original current fully rectified, or approximately proportional to the reading of a rectifiertype meter. Effective or root-mean-square (rms) value $$I_{eff} = \frac{I}{\sqrt{2}}$$ which represents the heating or power effectiveness of the current, and is proportional to the reading of a dynamometer or thermal-type meter. 151 # Effective and average values of alternating current continued When $$i = I_0 + I_1 \sin \omega_1 t + I_2 \sin \omega_2 t + \dots$$ $$I_{eff} = \sqrt{I_0^2 + \frac{1}{2} (I_1^2 + I_2^2 + \dots)}$$ **Note:** The average value of a complex current is *not* equal to the sum of the average values of the components. # Power The power at a point in an alternating-current network is $$P = (real) V I^* = (real) V^* I$$ the first form of which is the real part of the product of the root-meansquare complex sinusoidal voltage by the conjugate of the corresponding current. This expression is useful in analytical work. Example: Let $$V=V/\phi$$ and $I=I/\psi$ Then $$I^* = I/-\psi$$ and $$P = \text{(real) } V I / \phi - \psi = V I \cos \theta$$ # Transients—elementary cases The complete transient in a linear network is, by the principle of superposition, the sum of the individual transients due to the store of energy in each inductor and capacitor and to each external source of energy connected to the network. To this is added the steady-state condition due to each external source of energy. The transient may be computed as starting from any arbitrary time t=0 when the initial conditions of the energy of the network are known. Time constant (designated T): Of the discharge of a capacitor through a resistor is the time t_2-t_1 required for the voltage or current to decay to $1/\epsilon$ of its value at time t_1 . For the charge of a capacitor the same definition applies, the voltage "decaying" toward its steady-state value. The time constant of discharge or charge of the current in an inductor through a resistor follows an analogous definition. Energy stored in a capacitor = $\frac{1}{2}$ CE² joules (watt-seconds) Energy stored in an inductor $=\frac{1}{2}LI^2$ joules (watt-seconds) $$\epsilon = 2.718$$ $$1/\epsilon = 0.367$$ $$1/\epsilon = 0.3679$$ $\log_{10}\epsilon = 0.4343$ $$I$$ in amperes # Capacitor charge and discharge Closing of switch occurs at time t=0Initial conditions (at t=0): Battery $=E_b$; $e_c=E_o$. Steady state (at $t=\infty$): i=0; $e_c=E_b$. Transient: $$i = \frac{E_b - E_0}{R} e^{-t/RC} = I_0 e^{-t/RC}$$ $$\log_{10}\left(\frac{i}{I_0}\right) = -\frac{0.4343}{RC}t$$ $$e_{e} = E_{0} + \frac{1}{C} \int_{0}^{t} i dt = E_{0} e^{-t/RC} + E_{b} (1 - e^{-t/RC})$$ Time constant: T = RC $$i/I_0 = \epsilon^{-t/T}$$ Fig. 13 shows discharge (for $$E_b = 0$$): $e_c/E_0 = e^{-t/T}$ $$e_{\epsilon}/E_0 = \epsilon^{-t/T}$$ Fig. 14 shows charge (for $$E_0=0$$): $e_c/E_b=1-\epsilon^{-t/T}$ $$e_{\epsilon}/E_{\lambda} = 1 - e^{-t/T}$$ These curves are plotted on a larger scale in Fig. 15. Fig. 13-Capacitor discharge. Fig. 14-Capacitor charge. # Two capacitors Closing of switch occurs at time t=0 Initial conditions (at t = 0): $$e_1 = E_1$$; $e_2 = E_2$. Steady state (at $t = \infty$): $$e_1 = E_f$$; $e_2 = -E_f$; $i = 0$. $$E_f = \frac{E_1C_1 - E_2C_2}{C_1 + C_2}$$ $C' = \frac{C_1C_2}{C_1 + C_2}$ Transient: $$i = \frac{E_1 + E_2}{R} \, \epsilon^{-t/RC'}$$ Use exponential $\epsilon^{-t/T}$ for charge or discharge of capacitor or discharge of inductor: (current at time t) Discharge of capacitor: (voltage at time t) Use exponential $1 - e^{-t/T}$ for charge of capacitor: (voltage at time t) (battery or final voltage) Charge of inductor: (final current) Fig. 15—Exponential functions $\epsilon^{-t/T}$ and $1-\epsilon^{-t/T}$ applied to transients in R-C and L-R circuits. $$e_1 = E_f + (E_1 - E_f) e^{-t/RC'} = E_1 - (E_1 + E_2) \frac{C'}{C_1} (1 - e^{-t/RC'})$$ $$e_2 = -E_f + (E_2 + E_f) \epsilon^{-t/RC'} = E_2 - (E_1 + E_2) \frac{C'}{C_2} (1 - \epsilon^{-t/RC'})$$ Original energy = $\frac{1}{2}$ (C₁E₁² + C₂E₂²) joules Final energy = $\frac{1}{2}$ (C₁ + C₂) E_f^2 joules Loss of energy = $$\int_0^\infty i^2 R dt = \frac{1}{2} C' (E_1 + E_2)^2 \text{ joules}$$ (Loss is independent of the value of R.) # Inductor charge and discharge Initial conditions (at t = 0): Battery = E_{bi} , $i = I_0$ Steady state (at $t = \infty$): $i = I_f = E_b/R$ Transient, plus steady state: $$i = I_{\ell} (1 - \epsilon^{-Rt/L}) + I_{0} \epsilon^{-Rt/L}$$ $$e_L = -L \operatorname{di}/\operatorname{dt} = -(E_b - RI_0)\epsilon^{-Rt/L}$$ Time constant: T = L/R Fig. 13 shows discharge (for $E_b = 0$): $i/I_0 = e^{-t/T}$ Fig. 14 shows charge (for $I_0 = 0$): $i/I_f = (1 - \epsilon^{-t/T})$ These curves are plotted on a larger scale in Fig. 15. # Series R-L-C circuit charge and discharge Initial conditions (at t = 0): Battery = $$E_b$$; $e_c = E_0$; $i = I_0$ Steady state (at $$t = \infty$$): $i = 0$; $e_c = E_b$ Differential equation: $$E_b - E_0 - \frac{1}{C} \int_0^t i dt - Ri - L \frac{di}{dt} = 0$$ when $$L \frac{d^2i}{dt^2} + R \frac{di}{dt} + \frac{i}{C} = 0$$ Solution of equation: $$i = \epsilon^{-Rt/2L} \left[\frac{2(E_b - E_0) - RI_0}{R\sqrt{D}} \sinh \frac{Rt}{2L} \sqrt{D} + I_0 \cosh \frac{Rt}{2L} \sqrt{D} \right]$$ where $$D = 1 - \frac{4L}{R^2C}$$ Case 1: When $\frac{L}{R^2C}$ is small $$i = \frac{1}{(1 - 2A - 2A^2)} \left\{ \left[\frac{E_b - E_0}{R} - I_0 (A + A^2) \right] e^{-\frac{t}{RC}(1 + A + 2A^2)} + \left[I_0(1 - A - A^2) - \frac{E_b - E_0}{R} \right] e^{-\frac{Rt}{L}(1 - A - A^2)} \right\}$$ where $$A = \frac{L}{R^2C}$$ For practical purposes, the terms A^2 can be neglected when A < 0.1. The terms A may be neglected when A < 0.01. Case 2: When $\frac{4L}{R^2C}$ <1 for which \sqrt{D} is real $$i = \frac{\epsilon^{-Rt/2L}}{\sqrt{D}} \left\{ \left[\frac{E_b - E_0}{R} - \frac{I_0}{2} \left(1 - \sqrt{D} \right) \right] \epsilon^{\frac{Rt}{2L}\sqrt{D}} + \left[\frac{I_0}{2} \left(1 + \sqrt{D} \right) - \frac{E_b - E_0}{R} \right] \epsilon^{-\frac{Rt}{2L}\sqrt{D}} \right\}$$ Case 3: When D is a small positive or negative quantity $$i = \epsilon^{-Rt/2L} \left\{ \frac{2(E_b - E_0)}{R} \left[\frac{Rt}{2L} + \frac{1}{6} \left(\frac{Rt}{2L} \right)^3 D \right] + I_o \left[1 - \frac{Rt}{2L} + \frac{1}{2} \left(\frac{Rt}{2L} \right)^2 D - \frac{1}{6} \left(\frac{Rt}{2L} \right)^3 D \right] \right\}$$ This formula may be used for values of D up to ± 0.25 , at which values the error in the computed current i is approximately 1 percent of I_0 or of $$\frac{E_b-E_0}{P}$$ Case 3a: When $4L/R^2C = 1$ for which D = 0, the formula reduces to $$i = \epsilon^{-Rt/2L} \left[\frac{E_b - E_0}{R} \frac{Rt}{L} + I_0 \left(1 - \frac{Rt}{2L} \right) \right]$$ or $i = i_1 + i_2$, plotted in Fig. 16. For practical purposes, this formula may be used when $4L/R^2C = 1 \pm 0.05$ with errors of 1 percent or less. Fig. 16—Transients for $4L/R^2C = 1$. Case 4: When $\frac{4L}{R^2C} > 1$ for which \sqrt{D} is imaginary $$i = \epsilon^{-RI/2L} \left\{ \left[\frac{E_b - E_0}{\omega_0 L} - \frac{RI_0}{2\omega_0 L} \right] \sin \omega_0 t + I_0 \cos \omega_0 t \right\}$$ $$= I_m \epsilon^{-Rt/2L} \sin (\omega_0 t + \psi)$$ where $$\omega_0 = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$ $$I_{m} = \frac{1}{\omega_{0}L} \sqrt{\left(E_{b} - E_{0} - \frac{RI_{0}}{2}\right)^{2} + \omega_{0}^{2}L^{2}I_{0}^{2}} \qquad \psi = \tan^{-1} \frac{\omega_{0}L I_{0}}{E_{b} - E_{0} - \frac{RI_{0}}{2}}$$ $$\psi = \tan^{-1} \frac{\omega_0 L I_0}{E_b - E_0 - \frac{RI_6}{2}}$$ The envelope of the voltage wave across the inductor is: $$= \epsilon^{-Rt/2L} \frac{1}{\omega_0 \sqrt{LC}} \sqrt{\left(E_b - E_0 - \frac{RI_0}{2}\right)^2 + \omega_0^2 L^2 I_0^2}$$ Example: Relay with transient-suppressing capacitor. Switch closed till time t=0, then opened. Let $$L = 0.10$$ henry, $R_1 = 100$ ohms, $E = 10$ volts Suppose we choose $$C = 10^{-6}$$ farads $$R_2 = 100 \text{ ohms}$$ Then R = 200 ohms $I_0 = 0.10 \text{ ampere}$ $E_0 = 10 \text{ volts}$ $\omega_0=3\times10^3$ $f_0 = 480 \text{ cps}$ Maximum peak voltage across L (envelope at t=0) is approximately 30 volts. Time constant of decay of envelope is 0.001 second. It is preferable that the circuit be just nonoscillating (Case 3a) and that it present a pure resistance at the switch terminals for any frequency (see note on p. 127). $$R_2 = R_1 = R/2 = 100$$ ohms $$4L/R^2C = 1$$ $$C = 10^{-5}$$ farad = 10 microfarads At the instant of opening the switch, the voltage across the parallel circuit is $E_0 - R_2 I_0 = 0$. # Series R-L-C circuit with sinusoidal applied voltage By the principle of superposition, the transient and steady-state conditions are the same for the actual circuit and the equivalent circuit shown in the accompanying illustrations, the closing of the switch occurring at time t=0. In the equivalent circuit, the steady state is due to the source e acting continuously from time $t=-\infty$, while the transient is due to short-circuiting the source -e at time t=0. Source: $e = E \sin (\omega t + \alpha)$ Steady state: $$i = \frac{e}{7} \angle -\phi = \frac{E}{7} \sin (\omega t + \alpha - \phi)$$ where $$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega
C}\right)^2}$$ $$\tan \phi = \frac{\omega^2 LC - 1}{\omega CR}$$ The transient is found by determining current $i = I_0$ equivalent circuit and capacitor voltage $e_c = E_0$ at time t = 0, due to the source -e. These values of I_0 and E_0 are then substituted in the equations of Case 1, 2, 3, or 4, above, according to the values of R, L, and C. At time t = 0, due to the source -e: $$i = I_0 = -\frac{E}{Z} \sin (\alpha - \phi)$$ $$e_c = E_0 = \frac{E}{\omega CZ} \cos{(\alpha - \phi)}$$ This form of analysis may be used for any periodic applied voltage e. The steady-state current and the capacitor voltage for an applied voltage —e are determined, the periodic voltage being resolved into its harmonic components for this purpose, if necessary. Then the instantaneous values $i=I_0$ and $\mathbf{e}_e=E_0$ at the time of closing the switch are easily found, from which the transient is determined. It is evident, from this method of analysis, that the waveform of the transient need bear no relationship to that of the applied voltage, depending only on the constants of the circuit and the hypothetical initial conditions I_0 and E_0 . # Transients—operational calculus and Laplace transforms Among the various methods of operational calculus used to solve transient problems, one of the most efficient makes use of the Laplace transform. If we have a function v = f(t), then by definition the Laplace transform is $\mathcal{L}[f(t)] = F(p)$, where $$F(p) = \int_{0}^{\infty} e^{-pt} f(t) dt$$ (4) The inverse transform of F(p) is f(t). Most of the mathematical functions encountered in practical work fall in the class for which Laplace transforms exist. Transforms of functions are given on pages 1081 to 1083. In the following, an abbreviated symbol such as $\mathcal{L}[i]$ is used instead of $\mathcal{L}[i(t)]$ to indicate the Laplace transform of the function i(t). The electrical (or other) system for which a solution of the differential equation is required, is considered only in the time domain $t \ge 0$. Any currents or voltages existing at t = 0, before the driving force is applied, constitute initial conditions. Driving force is assumed to be 0 when t < 0. # Example Take the circuit of Fig. 17, in which the switch is closed at time t=0. Prior to the closing of the switch, suppose the capacitor is charged; then at t = 0, we have $v = V_0$. It is required to find the voltage v across capacitor C as a function of time. Writing the differential equation of the circuit in terms of voltage, and since i = dg/dt = C(dv/dt), the equation is terms of voltage, and since $$i = dq/dt = C(dv/dt)$$, the equation is $$e(t) = v + Ri = v + RC(dv/dt)$$ where $e(t) = E_b$ Fig. 17. Referring to the table of transforms, the applied voltage is E_b multiplied by unit step, or $E_bS_{-1}(t)$; the transform for this is E_b/p . The transform of v is $\mathcal{L}[v]$. That of RC(dv/dt) is RC[p $\mathcal{L}[v] - v(0)]$, where $v(0) = V_0 = value$ of v at t = 0. Then the transform of (5) is $$\frac{E_b}{p} = \mathcal{L}[v] + RC[p\mathcal{L}[v] - V_0]$$ Rearranging, and resolving into partial fractions, $$\mathcal{L}[v] = \frac{E_b}{p(1 + RCp)} + \frac{RCV_0}{1 + RCp} = E_b \left(\frac{1}{p} - \frac{1}{p + 1/RC} \right) + \frac{V_0}{p + 1/RC}$$ (6) Now we must determine the equation that would transform into (6). The inverse transform of $\mathcal{L}[v]$ is v, and those of the terms on the right-hand side are found in the table of transforms. Then, in the time domain $t \geq 0$, $$v = E_b(1 - \epsilon^{-t/RC}) + V_0 \epsilon^{-t/RC}$$ (7) This solution is also well known by classical methods. However, the advantages of the Laplace-transform method become more and more apparent in reducing the labor of solution as the equations become more involved. # Circuit response related to unit impulse Unit impulse is defined on page 1081. It has the dimensions of time⁻¹. For example, suppose a capacitor of one microfarad is suddenly connected to a battery of 100 volts, with the circuit inductance and resistance negligibly small. Then the current flow is 10^{-4} coulombs multiplied by unit impulse. The general transformed equation of a circuit or system may be written $$\mathcal{L}[i] = \phi(p) \mathcal{L}[e] + \psi(p)$$ (8) Here $\mathcal{L}[i]$ is the transform of the required current (or other quantity), $\mathcal{L}[e]$ is the transform of the applied voltage or driving force e(t). The transform of the initial conditions, at t = 0, is included in $\psi(p)$. First considering the case when the system is initially at rest, $\psi(p) = 0$. Writing i_a for the current in this case, $$\mathcal{L}[i_a] = \phi(\rho) \mathcal{L}[e] \tag{9}$$ Now apply unit impulse $S_0(t)$ (multiplied by one volt-second), and designate the circuit current in this case by B(t) and its transform by $\mathcal{L}[B]$. By pair 13, page 1083, the transform of $S_0(t)$ is 1, so $$\mathcal{L}[B] = \phi(\rho) \tag{10}$$ Equation (9) becomes, for any driving force $$\mathcal{L}[i_a] = \mathcal{L}[B] \mathcal{L}[e] \tag{11}$$ Applying pair 4, page 1082, $$i_a = \int_0^t B(t - \lambda) e(\lambda) d\lambda = \int_0^t B(\lambda) e(t - \lambda) d\lambda$$ (12) To this there must be added the current i_0 due to any initial conditions that exist. From (8), $$\mathcal{L}[i_0] = \psi(p) \tag{13}$$ Then i_0 is the inverse transform of $\psi(p)$. # Circuit response related to unit step Unit step is defined and designated $S_{-1}(t)=0$ for t<0 and equals unity for t>0. It has no dimensions. Its transform is 1/p as given in pair 12, page 1083. Let the circuit current be designated A(t) when the applied voltage is $e=S_{-1}(t)\times (1 \text{ volt})$. Then, the current i_a for the case when the system is initially at rest, and for any applied voltage e(t), is given by any of the following formulas: $$i_{a} = A(t) e(0) + \int_{0}^{t} A(t - \lambda) e'(\lambda) d\lambda$$ $$= A(t) e(0) + \int_{0}^{t} A(\lambda) e'(t - \lambda) d\lambda$$ $$= A(0) e(t) + \int_{0}^{t} A'(t - \lambda) e(\lambda) d\lambda$$ $$= A(0) e(t) + \int_{0}^{t} A'(\lambda) e(t - \lambda) d\lambda$$ (14) where A' is the first derivative of A and similarly for e' of e. As an example, consider the problem of Fig. 17 and (5) to (7) above. Suppose $V_0=0$, and that the battery is replaced by a linear source $$e(t) = Et/T_1$$ where T_1 is the duration of the voltage rise in seconds. By (7), setting $E_b=1$, $A(t)=1-\epsilon^{-t/RC}$ Then using the first equation in (14) and noting that e(0) = 0, and $e'(t) = E/T_1$ when $0 \le t \le T_1$, the solution is $$v = \frac{Et}{T_1} - \frac{ERC}{T_1} (1 - \epsilon^{-t/RC})$$ This result can, of course, be found readily by direct application of the Laplace transform to (5) with $e(t) = Et/T_1$. ### Heaviside expansion theorem When the system is initially at rest, the transformed equation is given by (9) and may be written $$\mathcal{L}[i_a] = \frac{M(p)}{G(p)} \mathcal{L}[e] \tag{15}$$ M(p) and G(p) are rational functions of p. In the following, M(p) must be of lower degree than G(p), as is usually the case. The roots of G(p) = 0 are p_r , where $r = 1, 2, \ldots, n$, and there must be no repeated roots. The response may be found by application of the Heaviside expansion theorem. For a force $e = E_{max} e^{i\omega t}$ applied at time t = 0, $$\frac{i_a(t)}{E_{\text{max}}} = \frac{M(j\omega)}{G(j\omega)} \epsilon^{j\omega t} + \sum_{r=1}^{n} \frac{M(p_r) \epsilon^{p_r t}}{(p_r - j\omega) G'(p_r)}$$ (16a) $$=\frac{\epsilon^{j\omega t}}{Z(j\omega)}+\sum_{r=1}^{n}\frac{\epsilon^{p_{r}t}}{(p_{r}-j\omega)\;Z'(p_{r})} \tag{16b}$$ The first term on the right-hand side of either form of (16) gives the steady-state response, and the second term gives the transient. When $e = E_{max} \cos \omega t$, take the real part of (16), and similarly for sin ωt and the imaginary part. Z(p) is defined in (19) below. If the applied force is the unit step, set $\omega = 0$ in (16). # Application to linear networks The equation for a single mesh is of the form $$A_n \frac{d^n i}{dt^n} + \ldots + A_1 \frac{di}{dt} + A_0 i + B \int i dt = e(t)$$ (17) System initially at rest: Then, (17) transforms into $$(A_n p^n + \ldots + A_1 p + A_0 + B p^{-1}) \mathcal{L}[i] = \mathcal{L}[e]$$ (18) where the expression in parenthesis is the operational impedance, equal to the alternating-current impedance when we set $p = i\omega$. If there are m meshes in the system, we get m simultaneous equations like (17) with m unknowns i_1, i_2, \ldots, i_m . The m algebraic equations like (18) are solved for $\mathcal{L}[i_1]$, etc., by means of determinants, yielding on equation of the form of (15) for each unknown, with a term on the right-hand side for each mesh in which there is a driving force. Each such driving force may of course be treated separately and the responses added. Designating any two meshes by the letters h and k, the driving force eff being in either mesh and the mesh current i(t) in the other, then the fraction M(p)/G(p) in (15) becomes $$\frac{M_{hk}(p)}{G(p)} = \frac{1}{Z_{hk}(p)} = Y_{hk}(p)$$ (19) where $Y_{hk}(p)$ is the operational transfer admittance between the two meshes. The determinant of the system is G(p), and $M_{hk}(p)$ is the cofactor of the row and column that represent e(t) and i(t). System not initially at rest: The transient due to the initial conditions is solved separately and added to the above solution. The driving force is set equal to zero in (17), e(t) = 0, and each term is transformed according to $$\mathcal{L}\left[\frac{d^{n}i}{dt^{n}}\right] = \rho^{n}\mathcal{L}[i] - \sum_{r=1}^{n} \rho^{n-r} \left[\frac{d^{r-1}i}{dt^{r-1}}\right]_{t=0}$$ (20a) $$\mathcal{L}\left[\int_{0}^{t} idt\right] = \frac{1}{P}\mathcal{L}[i] + \frac{1}{P}\left[\int idt\right]_{t=0}$$ (20b) where the last term in each equation represents the initial conditions. For example, in (20b) the last term would represent, in an electrical circuit, the quantity of electricity
existing on a capacitor at time t=0, the instant when the driving force e(t) commences to act. **Resolution into partial fractions:** The solution of the operational form of the equations of a system involves rational fractions that must be simplified before finding the inverse transform. Let the fraction be h(p)/g(p) where h(p) is of lower degree than g(p), for example $(3p + 2)/(p^2 + 5p + 8)$. If h(p) is of equal or higher degree than g(p), it can be reduced by division. The reduced fraction can be expanded into partial fractions. Let the factors of the denominator be $(p - p_r)$ for the n nonrepeated roots p_r of the equation g(p) = 0, and $(p - p_a)$ for a root p_a repeated m times. $$\frac{h(p)}{g(p)} = \sum_{r=1}^{n} \frac{A_r}{p - p_r} + \sum_{r=1}^{m} \frac{B_r}{(p - p_a)^{m-r+1}}$$ (21a) There is a summation term for each root that is repeated. The constant coefficients A_r and B_r can be evaluated by reforming the fraction with a common denominator. Then the coefficients of each power of p in h(p) and the reformed numerator are equated and the resulting equations solved for the constants. More formally, they may be evaluated by $$A_{r} = \frac{h(p_{r})}{g'(p_{r})} = \left[\frac{h(p)}{g(p)/(p - p_{r})}\right]_{p = p_{r}}$$ (21b) $$B_r = \frac{1}{(r-1)!} f^{(r-1)} (\rho_a)$$ (21c) where $$i(p) = (p - p_a)^m \frac{h(p)}{g(p)}$$ and $f^{(r-1)}(p_a)$ indicates that the (r-1)th derivative of f(p) is to be found, after which we set $p=p_a$. Fractions of the form $\frac{A_1p + A_2}{p^2 + \omega^2}$ or, more generally, $$\frac{A_1p + A_2}{p^2 + 2ap + b} = \frac{A(p + a) + B\omega}{(p + a)^2 + \omega^2}$$ (22a) where $b > a^2$ and $\omega^2 = b - a^2$, need not be reduced further. By pairs 8 23, and 24 of the table on pages 1082 and 1083, the inverse transform of (22a) is $$e^{-at}$$ (A cos $\omega t + B \sin \omega t$) (22b) where $$A = \frac{h(-\alpha + j\omega)}{g'(-\alpha + j\omega)} + \frac{h(-\alpha - j\omega)}{g'(-\alpha - j\omega)}$$ (22c) $$B = j \left[\frac{h(-\alpha + j\omega)}{g'(-\alpha + j\omega)} - \frac{h(-\alpha - j\omega)}{g'(-\alpha - j\omega)} \right]$$ (22d) Similarly, the inverse transform of the fraction $\frac{A(p+a)+B\alpha}{(p+a)^2-\alpha^2}$ is ϵ^{-at} (A cosh $\alpha t+B$ sinh αt), where A and B are found by (22c) and (22d), except that $j\omega$ is replaced by α and the coefficient j is omitted in the expression for B. # Filters, image-parameter design # General The basic filter half section and the full sections derived from it are shown in Fig. 1. The fundamental filter equations follow, with filter characteristics and design formulas next. Also given is the method of building up a composite filter and the effect of the design parameter m on the image-impedance characteristic. An example of the design of a low-pass filter completes the chapter. It is to be noted that while the impedance characteristics and design formulas are given for the half sections as shown, the attenuation and phase characteristics are for full sections, either T or π . # Fundamental filter equations # Image impedances Z_{T} and Z_{T} The element-value design equations to be given are derived by assuming that the network is terminated with impedances that change with frequency in accordance with the following image-impedance equations. Unfortunately, this assumption can be only approximately satisfied. $Z_{\rm T} =$ mid-series image impedance = impedance looking into 1–2 (Fig. 1A) with Z_{π} connected across 3–4. Z_{π} = mid-shunt image impedance = impedance looking into 3-4 (Fig. 1A) with Z_{T} connected across 1-2. Fig. 1—Basic filter sections. # Fundamental filter equations continued Formulas for the above are $$Z_{T} = \sqrt{Z_{1}Z_{2} + Z_{1}^{2}/4}$$ $$= \sqrt{Z_{1}Z_{2}} \sqrt{1 + Z_{1}/4Z_{2}} \text{ ohms}$$ $$Z_{\pi} = \frac{Z_{1}Z_{2}}{\sqrt{Z_{1}Z_{2} + Z_{1}^{2}/4}}$$ $$= \frac{\sqrt{Z_{1}Z_{2}}}{\sqrt{1 + Z_{1}/4Z_{2}}} \text{ ohms}$$ $$Z_{\mathrm{T}}Z_{\pi} = Z_{1}Z_{2}$$ ### Image transfer constant θ The transfer constant $\theta=\alpha+j\beta$ of a network is defined as one-half the natural logarithm of the complex ratio of the steady-state volt-amperes entering and leaving the network when the latter is terminated in its image impedance. The real part α of the transfer constant is called the image attenuation constant, and the imaginary part β is called the image phase constant. Formulas in terms of full sections are $$\cosh \theta = 1 + Z_1/2Z_2$$ ### Pass band $$\alpha = 0$$, for frequencies making $-1 \leqslant Z_1/4Z_2 \leqslant 0$ $$\beta = \cos^{-1} (1 + Z_1/2Z_2) = \pm 2 \sin^{-1} \sqrt{-Z_1/4Z_2}$$ radians Image impedance = pure resistance # Stop band $$\begin{cases} \alpha = \cosh^{-1} |1 + Z_1/2Z_2| = 2 \sinh^{-1} \sqrt{Z_1/4Z_2} \text{ nepers} & \text{for } Z_1/4Z_2 > 0 \\ \beta = 0 \text{ radians} \end{cases}$$ $$\begin{cases} \alpha = \cosh^{-1} |1 + Z_1/2Z_2| = 2 \cosh^{-1} \sqrt{-Z_1/4Z_2} \text{ nepers for } Z_1/4Z_2 < -1 \\ \beta = \pm \pi \text{ radians} \end{cases}$$ Image impedance = pure reactance The above formulas are based on the assumption that the impedance arms are pure reactances with zero loss. # Low-pass filter design ### type and half section ### **Impedance** characteristics ### Constant-k $$Z_{Tk} = R\sqrt{1 - \omega^2/\omega_c^2}$$ $$Z_{\pi k} = \frac{R}{\sqrt{1 - \omega^2/\omega_c^2}}$$ ### Series m-derived $$Z_{T1} = Z_{Tk}$$ $$Z_{\pi 1} = \frac{R (1 - \omega^2 / \omega_{\infty}^2)}{\sqrt{1 - \omega^2 / \omega_{c}^2}}$$ $$= \frac{R \left[1 - \frac{\omega^2}{\omega_{c}^2} (1 - m^2) \right]}{\sqrt{1 - \omega^2 / \omega_{c}^2}}$$ ### Shunt m-derived $$Z_{T2} = \frac{R\sqrt{1 - \omega^{2}/\omega_{c}^{2}}}{1 - \omega^{2}/\omega_{\infty}^{2}}$$ $$= \frac{R\sqrt{1 - \omega^{2}/\omega_{c}^{2}}}{1 - \frac{\omega^{2}}{\omega_{c}^{2}}(1 - m^{2})}$$ $$= R^{2}/Z_{\pi 1}$$ $$Z_{\pi 2} = Z_{\pi k}$$ ### Notations: Z in ohms, lpha in nepers, and eta in radians $$\omega_c = 2\pi f_c = \text{angular cutoff frequency}$$ $$= 1/\sqrt{L_k C_k}$$ $$\omega_{\infty} = 2\pi f_{\infty} = \text{angular frequency of peak}$$ attenuation $$m = \sqrt{1 - \omega_c^2/\omega_{\infty}^2}$$ R = nominal terminating resistance $$=\sqrt{L_k/C_k}$$ $$= \sqrt{Z_{\mathrm{T}k} \, Z_{\pi k}}$$ | | design formulas | | |--|--|--| | full-section | half-section | half-section | | $\begin{array}{c c} \text{attenuation } \alpha \text{ and phase } \beta \text{ characteristics} \\ \\ \bullet $ | L _k = $\frac{R}{\omega_c}$ | shunt arm $C_k = \frac{1}{\omega_o R}$ | | | $L_1 = mL_k$ | $L_2 = \frac{1 - m^2}{m} L_k$ $C_2 = mC_k$ | | When $\omega_c < \omega < \omega_{\infty}$, $\beta = \pi$ and $\alpha = \cosh^{-1} \left[2 \frac{1/\omega_{\infty}^2 - 1/\omega_c^2}{1/\omega_{\infty}^2 - 1/\omega^2} - 1 \right]$ $= \cosh^{-1} \left[2 \frac{m^2}{\omega_c^2/\omega^2 - (1 - m^2)} - 1 \right]$ | $L_1 = mL_k$ $C_1 = \frac{1 - m^2}{m} C_k$ | $C_2 = mC_k$ | | When $0 \leqslant \omega \leqslant \omega_c$, $\alpha = 0$ and $\beta = \cos^{-1}\left[1 - 2\frac{1/\omega_{\infty}^2 - 1/\omega_c^2}{1/\omega_{\infty}^2 - 1/\omega^2}\right]$ $= \cos^{-1}\left[1 - 2\frac{m^2}{\omega_c^2/\omega^2 - (1 - m^2)}\right]$ When $\omega_{\infty} < \omega < \infty$, $\beta = 0$ and $\alpha = \cos^{-1}\left[1 - 2\frac{1/\omega_{\infty}^2 - 1/\omega_c^2}{1/\omega_{\infty}^2 - 1/\omega_c^2}\right]$ | For constant-
R ² = Z _{1k} Z _{2k}
For m-derives
Curves drawn | $= k^2$ I type | | $\alpha = \cosh^{-1} \left[1 - 2 \frac{1/\omega_{\infty}^2 - 1/\omega_c^2}{1/\omega_{\infty}^2 - 1/\omega^2} \right]$ $= \cosh^{-1} \left[1 - 2 \frac{m^2}{\omega_c^2/\omega^2 - (1 - m^2)} \right]$ | $R^2 = Z_{T2} Z_{\pi 1}$ $= Z_{1 \text{(series-}}$ | m) Z ₂ (shunt-m)
-m) Z ₂ (series-m) | # High-pass filter design ### type and half section ### impedance characteristics ### Constant-k $$Z_{\mathrm{T}k} = R \sqrt{1 - \frac{\omega_c^2}{\omega^2}}$$ $$Z_{\pi k} = \frac{R}{\sqrt{1 - \frac{\omega_c^2}{\omega^2}}}$$ ### Series m-derived $$Z_{T1} = Z_{Tk}$$ $$Z_{\pi 1} = \frac{R\left(1 - \frac{\omega_{\infty}^2}{\omega^2}\right)}{\sqrt{1 - \omega_c^2/\omega^2}}$$ $$= \frac{R\left[1 - \frac{\omega_c^2}{\omega^2}(1 - m^2)\right]}{\sqrt{1 - \omega^2/\omega^2}}$$ ### Shunt m-derived $$Z_{T2} = \frac{R\sqrt{1 - \omega_c^2/\omega^2}}{1 - \omega_{\infty}^2/\omega^2}$$ $$= \frac{R\sqrt{1 - \omega_c^2/\omega^2}}{1 - \frac{\omega_c^2}{\omega^2}(1 - m^2)}$$ $$= R^2/Z_{\pi 1}$$ $$Z_{\pi 2} = Z_{\pi k}$$ ### Notations: **Z** in ohms, α in nepers, and β in radians $\omega_c = 2\pi f_c =$ angular cutoff frequency $$= 1/\sqrt{L_k C_k}$$ $\omega_{\infty} = 2\pi f_{\infty} = \text{angular frequency of peak}$ $$m = \sqrt{1 - \omega_m^2/\omega_c^2}$$ R = nominal terminating resistance $$=\sqrt{L_k/C_k}$$ $=\sqrt{Z_{\mathrm{T}k}Z_{\pi k}}$ | | design | formulas | |---|--
---| | full-section attenuation $lpha$ and phase eta characteristics | half-section
series arm | half-section
shunt arm | | When $0 < \omega < \omega_c$ $\omega = 2 \cosh^{-1} \frac{\omega_c}{\omega}$ $\beta = -\pi$ $\alpha = 0$ $\alpha = 0$ $\beta = -2 \sin^{-1} \frac{\omega_c}{\omega}$ | $C_k = \frac{1}{\omega_c R}$ | $L_k = \frac{R}{\omega_c}$ | | | $C_1 = \frac{C_k}{m}$ | $L_2 = \frac{L_k}{m}$ $C_2 = \frac{m}{1 - m^2} C_1$ | | When $\begin{aligned} \omega_{\infty} < \omega < \omega_c \\ \beta = -\pi \text{ and} \end{aligned} \alpha = \cosh^{-1} \left[2 \frac{\omega_c^2 - \omega_{\infty}^2}{\omega^2 - \omega_{\infty}^2} - 1 \right] \\ = \cosh^{-1} \left[2 \frac{m^2}{\omega_c^2 - (1 - m^2)} - 1 \right] \end{aligned}$ When $0 < \omega < \omega_{\infty} \\ \beta = 0 \text{ and} \qquad \alpha = \cosh^{-1} \left[1 - 2 \frac{\omega_{\infty}^2 - \omega_c^2}{\omega_{\infty}^2 - \omega^2} \right]$ | $L_1 = \frac{m}{1 - m^2} L_k$ $C_1 = \frac{C_k}{m}$ | $L_2 = \frac{L_k}{m}$ | | $= \cosh^{-1} \left[1 + 2 \frac{m^2}{(1 - m^2) - \frac{\omega^2}{\omega_c^2}} \right]$ When $\omega_c < \omega < \infty$ $\alpha = 0 \text{ and} \qquad \beta = \cos^{-1} \left[1 - 2 \frac{\omega_{\infty}^2 - \omega_c^2}{\omega_{\infty}^2 - \omega^2} \right]$ | For constant- k $R^2 = Z_{1k}Z_{2k} =$ For m-derived | = k²
I type | | $= \cos^{-1} \left[1 + 2 \frac{m^2}{(1 - m^2) - \frac{\omega^2}{\omega_c^2}} \right]$ | 1 | m) Z _{2(shunt-m)}
m) Z _{2(series-m)} | # Band-pass filter design # **Notations:** The following notations apply to the charts on band-pass filter design that appear on pp. 170–179. Z in ohms, α in nepers, and β in radians $$\omega_1=2\pi f_1=$$ lower cutoff angular frequency $$\omega_2 = 2\pi f_2 = \text{upper cutoff angular frequency}$$ $$\omega_0 = \sqrt{\omega_1 \omega_2} = \text{midband angular frequency}$$ $$\omega_2 - \omega_1 = \text{width of pass band}$$ $$R = nominal terminating resistance$$ $$\omega_{1\infty} = 2\pi f_{1\infty} =$$ lower angular frequency of peak attenuation $$\omega_{2\infty} = 2\pi f_{2\infty} =$$ upper angular frequency of peak attenuation $$m_1 = \frac{\frac{\omega_1 \omega_2}{\omega_{2\infty}^3} g + h}{1 - \frac{\omega_{1\infty}^2}{\omega_{2\infty}^2}}$$ $$m_2 = \frac{g + h \frac{\omega_{1\omega_2}^2}{\omega_1 \omega_2}}{1 - \frac{\omega_{1\omega_2}^2}{\omega_2^2}}$$ ### type and half section ### impedance characteristics ### Constant-k $$Z_{Tk} = \frac{R\sqrt{(\omega_2^2 - \omega^2)(\omega^2 - \omega_1^2)}}{\omega(\omega_2 - \omega_1)}$$ $$Z_{\pi k} = \frac{R \ \omega(\omega_2 - \omega_1)}{\sqrt{(\omega_2^2 - \omega^2)(\omega^2 - \omega_1^2)}}$$ $Z_{T(\text{series-}m)} = Z_{Tk}$ $Z_{\pi(\text{shunt-}m)} = Z_{\pi k}$ for any one pair of m-derived half-sections | | frequen- | design formulas | | | | |---|------------------|----------------------------|--|--|--| | full-section attenuation $lpha$ and phase eta characteristics | cies of
peakα | half-section
series arm | half-section
shunt arm | | | | When $\omega_2 < \omega < \omega$, $\beta = \pi$ and $\alpha = 2 \cosh^{-1} \left[\frac{\omega^2 - \omega_0^2}{\omega(\omega_2 - \omega_1)} \right]$ When $0 < \omega < \omega_1$, $\beta = -\pi$ and $\alpha = 2 \cosh^{-1} \left[\frac{\omega^2 - \omega^2}{\omega(\omega_2 - \omega_1)} \right]$ | | | $L_{2k} = \frac{R(\omega_2 - \omega_1)}{\omega_0^2}$ $C_{2k} = \frac{1}{R(\omega_2 - \omega_1)}$ | | | | When $\omega_1 < \omega < \omega_2$, $\alpha = 0$ and $\beta = 2 \sin^{-1} \left[\frac{\omega^2 - \omega_0^2}{\omega(\omega_2 - \omega_1)} \right]$ | | | | | | # Band-pass filter design* continued # type and half section impedance characteristics 3-element series l $Z_{\mathbf{T}1} = Z_{\mathbf{T}k}$ $Z_{\pi 1} = \frac{R(\omega_2 + \omega_1)}{\omega} \sqrt{\frac{\omega^2 - \omega_1^2}{\omega_2^2 - \omega^2}}$ 3-element shunt l $Z_{\mathrm{T2}} = \frac{R\omega}{(\omega_2 + \omega_1)} \sqrt{\frac{\omega_2^2 - \omega^2}{\omega^2 - \omega_1^2}}$ C2 -L2 Z#2 $= R^2/Z_{\pi 1}$ $Z_{\pi 2} = Z_{\pi k}$ 3-element series II $Z_{T3} = Z_{Tk}$ L₂ }_{Zπ3} $Z_{\pi 3} = \frac{R\omega(\omega_2 + \omega_1)}{\omega_2^2} \sqrt{\frac{\omega_2^2 - \omega^2}{\omega^2 - \omega_1^2}}$ 3-element shunt II C, $Z_{\mathrm{T4}} = \frac{R\omega_2^2}{\omega(\omega_2 + \omega_1)} \sqrt{\frac{\omega^2 - \omega_1^2}{\omega_2^2 - \omega^2}}$ C2 = Z74 $= R^2/Z_{\pi 3}$ ^{*} See notations on pp. 170-171. | full-section | | | design formulas | | | |---|---|-------------------------------|---|---|--| | attenuation $lpha$ and phase eta characteristics | condi-
tions | frequen-
cies of
peak α | half-section
series arm | half-section | | | | $m_1 = 1$ $m_2 = \frac{\omega_1}{\omega_2}$ | | $L_1 = L_{1k}$ $C_1 = \frac{C_{1k}}{m_2}$ | $C_2 = \frac{1 - m_2}{1 + m_2} C_{2k}$ | | | When $0 < \omega < \omega_1$, $\beta = 0$ and $\alpha = \cosh^{-1}\left[1 - 2\frac{\omega^2 - \omega_1^2}{\omega_2^2 - \omega_1^2}\right]$ When $\omega_1 < \omega < \omega_2$, $\alpha = 0$ and $\beta = \cos^{-1}\left[1 - 2\frac{\omega^2 - \omega_1^2}{\omega_2^2 - \omega_1^2}\right]$ When $\omega_2 < \omega < \infty$, $\beta = \pi$ and $\alpha = \cosh^{-1}\left[2\frac{\omega^2 - \omega_1^2}{\omega_2^2 - \omega_1^2} - 1\right]$ | | $\omega_{2\infty} = \infty$ | $L_1 = \frac{1 - m_2}{1 + m_2} L_{1k}$ | $L_2 = \frac{L_{2k}}{m_2}$ $C_2 = C_{2k}$ | | | When $0 < \omega < \omega_1$, $\beta = -\pi$ and $\omega_1^2(\omega_2^2 - \omega^2)$ | $m_1 = \frac{\omega_1}{\omega_2}$ | $\omega_{1\infty} = 0$ | $L_1 = m_1 L_{1k}$ $C_1 = C_{1k}$ | $L_2 = \frac{1+m_1}{1-m_1} L_{2k}$ | | | $\alpha = \cosh^{-1} \left[2 \frac{\omega_1^2 (\omega_2^2 - \omega^2)}{\omega^2 (\omega_2^2 - \omega_1^2)} - 1 \right]$ When $\omega_1 < \omega < \omega_2$, $\alpha = 0$ and $\beta = \cos^{-1} \left[1 - 2 \frac{\omega_1^2 (\omega_2^2 - \omega^2)}{\omega^2 (\omega_2^2 - \omega_1^2)} \right]$ When $\omega_2 < \omega < \infty$, $\beta = 0$ and $\alpha = \cosh^{-1} \left[1 - 2 \frac{\omega_1^2 (\omega_2^2 - \omega^2)}{\omega^2 (\omega_2^2 - \omega_1^2)} \right]$ | m ₂ = 1 | = 1 | $C_1 = \frac{1+m_1}{1-m_1}C_{1k}$ | $L_2 = L_{2k}$ $C_2 = m_1 C_{2k}$ | | # Band-pass filter design* continued # type and half section 4-element series I $\begin{array}{c|c} & C_1 \\ \hline & C_2 \\ \hline Z_{T1} & C_2 \\ \hline \end{array}$ | | impedance | characteristics | |--|-----------------------------------|---| | $ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$ | Z _{τ1} , Z _{π1} | $Z_{T1} = Z_{Tk}$ $Z_{\pi 1} = \frac{1}{\omega(\omega_2)}$ $\times [(\omega^2 - \omega_1)^2]$ | $$Z_{T1} = Z_{Tk}$$ $$Z_{\pi 1} = \frac{R}{\omega [\omega_2 - \omega_1]} \sqrt{\frac{\omega_2^2 - \omega^2}{\omega^2 - \omega_1^2}}$$ $$\times [(\omega^2 - \omega_1^2) + m_1^2 (\omega_2^2 - \omega^2)]$$ ### 4-element shunt I | $Z_{T2} = \frac{R\omega(\omega_2 - \omega_1)}{(\omega^2 - \omega_1^2) + m_1^2(\omega_2^2 - \omega^2)} \times \sqrt{\frac{\omega^2 - \omega_1^2}{\omega_2^2 - \omega^2}}$ | |--| | $= R^2/Z_{\pi 1}$ | | $Z_{\pi 2} = Z_{\pi k}$ | ### 4-element series II | 213 — | ZTk | | |---------------|---------------------------------------|---| | $Z_{\pi 3} =$ | $\frac{R}{\omega(\omega_2-\omega_1)}$ | $\sqrt{ rac{\omega^2-{\omega_1}^2}{{\omega_2}^2-{\omega}^2}}$ | | | \times [($\omega_2^2 - \omega^2$ | $+m_1^2(\omega^2-\omega_1^2)$ | ### 4-element shont li $$Z_{T4} = \frac{R\omega(\omega_2 - \omega_1)}{(\omega_2^2 - \omega^2) + m_1^2(\omega^2 - \omega_1^2)} \times \sqrt{\frac{\omega_2^2 - \omega^2}{\omega^2 - \omega_1^2}} = R^2/Z_{\pi 3}$$ ^{*} See notations on pp. 170-171. | full-section | [| fre- | design f | ormulas | |---|--|--|---|---| | attenuation $lpha$ and phase eta characteristics | condi-
tions | quency of peak α | half-section
series arm | half-section | | When $\omega_1 < \omega < \omega_2$, $\alpha = 0$ and | $m_2 = \sqrt{\frac{1 -
\frac{\omega_1^2}{\omega_1^2}}{\frac{\omega_1^2}{\omega_2^2}}} m_1 = \frac{\omega_1}{\omega_2}$ | $\sqrt{\frac{\omega_1^2 - \omega_2^2 m_1^2}{1 - m_1^2}}$ | $L_1 = m_1 L_{1k}$ $C_1 = \frac{C_{1k}}{m_2}$ | $L_2 = \frac{1 - m_1^2}{m_1} L_{1k}$ | | $eta=\cos^{-1}A$ When $0<\omega<\omega_{1}\omega$, $eta=0$ and $lpha=\cosh^{-1}A$ When $\omega_{1}\omega<\omega<\omega_{1}$, $eta=-\pi$ and $lpha=\cosh^{-1}(-A)$ When $\omega_{2}<\omega<\infty$, $eta=0$ and $lpha=\cosh^{-1}A$ | $A = 1 - \frac{2}{1 + \frac{(\omega^2 - \omega_1^2)}{m_1^2(\omega_2^2 - \omega^2)}}$ | | $L_{1} = \frac{m_{2}}{1 - m_{2}^{2}} L_{2k}$ $C_{1} = \frac{1 - m_{1}^{2}}{m_{1}} C_{2k}$ | $L_2 = \frac{L_{2k}}{m_2}$ $C_2 = m_1 C_{2k}$ | | | $m_1 = \sqrt{\frac{1 - \frac{\omega_2^2}{\omega_2^2 \omega}}{1 - \frac{\omega_1^2}{\omega_2^2 \omega}}} \frac{m_1}{m_2} = \frac{\omega_2}{\omega_1}$ | $\sqrt{\frac{m_1^2 \omega_1^3 - \omega_2^2}{m_1^2 - 1}}$ | $L_1 = m_1 L_{1k}$ $C_1 = \frac{C_{1k}}{m_2}$ | $L_2 = \frac{1 - m_1^2}{m_1} L_{1k}$ $C_2 = \frac{m_2}{1 - m_2^2} C_{1k}$ | | When $\omega_2 < \omega < \omega_{2_{\infty}}$, $\beta = \pi$ and $\alpha = \cosh^{-1}(-B)$ When $0 < \omega < \omega_1$, $\beta = 0$ and $\alpha = \cosh^{-1}B$ When $\omega_1 < \omega < \omega_2$, $\alpha = 0$ and $\beta = \cos^{-1}B$ When $\omega_{2\infty} < \omega < \infty$, $\beta = 0$ and $\alpha = \cosh^{-1}B$ | $B = 1 - \frac{2}{1 + \frac{(\omega_2^2 - \omega^3)}{m_1^2(\omega^2 - \omega_1^3)}} \pi$ | ω ₂ ω = $\sqrt{\frac{m}{m}}$ | $L_1 = \frac{m_2}{1 - m_2^2} L_{2k}$ $C_1 = \frac{1 - m_1^2}{m_1} C_{2k}$ | $L_2 = \frac{L_{2k}}{m_2}$ $C_2 = m_1 C_{2k}$ | # Band-pass filter design* continued See notations on pp. 170-171. | full-section | 1 | fra- | design f | ormulas | |---|---|--|---|---| | attenuation α and phase β characteristics | condi-
tions | quency
of peakα | half-section
series arm | half-section
shunt arm | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $-\frac{\omega_1^2 \omega}{\omega_1^2} \left(1 - \frac{\omega_1^2 \omega}{\omega_2^2}\right)$ | $\frac{1-m_2^2}{+\omega_1^2-2\omega_0^2m_2}$ | $L_1 = l_{1k}$ $C_1 = \frac{C_1k}{n_s}$ | $L_{3} = \frac{L_{1} L}{m_{2}} \left[\frac{(\omega_{2} - \omega_{1})^{3}}{\omega_{0}^{3}} - \frac{(1 - m_{2})^{2}}{m_{1}} \right]$ $C_{2} =: C_{1} k / \left[\frac{(\omega_{2} - \omega_{1})^{2}}{\omega_{0}^{3}} - \frac{(1 - m_{2})^{2}}{m_{2}} \right]$ $C_{4}' = \frac{m_{2}}{1 - m_{2}^{2}} C_{1} k$ | | $\begin{split} \beta &= \cos^{-1} \left[1 - \frac{2(\omega^2 - \omega_0^2 m_2)^2}{\omega^2 (\omega_2^2 + \omega_1^2 - 2\omega_0^2 m_2) + \omega_0^4 (m_2^2 - 1)} \right] \\ \text{When } 0 &< \omega < \omega_{1\infty}, \beta = 0 \text{ and} \\ \alpha &= \cosh^{-1} \left[1 - \frac{2(\omega^2 - \omega_0^2 m_2)^2}{\omega^2 (\omega_2^2 + \omega_1^2 - 2\omega_0^2 m_2) + \omega_0^4 (m_2^2 - 1)} \right] \\ \text{When } \omega_{1\infty} &< \omega < \omega_1, \beta = -\pi \text{ and} \\ \alpha &= \cosh^{-1} \left[\frac{2(\omega^2 - \omega_0^2 m_2)^2}{\omega^2 (\omega_2^2 + \omega_1^2 - 2\omega_0^2 m_2) + \omega_0^4 (m_2^2 - 1)} - 1 \right] \\ \text{When } \omega_2 &< \omega < \infty, \beta = \pi \text{ and} \\ \alpha &= \text{same formula as for } 0 < \omega < \omega_{1\infty} \end{split}$ | $m_1 = 1$ $m_2 = \frac{\omega_1^2 \omega}{\omega_0^4} + \sqrt{\left(1 + \frac{\omega_1^2 \omega}{\omega_0^4} $ | \ | $L_1 = L_{2k} / \left[\frac{(\omega_2 - \omega_1)^2}{\omega_0^3} - \frac{(1 - m_2)^2}{m_2} \right]$ $C_1 = \frac{C_{2k}}{m_2} \left[\frac{(\omega_2 - \omega_1)^2}{\omega_0^3} - \frac{(1 - m_2)^2}{m_2} \right]$ $L_1' = \frac{m_2}{1 - m_2} L_{2k}$ | $L_1 = \frac{L_2 k}{m_1}$ $C_2 = C_2 k$ | | $\begin{array}{c} \bullet \\ $ | $- rac{\omega_1^2}{\omega_2^2 \infty}$ $\left(1- rac{\omega_2^3}{\omega_2^3 \infty} ight)$ | $-\frac{2\omega_0^2m_1}{m_1^2}$ | $L_1 = m_t L_{1k}$ $C_1 = C_{1k}$ | | | $\begin{split} \alpha &= \cosh^{-1} \left\{ 1 - \frac{2(\omega^2 m_1 - \omega_0^2)^2}{\omega^2 [\omega_2^2 + \omega_1^2 - 2\omega_0^2 m_1 + \omega^2 (m_1^2 - 1)]} \right\} \\ \text{When } 0 < \omega < \omega_1, \; \beta &= -\pi \; \text{and} \\ \alpha &= \cosh^{-1} \left\{ \frac{2(\omega^2 m_1 - \omega_0^2)^2}{\omega^2 [\omega_2^2 + \omega_1^2 - 2\omega_0^2 m_1 + \omega^2 (m_1^2 - 1)]} - 1 \right\} \\ \text{When } \omega_1 < \omega < \omega_2, \; \alpha &= 0 \; \text{and} \\ \beta &= \cos^{-1} \left\{ 1 - \frac{2(\omega^2 m_1 - \omega_0^2)^2}{\omega^2 [\omega_2^2 + \omega_1^2 - 2\omega_0^2 m_1 + \omega^2 (m_1^2 - 1)]} \right\} \\ \text{When } \omega_{2\infty} < \omega < \infty, \; \beta &= 0 \; \text{and} \\ \alpha &= \text{same
formula as for } 0 < \omega < \omega_1 \end{split}$ | $m_1 = \frac{\omega_0^2}{\omega_1^2 \omega} + \sqrt{\left(\frac{1}{2}\right)^2}$ $m_2 = 1$ | $\omega_{1\infty} = 0$ $\omega_{1\infty} = \sqrt{\omega_1^2 + \omega_1^2}$ $1 - 1$ | $L_1 = n_1 L_{2k} / \left[\frac{(\omega_2 - \omega_1)^2}{\omega_0^2} - \frac{(m_1 - 1)^2}{m_1} \right]$ $C_1 = C_{2k} \left[\frac{(\omega_1 - \omega_1)^2}{\omega_0^2} - \frac{(m_1 - 1)^2}{m_1} \right]$ $C_1' = \frac{1 - m_1^2}{m_1} C_{2k}$ | $l_3 = l_{2k}$ $C_3 = m_1 C_{2k}$ | # Band-pass filter design* continued ### type and half section ### impedance characteristics ### 6-element series $$Z_{\pi_1} = \frac{R}{\omega(\omega_2 - \omega_1)} \times \frac{(\omega_2^2 - \omega^2)(\omega^2 - \omega_1^2) + (\omega_0^2 m_2 - \omega^2 m_1)^2}{\sqrt{(\omega_2^2 - \omega^2)(\omega^2 - \omega_1^2)}}$$ ### 6-element shunt $$Z_{T2} = R^2/Z_{\pi}$$ $$Z_{\pi 2} = Z_{\pi k}$$ # full-section attenuation lpha and phase eta characteristics When $\omega_1 < \omega < \omega_2$, $\alpha = 0$ and $$\beta = \cos^{-1} \left[1 - \frac{2(\omega^2 m_1 - \omega_0^2 m_2)^2}{(\omega^2 m_1 - \omega_0^2 m_2)^2 + (\omega_1^2 - \omega^2)(\omega^2 - \omega_1^2)} \right]$$ When $$\omega_2 < \omega < \omega_{2\infty}$$, $\beta = \pi$ and $$\alpha = \cosh^{-1} \left[\frac{2(\omega^2 m_1 - \omega_0^2 m_2)^2}{(\omega^2 m_1 - \omega_0^2 m_2)^2 + (\omega_2^2 - \omega^2)(\omega^2 - \omega_1^2)} + 1 \right]$$ When $$0 < \omega < \omega_{1\infty}$$, $\beta = 0$ and $$\alpha = \cosh^{-1} \left[1 - \frac{2(\omega^2 m_1 - \omega_0^2 m_2)^2}{(\omega^2 m_1 - \omega_0^2 m_2)^2 + (\omega_2^2 - \omega^2)(\omega^2 - \omega_1^2)} \right]$$ When $$\omega_{1\infty} < \omega < \omega_1$$, $\beta = -\pi$ and $$\alpha = \cosh^{-1} \left[\frac{2(\omega^2 m_1 - \omega_0^2 m_2)^2}{(\omega^2 m_1 - \omega_0^2 m_2)^2 + (\omega_1^2 - \omega^2)(\omega^2 - \omega_1^2)} - 1 \right]$$ When $\omega_{2\infty} < \omega < \infty$, $\beta = 0$ and α = same formula as for $0 < \omega < \omega_{1\infty}$ design formulas | | | |--|--| | half-section series arm | half-section shunt arm | | | $L_2 = \frac{L_{1k}}{m_2} \left[\frac{(\omega_2 - \omega_1)^2}{\omega_0^2} - \frac{(m_1 - m_2)^2}{m_1 m_2} \right]$ | | $L_1 = m_1 L_{1k}$ | $L_2' = \frac{1 - m_1^2}{m_1} L_{1k}$ | | $C_1 = \frac{C_{1k}}{m_2}$ | $L_{2} = \frac{L_{1k}}{m_{2}} \left[\frac{(\omega_{2} - \omega_{1})^{2}}{\omega_{0}^{2}} - \frac{(m_{1} - m_{2})^{2}}{m_{1}m_{2}} \right]$ $L_{2}' = \frac{1 - m_{1}^{2}}{m_{1}} L_{1k}$ $C_{2} = \frac{m_{1}C_{1k}}{(\omega_{2} - \omega_{1})^{2}} - \frac{(m_{1} - m_{2})^{2}}{m_{1}m_{2}}$ $C_{2}' = \frac{m_{2}}{1 - m_{2}^{2}} C_{1k}$ | | | $C_{2}' = \frac{m_{2}}{1 - m_{2}^{2}} C_{1k}$ | | $L_1 = \frac{m_1 L_{2k}}{(\omega_2 - \omega_1)^2} \frac{(m_1 - m_2)^2}{m_1 m_2}$ | | | $C_1 = \frac{C_{2k}}{m_2} \left[\frac{(\omega_2 - \omega_1)^2}{\omega_0^2} - \frac{(m_1 - m_2)^2}{m_1 m_2} \right]$ | $L_2 = \frac{L_{2k}}{m_2}$ | | $L_1'=\frac{m_2}{1-m_2^2}L_{2k}$ | C ₂ = m ₁ C _{2b} | | $C_{1}' = \frac{1 - m_{1}^{2}}{m_{1}} C_{2k}$ | | | conditions | frequency of peak $lpha$ | |--|---| | $m_1 = \frac{\omega_2 \tilde{\omega}}{\omega_0}$ $m_2 = \frac{\omega_0}{\omega_0}$ | $\omega_{1\infty}^{2} + \omega_{2\infty}^{2} = \frac{\omega_{2}^{2} + \omega_{1}^{2} - 2\omega_{0}^{3}m_{1}m_{2}}{1 - m_{1}^{2}}$ | | $1 - \frac{\omega_1 \frac{2}{\omega_2}}{\omega_2 \frac{2}{\omega}} \qquad 1 - \frac{\omega_1 \frac{2}{\omega}}{\omega_2 \frac{2}{\omega}}$ | $\omega_{1\infty}^2 \times \omega_{2\infty}^2 = \omega_0^4 \left(\frac{1 - m_3^2}{1 - m_1^2} \right)$ | # Band-stop filter design ### **Notations** Z in ohms, α in nepers, and β in radians $\omega_1 = \text{lower cutoff angular frequency}$ $\omega_2 = \text{upper cutoff angular frequency}$ $\omega_0 = \sqrt{\omega_1 \omega_2} = 1/\sqrt{L_{1k}C_{1k}}$ $= 1/\sqrt{L_{2k}C_{2k}}$ $\omega_2 - \omega_1 = \text{width of stop band}$ $\omega_{1\infty} = \text{lower angular frequency}$ of peak attenuation $$\begin{array}{ll} \omega_{200} &= \text{upper angular frequency of} \\ \text{peak attenuation} \\ R &= \text{nominal terminating resistance} \\ R^2 &= \frac{L_{1k}}{C_{2k}} = \frac{L_{2k}}{C_{1k}} \\ &= Z_{1k}Z_{2k} = Z_{Tk}Z_{\pi k} = k^2 \\ &= Z_{1}\text{(series-m)} \ Z_{2(\text{abunt-m})} \\ &= Z_{2(\text{series-m})} \ Z_{1(\text{abunt-m})} \\ &= Z_{T2} \ Z_{\pi 1} \end{array}$$ # Band-stop filter design* continued ## type and half section # impedance characteristics #### Constant-k $$Z_{Tk} = \frac{R\sqrt{(\omega^2 - \omega_1^2)(\omega^2 - \omega_2^2)}}{(\omega_0^2 - \omega^2)}$$ $$Z_{Tk} = \frac{R(\omega_0^2 - \omega^2)}{\sqrt{(\omega^2 - \omega_1^2)(\omega^2 - \omega_2^2)}}$$ For the pass bands, use $\mid \omega_0^2 - \omega^2 \mid$ in the above formulas ### Series m-derived $Z_{T1} = Z_{Tk}$ $Z_{\pi 1} = \begin{cases} 1 - (1 - m^2) \left[\frac{\omega(\omega_2 - \omega_1)}{\omega_0^2 - \omega^2} \right]^2 \\ \sqrt{1 - \left[\frac{\omega(\omega_2 - \omega_1)}{\omega_0^2 - \omega^2} \right]^2} \end{cases}$ curves drawn for m = 0.6 ## Shunt m-derived $$Z_{\rm T2} = \frac{R^2}{Z_{\pi}}$$ $Z_{\pi 2} = Z_{\pi k}$ curves drawn for m = 0.6 ^{*} See notations on preceding page. | full-section | | freq
of | design formulas | | |---|---|------------|--|--| | attenuation $lpha$ and phase eta characteristics | condi-
tions | | half-section
series arm | hatf-section
shunt arm | | $\begin{array}{c} \text{When } \omega = \omega_0 \\ \alpha = \infty \\ \text{When } \omega_0 < \omega < \omega_2 \\ \omega = \omega \\ \text{When } \omega_0 < \omega < \omega_2 \\ \alpha = 2 \cosh^{-1} \frac{\omega(\omega_2 - \omega_1)}{\omega^2 - \omega^2} \\ \beta = -\pi \\ \text{When } \omega_1 < \omega < \omega_0 \\ \alpha = 2 \cosh^{-1} \frac{\omega(\omega_2 - \omega_1)}{\omega_0^2 - \omega^2} \\ \text{When } \omega_1 < \omega < \omega_0 \\ \alpha = 2 \cosh^{-1} \frac{\omega(\omega_2 - \omega_1)}{\omega_0^2 - \omega^2} \\ \beta = \pi \end{array}$ | | 1 11 | $L_{1k} = \frac{R(\omega_2 - \omega_1)}{\omega_1 \omega_2}$ $C_{1k} = \frac{1}{R(\omega_2 - \omega_1)}$ | | | $\beta = 0$ 0 0 0 0 0 0 0 0 0 | $\frac{-\omega_{1\infty})^{\frac{2}{3}}}{-\omega_{1}!^{\frac{2}{3}}}$ | | C C1k | $L_2 = \frac{1 - m^2}{m} L_{1k}$ $C_2 = \frac{m}{1 - m^2} C_{1k}$ $L_2' = \frac{L_{2k}}{m}$ $C_2' = mC_{2k}$ | | When $\omega_2 < \omega < \infty$, $\alpha = 0$ and $\beta = \text{same formula as for } 0 < \omega < \omega_1$ When $\omega_{2\infty} < \omega < \omega_2$, $\beta = -\pi$ and $\alpha = \text{same formula as for } \omega_1 < \omega < \omega_{1\infty}$ When $0 < \omega < \omega_1$, $\alpha = 0$ and $\beta = \cos^{-1} \left[1 - \frac{2\omega^2 m^2 (\omega_2 - \omega_1)^2}{(\omega^2 - \omega_1^2) (\omega^2 - \omega_2^2) + \omega^2 m^2 (\omega_2 - \omega_1)^2} \right]$ When $\omega_1 < \omega < \omega_{1\infty}$, $\beta = \pi$ and $\alpha = \cosh^{-1} \left[\frac{2\omega^2 m^2 (\omega_2 - \omega_1)^2}{(\omega^2 - \omega_1^2) (\omega^2 - \omega_2^2) + \omega^2 m^2 (\omega_2 - \omega_1)^2} - 1 \right]$ When $\omega_{1\infty} < \omega < \omega_{2\infty}$, $\beta = 0$ and $\alpha = \cosh^{-1} \left[1 - \frac{2\omega^2 m^2 (\omega_2 - \omega_1)^2}{(\omega^2 - \omega_1^2) (\omega^2 - \omega_2^2) + \omega^2 m^2 (\omega_2 - \omega_1)^2} \right]$ | $m = \sqrt{1 - \frac{(\omega_{200})^2}{(\omega_2)^2}}$ | | $L_{1} = mL_{1k}$ $C_{1} = \frac{C_{1k}}{m}$ $L_{1}' = \frac{m}{1 - m^{2}} L_{2k}$ $C_{1}' = \frac{1 - m^{2}}{m} C_{2k}$ | | # Building up a composite filter Fig. 2-Method of building up a composite filter. Fig. 3—Effect of design parameter m on the image-impedance characteristics in the pass bond. # Building up a composite filter continued The intermediate sections (Fig. 2) are matched on an image-impedance basis, but the attenuation characteristics of the sections may be varied by suitably choosing the infinite attenuation frequencies of each section. Thus, the frequencies attenuated only slightly by one section may be strongly attenuated by other sections. However, the image impedance will
be far from constant in the passband and therefore the use of true resistors for terminations will change the attenuation shape. Some improvement in the uniformity of the image impedance is obtained by using suitably designed terminating half sections. For these terminating sections, a value of $m \approx 0.6$ is usually used (Fig. 3). # Example of low-pass image-parameter design To cut off at 15 kilocycles/second; to give peak attenuation at 30 kilocycles; with a load resistance of 600 ohms; and using a constant-k midsection and an *m*-derived midsection. Full T-sections will be used. ### Constant-k midsection $$L_{k} = \frac{R}{\omega_{c}} = \frac{600}{(6.28) (15 \times 10^{3})} = 6.37 \times 10^{-3} \text{ henry}$$ $$C_{k} = \frac{1}{\omega_{c}R} = \frac{1}{(6.28) (15 \times 10^{3}) (600)} = 0.0177 \times 10^{-6} \text{ farad}$$ $$\alpha = 2 \cosh^{-1} \frac{\omega}{\omega_{c}} = 2 \cosh^{-1} \frac{f}{15}$$ $$\beta = 2 \sin^{-1} \frac{\omega}{\omega_{c}} = 2 \sin^{-1} \frac{f}{15}$$ where α is in nepers, β in radians, and f in kilocycles. ### m-derived midsection $$m = \sqrt{1 - \omega_c^2/\omega_{\infty}^2} = \sqrt{1 - 15^2/30^2}$$ $$= \sqrt{0.75} = 0.866$$ $$L_1 = mL_k = 0.866 (6.37 \times 10^{-3})$$ $$= 5.52 \times 10^{-3} \text{ henry}$$ # Example of low-pass image-parameter design $$L_2 = \frac{1 - m^2}{m} L_k = \left[\frac{1 - (0.866)^2}{0.866} \right] (6.37 \times 10^{-3}) = 1.84 \times 10^{-3} \text{ henry}$$ $$C_2 = mC_k = 0.866 (0.0177 \times 10^{-6}) = 0.0153 \times 10^{-6} \text{ farad}$$ $$\alpha = \cosh^{-1} \left[1 - \frac{2m^2}{\frac{\omega_c^2}{\omega^2} - (1 - m^2)} \right] = \cosh^{-1} \left[1 - \frac{1.5}{\frac{225}{f^2} - 0.25} \right]$$ $$\beta = \cos^{-1} \left[1 - \frac{2m^2}{\frac{\omega_c^2}{\omega^2} - (1 - m^2)} \right] = \cos^{-1} \left[1 - \frac{1.5}{\frac{225}{f^2} - 0.25} \right]$$ # End sections m = 0.6 $$L_1 = mL_k = 0.6 (6.37 \times 10^{-3})$$ = 3.82×10^{-3} henry $$L_2 = \frac{1 - m^2}{m} L_k$$ $$C_2 = mC_k = 0.6 (0.0177 \times 10^{-6}) = 0.0106 \times 10^{-6} \, {\rm farad}$$ # Frequency of peak attenuation f_{∞} $$f_{\infty} = \sqrt{\frac{f_c^2}{1 - m^2}} = \sqrt{\frac{(15 \times 10^3)^2}{1 - (0.6)^2}} = 18.75 \text{ kilocycles}$$ # Filter showing individual sections # Example of low-pass image-parameter design continued ## Filter after combining elements Image-terminated attenuation of each section. Solid line = constant-k midsection. Dashed = m-derived midsection. Dash-dot = m-derived ends. # Image attenuation and phase characteristics Given at the right and on the following page are the image-terminated attenuation and phase characteristics. These shapes are not obtainable when 600-ohm resistors are used in place of the terminating Z_0 . Image-terminated attenuation of composite filter. # Example of low-pass image-parameter design continued Image-terminated phase characteristic of each section. Solid line = constant-k midsection. Dashed = M-derived midsection. Dash — dat = mderived ends. f = frequency in kilocycles/second Image-terminated phase characteristic of composite filter. # Impedance required for proper termination # Filters, modern-network-theory design The design information in this chapter results from the application of modern network theory to electric wave filters. Only design results are supplied and a careful study of the references cited will be required for an understanding of the synthesis procedures that underlie these results. # Limitations of image-parameter theory Consider the simple low-pass ladder network of Fig. 1A. Two simultaneous design equations, (1) and (2), are provided by classical image-parameter theory (p. 165). $$(Z_1/4Z_2)_{f=fc} = -1 \text{ and } 0$$ (1) $$Z_{0r} = (Z_1 Z_2)^{1/2} \left[1 + (Z_1/4Z_2) \right]^{1/2} \tag{2}$$ Z_1 and Z_2 , the full series- and shunt-arm impedances, respectively, must be suitably related to make (1) true at the desired cutoff frequencies and the generator and load impedance must satisfy (2). Under the image-parameter theory, the resulting attenuation for the low-pass case is $$V_p/V = 1.0, \qquad (\omega/\omega_c) < 1$$ $$= \exp\left[(n-1)\cosh^{-1}(\omega/\omega_c)\right], \qquad (\omega/\omega_c) > 1$$ (3) Fig. 1—A 7-element low-pass filter considered on the basis of image-parameter theory at A and of modern network theory at B. # Limitations of image-parameter theory continued where n is the number of arms in the network of Fig. 1 and V_p/V and ω are as in Fig. 3. It is this attenuation shape that is plotted in the tabulations of chapter 6. Equation (1) offers no problems. The application of (2) to Fig. 1 demands terminating impedances that are physically impossible with a finite number of elements. The generator and load impedances for Fig. 1A must be pure resistances of $(L/C)^{1/2}$ ohms at zero frequency. As frequency increases, the value of resistance must decrease to a short-circuit at the cutoff frequency, and with further increase in frequency must behave like a pure inductance starting at zero value at the cutoff frequency and increasing to L/2 at infinite frequency. The physical impracticability of devising such terminating impedances is why element values obtained by (1) cannot simultaneously satisfy (2). The relative attenuation indicated by (3) is similarly incorrect and cannot be realized in practice. Lattice-configuration filters also require impractical terminating impedances when designed by image-parameter theory. (Constant-resistance lattices are an exception but are seldom used for filtering.) The practical use of resistive terminations automatically makes element values computed on the basis of ideal impedance terminations incorrect. For more than three decades, filters have been designed according to the image-parameter theory. Their commercial acceptance is due in no small part to the highly approximate requirements for most filters. Where more-exact characteristics are required, shifting of element values in the actual filter has usually resulted in an acceptable design. For precise amplitude and phase response in the pass band, the simple and approximate solutions obtained through image-parameter theory must give way to equations based on modern network theory. # Modern-network-theory design #### Relative attenuation A typical low-pass filter with resistive generator and load is shown in Fig. 1B. It is composed of lumped inductors, capacitors, and the resistive elements unavoidably associated therewith. The circuit equations for the complete network can be written by the application of Kirchhoff's laws. Modern network theory does just this and then solves the equations to find the network parameters that will produce optimum performance in some desired respect. # Modern-network-theory design continued A block diagram of a generalized filter is illustrated in Fig. 2. This may be of low-pass, high-pass, band-pass, band-rejection, phase-compensating, or other type. The elements of the filter include resistors, capacitors, self- and mutual-inductors, and possibly coupling elements such as electron tubes or transistors, all according to the design. The terminations shown are a constant-voltage generator (the same voltage at all frequencies) with a series resistor at the input and a resistive load. (Frequently it is preferable to stipulate a constant-current generator with a shunt conductance.) The generator and load resistors need not be equal and they can be assigned any value between zero and infinity. Characteristic impedance Fig. 2—Block diagram of a filter with generator and load. plays no part in the modern network theory of filters. Either or both the generator or load can be reactive, in which case the reactances are absorbed inside the block of Fig. 2 as specified parts of the filter. Either, but not both, R_a or R_b can be zero or infinite. The term bandwidth as used herein has two different meanings, according to the type of filter. For low- or high-pass filters, it is synonymous with the actual frequency of the point in question, or equivalent to the number of cycles per second in a band terminated on one side by zero frequency and on the other by the actual frequency. The actual frequency can be anywhere in the pass or the reject region. For symmetrical band-pass (Fig. 4) and band-reject filters, it is the difference in cycles per second between two particular frequencies (anywhere in the pass or reject regions) with the requirement that their geometrical mean be equal to the geometrical midfrequency f_0 of the pass or reject band. A typical filter characteristics is plotted in Fig. 3 for a low-pass filter. In Fig. 3A, the magnitude of the output voltage V is plotted against radian bandwidth ω . Several specific points are indicated on the diagram. V_p is the peak voltage output, while V_m is the maximum voltage that could be developed across the load were it matched to the generator through an ideal network. Symbol ω_{β} designates a specified frequency or bandwidth where some particular characteristic is exhibited by the filter, such as the point where the response is 3 decibels down from the peak, for example. # Modern-network-theory design continued The characteristic of major interest to the filter engineer is the plot, shown in Fig. 3B, of relative attenuation versus relative bandwidth. Relative attenuation is defined as the ratio of the peak output voltage V_p to the voltage output V at the frequency being considered. Relative bandwidth is defined as the ratio of the bandwidth being considered to a clearly specified reference bandwidth (e.g., the 3-decibel-down bandwidth). It should be noted that the elements of a filter are not uniquely fixed if only a certain relative attenuation shape is specified; in general it is possible also to demand that at one frequency the absolute magnitude of some transfer function be optimized. The complex relative attenuation of a complete
filter (including generator and load) composed of lumped linear passive elements is always equal to a constant multiplied by the ratio of two polynomials in $(i\omega)$. Modern filter theory has derived various expressions for optimum relative attenuation shapes that can be physically realized from these complex expressions. The shapes are optimum in that they give the maximum possible rate of cutoff between the accept and reject bands for a given number of filter components, with a specified allowable equal ripple in the accept band, and a specified required equal ripple in the reject band. See Fig. 4 for typical shapes of attenuation characteristic for band-pass filters. The phase and transient response, in a majority of filter applications, are not as important as the amplitude response. Most of the following treatment refers to this latter type of problem. Fig. 3—Low-pass-filter output voltage versus frequency at A; attenuation versus normalized frequency at B. A is the actual voltage across the load as a function of frequency and is far the low-pass case. B uses the information in A to produce a plot of relative attenuation against relative bandwidth. # equivalent configurations The attenuation-curve shapes illustrated in Figs. 4A and 4B are termed Chebishev and that in Fig. 4C is termed Butterworth. The equations for these Fig. 4—A, B, C, are the optimum relative attenuation shapes of (4) and (5) that can be produced by constant-K-type networks. D, E, F, are the optimum relative attenuation shapes of (8), (12), (13), (16) that can be derived by M-derived-type networks. shapes are (4) and (5), respectively. The Butterworth shape is the same as the limiting case of the Chebishev shape when we set $V_p/V_v=1.0$. #### Chebishev: $$\left(\frac{V_p}{V}\right)^2 = 1 + \left[\left(\frac{V_p}{V_p}\right)^2 - 1\right] \cosh^2\left(n \cosh^{-1}\frac{x}{x_p}\right) \tag{4}$$ #### **Butterworth:** $$\left(\frac{V_p}{V}\right)^2 = 1 + \left(\frac{x}{x_{3db}}\right)^{2n} \tag{5}$$ where V = output voltage at point x $V_p = \text{peak output voltage in pass band}$ # Chebishev and Butterworth performance with constant- \boldsymbol{K} and # equivalent configurations continued -3₹ V_v = valley output voltage in pass band n = number of poles, equal to the number of arms in the ladder network being used. For low-pass and high-pass filters, n = number of repart actances in the filter. For band-pass and band-reject, n = total number of resonators in the filter. x = a variable found in the following tabulations. x_* = value of x at point on skirt where attenuation equals valley attenuation. x_{3db} = value of x at point on skirt where attenuation is 3 decibels below V_{p} . ## Significance of x Low-pass filters: $$x = \omega = 2\pi f$$ High-pass filters: $$x = -1/\omega = -1/2\pi f$$ Symmetrical band-pass filters: $$x = (\omega/\omega_0 - \omega_0/\omega) = (f_2 - f_1)/f_0 = (bw)/f_0$$ Symmetrical band-reject filters: $$x = -1/(\omega/\omega_0 - \omega_0/\omega) = -f_0/(bw)$$ where $$f_0 = (f_1 f_2)^{1/2} = \text{midfrequency of the pass or reject band}$$ f_1 , f_2 = two frequencies where the characteristic exhibits the same attenuation. Working charts for these filters, derived from (4) and (5) are presented in Figs. 5 to 10 for value of n from 2 to 7, respectively. These curves give $$(V_p/V)_{db} = 20 \log_{10} (V_p/V)$$ versus x/x_{3db} For low-pass and band-pass filters, $$x/x_{3db} = (bw)/(bw)_{3db}$$ # equivalent configurations continued Fig. 5—Relative attenuation for a 2-pole network. (bw)/(bw)_{adb} for low-pass and band-pass (bw)_{sdb}/(bw) for high-pass and band-reject 60 curves continue at 18db per octave 57 54 51 48 45 42 39 36 2.4 33 2.2 30 2.0 $\left(\frac{V_{\rho}}{V_{\nu}}\right)_{db}$ q_{\min} 27 8.1 ō 2.0 0.01 2 2.3 24 1.6 3 0.1 2.8 4 0.3 3.4 21 1.0 5 4.5 3.0 6.6 18 1.2 15 1.0 12 0.8 0.6 6 0.4 3 0.2 0.4 0.5 0.7 9.8 0.9 1.0 (bw)/(bw) $_{\rm 3db}$ for low-pass and band-pass Fig. 6-Relative attenuation for a 3-pole network. (bw)_{adb}/(bw) for high-pass and band-reject Fig. 7—Relative attenuation for a 4-pole network. Fig. 8-Relative attenuation for a 5-pole network. Fig. 9—Relative attenuation for a 6-pole network. Fig. 10—Relative attenuation for a 7-pole network. # equivalent configurations continued For high-pass and band-reject filters, the scale of the abscissa gives (bw) 3db/(bw) On each chart, Figs. 5 to 10, the family of curves toward the right side gives the attenuation shape for points where it is less than 3 decibels, while those toward the left are for the reject band (greater than 3 decibels). Each curve of the former family has been stopped where the attenuation is equal to that of the peak-to-valley ratio. Thus, in Fig. 5, curve 3 has been stopped at 0.3 decibel, which is the value of $(V_p/V_v)_{\rm db}$ for which the curve was computed. (See table on chart, Fig. 5). The curves give actual optimum attenuation characteristics based on rigorous computation of the ladder network. In contrast, the commonly used attenuation curves based on "image-parameter theory" are approximations that are actually unattainable in practice. ## Low- and band-pass filters—required unloaded Q Constant-K and equivalent filters can be constructed that will actually give the attenuation shapes predicted by modern network theory. To attain this result, it is required that the unloaded Q of each element be greater than a certain minimum value*. The q_{\min} column on each chart is used in the following manner to obtain this minimum allowable value: For the internal reactances of low-pass circuits, $$Q_{\min} = q_{\min}$$ For the internal resonators of band-pass circuits, $$Q_{\min} = q_{\min} \left[f_0 / (bw)_{3db} \right]$$ ^{*} S. Darlington, "Synthesis of Reactance 4-Poles," Journal of Mathematics and Physics, vol. 18, pp. 257-353; September, 1939. Also, M. Dishol, "Design of Dissipative Bond-Pass Filters Producing Desired Exact Amplitude-Frequency Characteristics," Proceedings of the IRE, vol. 37, pp. 1050-1069; September, 1949: also, Electrical Communication, vol. 27, pp. 56–81; March, 1950. Also, M. Dishal, "Concerning the Minimum Number of Resonators and the Minimum Unloaded Q Needed in a Filter," Transactions of the IRE Professional Group on Vehicular Communication, vol. PGVC-3, pp. 85–117; June, 1953: also, Electrical Communication, vol. 31, pp. 257–277; December, 1954. ### Examples **a.** In a low-pass filter without any peaks of infinite attenuation at a finite frequency, how few elements are required to satisfy the following specifications, and what minimum Q must they have? Response to be 1 decibel down at 30 kilocycles, and 50 decibels down at not more than 75 kilocycles, compared to the peak response. The allowable ripple is 1 decibel in the pass band. Then, $$(bw)_{50db}/(bw)_{1db} < 75/30 = 2.5$$ $$(V_p/V_p)_{db} \leq 1.0$$ decibel Since (bw) $_{1db}$ will be slightly less than (bw) $_{3db}$, we must have (bw) $_{50db}/$ (bw) $_{3db}$ a little less than 2.5 when $(V_p/V)_{db}=50$ decibels. Consulting the charts, Figs. 5 to 10, and examining curves for $(V_p/V_v)_{db}=1.0$, it is found that a 5-pole network (Fig. 8) is the least that will meet the requirements. Here, curve 6 gives $$(bw)_{50db}/(bw)_{3db} = 2.14$$ while $(bw)_{1db}/(bw)_{3db} = 0.97.$ Then $$(bw)_{50db}/(bw)_{1db} = 2.14/0.97 = 2.20$$ The 3-decibel frequency will be 30 (bw)_{3db}/(bw)_{1db} = $$30/0.97 = 31$$ kilocycles At this frequency, the Q of each capacitor and inductor must be at least equal to $Q_{\min} = 11.8$ as shown in the table on Fig. 8. **b.** Consider a band-pass filter with requirements similar to the above: bandwidth 1-decibel down to be 30 kilocycles, 50 decibels down at 75 kilocycles bandwidth, and 1-decibel allowable ripple. Further, let the midfrequency be $f_0 = 500$ kilocycles. The solution at first is the same as above, and a 5-pole network is required. # equivalent configurations continued The 3-decibel bandwidth is 31 kilocycles and the Q of each resonator must be at least $$11.8 f_0 / (bw)_{3db} = 11.8 \times 500/31 = 190$$ where 11.8 is q_{\min} as read from the table on Fig. 8. If a Q of 190 is not practical to attain, a greater number of resonators can be used. Suppose 7 resonators or poles are tried, per Fig. 10. Then curve 2 gives $$(bw)_{50db}/(bw)_{1db} = 2.10/0.93 = 2.26.$$ The table shows the peak-to-valley ratio of 10^{-6} decibel and $q_{\min}=5.9$. The 3-decibel bandwidth is 30/0.93=32.2 kilocycles. Then, the minimum Q of each resonator can be $5.9\times500/32.2=92$, which is less than half that required if 5 resonators are used. **c.** In the band-pass filter, suppose the filter is subdivided into N identical stages in cascade, isolated by electron tubes or decoupling capacitors or resistors. For each stage the response requirements are the original number of decibels divided by N. For N=2 stages, $$(bw)_{25db}/(bw)_{0.5db} < 2.5$$ $$(V_p/V_v)_{db} \leqslant 0.5 \text{ decibel}$$ Proceeding as before, it is found that a 3-pole network (Fig. 6) for each stage will just suffice, curve 4 giving $$(V_n/V_n)_{db} = 0.3$$ and $$(bw)_{25db}/(bw)_{0.5db} = 2.1/0.84 = 2.5$$ To find the required minimum ${\sf Q}$ of each of the 6 resonators, the 3-decibel bandwidth of each stage is $$30/0.84 = 35.8$$ kilocycles For curve 4, $q_{\min}=3.4$, so the minimum allowable Q for each resonator is $$3.4 \times 500/35.8 = 47.5$$ # Maximally linear phase response In the design of filters where the linearity of the phase characteristic inside the pass band is important, certain changes in design are necessary compared # equivalent configurations continued to the previously considered cases. For constant-K-type filters, rate of change of phase with frequency becomes more-and-more linear as the number of arms is increased, provided the design produces a complex relative attenuation characteristic given by the polynomical of (6^*) . $$\frac{\mathbf{V}_{p}}{\mathbf{V}} = \frac{n!}{(2n)!}
\sum_{r=0}^{n} \frac{2^{r} (2n-r)!}{r! (n-r)!} \left(j \frac{x}{x_{\beta}} \right)^{r}$$ (6) where r is a series of integers and the other symbols are described under (5). The magnitude of (6) is plotted in Figs. 11 and 12 for several values of n. The former is for the relative attenuation inside the 3-decibel points and the latter for the response outside these points. The curves for $n = \infty$ are plotted from (7), which is the Gaussian shape that the attenuation characteristic approaches as n approaches infinity. $$10 \log (V_p/V)^2 = 3 (x/x_{3db})^2$$ (7) With a constant-K-configuration network that produces only poles, a maximally linear phase response can be produced only at the limitation of a rounded attenuation shape in the pass band as illustrated in Figs. 11 and 12. The column labeled q_{\min} on Fig. 11 gives the minimum allowable Q, measured at the 3-decibel-down frequency, of the inductors and capacitors of a low-pass filter. For band-pass filters, the minimum allowable unloaded Q at the midfrequency f_0 is $q_{\min} f_0/(bw)_{3db}$. For the phase response figures on Fig. 11, the symbols are as follows. # Low-pass filter $t_0 = d\theta/d\omega$ = slope of phase characteristic at zero frequency in radians per radian per second. $t_{3db} = slope at f_{3db}$ f_{3db} = frequency of 3-decibel-down response # Band-pass filter $t_0 = \text{slope}$ at midfrequency t_{3db} = slope at 3-decibel-down bandwidth $f_{3db} = \frac{1}{2} \text{ (bw)}_{3db}$ = one-half the total 3-decibel bandwidth ^{*} W. E. Thomson, "Networks with Maximally Flat Delay," Wireless Engineer, vol. 29, pp. 256-263; October, 1952. # equivalent configurations continued The column $(t_0 - t_{3db})$ f_{3db} shows the group-delay distortion over the pass band. It shows numerically that the phase slope becomes much more constant as the number of elements is increased, in a filter designed for this purpose. Fig. 11—Attenuation shape within the 3-decibel-down pass band for n-pole flat-time-delay filters. Fig. 12—Attenuation shape beyond 3-decibel-down pass band for π-pole flat-time-delay filters. # M-derived and equivalent filters Typical attenuation curves for M-derived filters are shown in Figs. 4D, E, F. The modern network theory of these filters has been treated by Norton and Darlington.* The attenuation shapes produced may be called elliptic and inverse-hyperbolic and are optimum in the sense that the rate of cutoff between the accept and reject bands elliptic-function shape. $$\left(\frac{V_p}{V}\right)^2 = 1 + \left[\left(\frac{V_p}{V_v}\right)^2 - 1\right] cd_v^2 \left[n \frac{K_v}{K_f} cd_f^{-1}\left(\frac{x}{X_v}\right)\right]$$ (8) where cd = (cn/dn), the ratio of the two elliptic functions on and dn^{\dagger} n= number of poles, or arms in the M-derived configuration x = a bandwidth variable described under (5) K_v , K_f = complete elliptic integrals of the first kind, evaluated for the modulus value given by the respective subscript. Referring to the symbols on Fig. 4, the moduli v and f are given in (9) and (10). $$v = \left[\frac{(V_p/V_v)^2 - 1}{(V_p/V_b)^2 - 1} \right]^{1/2} \tag{9}$$ $$f = x_v/x_n = (bw)_v/(bw)_h \tag{10}$$ These are not independent, but must satisfy the equation $$\log q_v = n \log q_f \tag{11}$$ where q_k is called the modular constant of the modulus value k, the latter being equal to v or f, respectively. A tabulation of log q is available in the literature. \ddagger In the limit, when $V_p/V_v=1.0$ or zero decibels (Fig. 4F), the ripples in the accept band vanish. Then (8) reduces to the inverse hyperbolic shape of (12). $$\left(\frac{V_p}{V}\right)^2 = 1 + \frac{(V_p/V_h)^2 - 1}{\cosh^2\left[n\cosh^{-1}(x_h/x)\right]}$$ (12) Curves plotted from (8) and (12) are presented in Figs. 13 to 18. Those labeled $V_p/V_v=0$ decibels, for n poles, m zeros, are plotted from (12) ^{*} S. Darlington, "Synthesis of Reactance 4-Poles" Journal of Mathematics and Physics, vol. 18, pp. 257–353; September, 1939. [†] G. W. and R. M. Spencely, "Smithsonian Elliptic Function Tables," (Publication 3863), Smithsonian Institution; Washington, D. C.: 1947. [‡] E. Jahnke and F. Emde, "Table of Functions with Formulas and Curves," 4th Edition, Dover Publications; New York, N. Y., 1945; see pp. 49–51. Fig. 13-Maximum rate of cutoff for 2-pole and for 2-pole 2-zero filters. Fig. 14---Maximum rate of cutoff for 3-pole and for 3-pole 2-zero filters. while the others are from (8). For the M-derived shapes, n = the number of poles = the number of arms in the ladder network. When n is an even number, the number of zeros m = n. When n is odd, m = n - 1. The following description of Fig. 13 can be extended to cover the entire group of figures mentioned above. The maximum rates of cutoff obtainable with 2-pole no-zero and 2-pole Fig. 15—Maximum rate of cutoff for 4-pole and for 4-pole 4-zero filters. 2-zero networks are plotted in Fig. 13 for several ratios of V_p/V_v . Two insert sketches drawn in the figure show typical shapes of the attenuation curves for these two cases. The main curves give the relative coordinates of only two points on the skirt of the attenuation curve. These two points are the 3-decibel-down bandwidth and the "hill bandwidth" (where the response first equals that of the "response hills", where occur the uniform minimum (bw)_{3dp}/(bw), for high-pass and band-reject Fig. 16—Maximum rate of cutoff for 5-pole and for 5-pole 4-zero filters. attenuation in the reject band). Thus each point specifies a different relative attenuation shape. Comparison of the curves for 2-poles no-zero with those for 2 poles 2 zeros shows the improvement in cutoff rate that is obtainable when zeros are correctly added to the network. More complete attenuation information on the 2-pole no-zero configuration has been presented on Fig. 5. Again, it is stressed that data of Figs. 5 and 13 represent the actual attenuation Fig. 17—Maximum rate of cutoff for 6-pole and for 6-pole 6-zero filters. continued shapes and rate of cutoff attainable with filters using finite-Q elements (except for a rounding off of the infinite attenuation peaks). In contrast, the rates of cutoff and the attenuation shapes predicted by the simple "image" theory are unobtainable in physically realizable networks. The rates of cutoff shown are the best that are possible of attainment with the specified number of poles and zeros, and with equal-ripple-type behavior. Fig. 18—Maximum rate of cutoff for 7-pole and 7-pole 6-zero filters. # Resistive terminations and n even It is evident from the attenuation shapes of Figs. 13, 15, and 17 that for an M-derived network having an even number of arms, the optimum shape Fig. 19—Maximum rate of cutoff for 4-pole and 4-pole 2-zero filters. given by (8) produces a finite attenuation at an infinite frequency. This requires a completely reactive termination at one end of the network. If resistive terminations must be used, then the optimum shape that is practically realizable with an even number of arms is given by $$\left(\frac{V_p}{V}\right)^2 = 1 + \left[\left(\frac{V_p}{V_v}\right)^2 - 1\right] cd_v^2 \left(n \frac{K_v u}{K_f}\right)$$ (13) Fig. 20--Maximum rate of cutoff for 6-pole and 6-pole 4-zero filters. where $$u = sc_f^{-1} \left\{ \left[\left(\frac{x_v}{x} \right)^2 - 1 \right]^{1/2} \frac{dn_f (K_f/n)}{f'} \right\}$$ (14) The modulus v is given by (9) and the modulus f by (10). Solving (13) then gives the ratio of hill-to-valley bandwidth as $$\frac{x_h}{x_n} = \frac{1}{f \, \operatorname{cd}_t \, (K_t/n)} \tag{15}$$ This optimum attenuation shape (13) produces two fewer points of infinite rejection, or response zeros than response poles. In contrast, (8) requires an equal number of zeros and poles. If the ripples in the pass band approach zero decibels $(V_p/V_v=1)$ then, as a limit, (13) becomes $$\left(\frac{V_p}{V}\right)^2 = 1 + \frac{(V_p/V_h)^2 - 1}{\cosh^2(n\cosh^{-1}y)} \tag{16}$$ where $$y = \left[\left(\frac{x_h}{x} \cos \frac{90}{n} \right)^2 + \sin^2 \frac{90}{n} \right]^{1/2}$$ Based on (13) and (16), the rates of cutoff have been plotted in Figs. 19 and 20 for 4-pole 2-zero and for 6-pole 4-zero filters. Fig. 5 already has presented the data for a 2-pole no-zero network, the simplest case. An increase in rate of cutoff results when n-2 response zeros are suitably added to n response poles as shown by the dotted curves in Figs. 19 and 20; the data being derived from Figs. 7 and 9. # Circuit-element values This section concerns the values of the circuit elements required to produce the optimum relative-attenuation shapes of constant-K-configuration filters. There are two convenient ways of expressing the element values for these ladder networks. **a.** The reactive and resistive components of each element may be related to one of the terminating resistances (or to a completely arbitrary normalizing resistance R_0) and also to a definite bandwidth, usually the 3-decibels-down ### Circuit-element values continued value. The numerical results are called ladder-network coefficients or singly loaded Q's. **b.** The reactive component of each element may be related to the reactive part of the immediately preceding element, and to a definite bandwidth such as the 3-decibel-down value. These numerical results are called the normalized coefficients of coupling. The resistive component of each element is related to its reactive part and the numerical values are called normalized decrements or, when inverted, normalized Q's. The latter form of normalized coefficients of coupling k and normalized Q's (= q) will be used because the numerical values may be applied directly to the adjustment and checking of actual filters. Figs. 21–24 relate the normalized k and q to the inductance, capacitance, and resistance values for various types of filters. For low-pass filters, Fig. 21 shows that k gives the ratio of resonant frequency Fig. 21—Relations among normalized k and q and values of
inductance, capacitance, and resistance for low-pass and large-percentage-band-pass circuits. A—Shunt arm at one end. $1/(C_1L_2)^{1/2}=k_1\omega_{\rm 3db}$, $1/(L_2C_3)^{1/2}=k_2\omega_{\rm 3db}$, $1/(C_3L_4)^{1/2}=k_3\omega_{\rm 3db}$, etc. $G_1/C_1=(1/q_1)\omega_{\rm 3db}$, $q_2=(\omega_{\rm 3db}\,L_2)/R_2$, $q_3=(\omega_{\rm 3db}\,C_3)/G_3$, $q_4=(\omega_{\rm 3db}\,L_4)/R_4$, etc. B—Series arm at one end, $1/(L_1C_2)^{1/2}=k_{12}\omega_{3\text{db}}$, $1/(C_2L_3)^{1/2}=k_{23}\omega_{3\text{db}}$, $1/(L_3C_4)^{1/2}=k_{34}\omega_{3\text{db}}$, etc. $R_1/L_1=(1/q_1)\omega_{3\text{db}}$, $q_2=(\omega_{3\text{db}}\ C_2)/G_2$, $q_3=(\omega_{3\text{db}}\ L_3)/R_3$, $q_4=(\omega_{3\text{db}}\ C_4)/G_4$, etc. To design a bandpass circuit, the total required 3-decibel-down bandwidth should replace $\omega_{3{\rm d}{\rm D}}$, an inductor should be connected across each shunt capacitor, and a capacitor put in series with each series inductor; each such circuit being resonated to the geometric mean frequency ${\bf f}_0=({\bf f}_1\,{\bf f}_2)^{1/2}$ of two immediately adjacent elements to the over-all 3-decibels-down frequency. The resonant frequency of C_1 and L_2 in this example must be k_{12} times the required over-all 3-decibels-down bandwidth. Fig. 22—Relations among normalized k and q and values of inductance, capacitance, and resistance for high-pass and large-percentage-band-reject circuits. A—Shunt arm at one end. $1/(L_1C_2)^{1/2}=(1/k_{12})\omega_{3db}$, $(1/C_2L_3)^{1/2}=(1/k_{23})\omega_{3db}$, $1/(L_3 C_4)^{1/2}=(1/k_{24})\omega_{3db}$, etc. $(R_1/L_1)=q_1\omega_{3db}$. All reactances are assumed to be lossless. B—Series arm at one end. $1/(C_1L_2)^{1/2}=(1/k_{12})\omega_{3\text{db}}$, $1/(L_2C_3)^{1/2}=(1/k_{22})\omega_{3\text{db}}$, $1/(C_3L_4)^{1/2}=(1/k_{34})\omega_{3\text{db}}$, etc. $(G_1/C_1)=q_1\omega_{3\text{db}}$. All reactances are assumed to be lossless. To design a band-reject circuit, the total required 3-decibel-down bandwidth should replace $\omega_{3\text{db}}$, a capacitor should be placed in series with each shunt inductor, and an inductor in shunt of each series capacitor; each such circuit being resonated to the geometric mean frequency $f_0=(f_1,f_2)^{1/2}$. Fig. 23—Relations among normalized k and q and values of inductance, cepacitonce, and resistance for small-percentage-band-pass circuits. A—Parallel-resonant circuits. $C_{12}/(C_1C_2)^{1/2} \doteq k_{12}[(bw)_{3db}/f_0]$, $(L_2 L_3)^{1/2}/L_{23} \doteq k_{23}[(bw)_{3db}/f_0]$, $M_{34}/(L_3L_4)^{1/2} \doteq k_{24}[(bw)_{3db}/f_0]$, etc. $Q_1 = q_1 [f_0/(bw)_{3db}]$, $q_2 = Q_2/(f_0/(bw)_{3db})$, $q_3 = Q_3/[f_0/(bw)_{3db}]$, $q_4 = Q_4/(f_0/(bw)_{3db})$, etc. Any adjacent pair of resonators may be coupled by any of the three methods shown. Each node must resonate at f_0 with all other nodes short-circuited. B—Series-resonant circuits. $L_{12}/(L_1L_2)^{1/2} \doteq k_{12}[(\mathbf{bw})_{3\mathrm{db}}/f_0]$, $(C_2C_3)^{1/2}/C_{23} \doteq k_{23}[(\mathbf{bw})_{3\mathrm{db}}/f_0]$, $M_{34}/(L_3L_3)^{1/2} \doteq k_{34}[(\mathbf{bw})_{3\mathrm{db}}]$, $q_1 = q_1[f_0/(\mathbf{bw})_{3\mathrm{db}}]$, $q_2 = Q_2/[f_0/(\mathbf{bw})_{3\mathrm{db}}]$, $q_3 = Q_3/[f_0/(\mathbf{bw})_{3\mathrm{db}}]$, $q_4 = Q_4[f_0/(\mathbf{bw})_{3\mathrm{db}}]$. Any adjacent pair or resonators may be coupled by any of the three methods shown. Each mesh must resonate at f_0 with all other meshes open-circuited. Fig. 21 also gives as the inverse of q, the ratio of the 3-decibels-down bandwidth of a single element resulting from the resistive load and losses associated with it, to the required 3-decibels-down bandwidth of the overall filter. Thus, $1/R_1C_1$ is the 3-decibels-down radian bandwidth of C_1 and the conductance G_1 that must be shunted across it. If C_1 and G_1 are properly chosen, the measured bandwidth of these elements at their 3-decibels-down point will be $1/q_1$ times the required over-all 3-decibels-down bandwidth of the filter. The legend of Fig. 21 shows how it is applicable also to large-percentage band-pass filters. Fig. 22 gives the required information for high-pass and large-percentage band-reject filters. Similar data are given in Fig. 23 for small-percentage bandpass filters. It should be noted that the required actual coefficient of coupling between resonant circuits, $M_{ab}/(L_aL_b)^{1/2}$ for example, may be obtained by multiplying the required over-all fractional 3-decibels-down bandwidth by the nor- Fig. 24—Relations among normalized k and q and values of inductance, copacitance, and resistance for small-percentage-band-reject circuits. A—Series-resonant circuits. $X_{12}/(X_1X_2)^{1/2}=(1/k_{12}]([\mathbf{bw})_{3\mathrm{db}}/f_0]$, $X_{23}/(X_2X_3)^{1/2}=(1/k_{23})[(\mathbf{bw})_{3\mathrm{db}}/f_0]$, etc. $X_1/R_1=(1/q_1)$ $[f_0(\mathbf{bw})_{3\mathrm{db}}]$, $X_n/R_n=(1/q_n)$ $[f_0/(\mathbf{bw})_{3\mathrm{db}}]$. All resonant circuits are assumed to be lossless. Any adjacent pair of resonators may be coupled by either of the two π (or their dual T) couplings shown. The reactances X are measured at the midfrequency of the reject band. **B**—Parallel-resonant circuits. $B_{12}/(B_1B_2)^{1/2}=(1/k_{12})[(bw)_{3db}/f_0]$, $B_{22}/(B_2B_3)^{1/2}=(1/k_{23})[(bw)_{3db}/f_0]$, etc. $B_1/G_1=(1/q_1)[f_0/(bw)_{3db}]$, $B_n/G_n=(1/q_n)[f_0/(bw)_{3db}]$. All resonant circuits are assumed to be lossless. Any adjacent pair of resonators may be coupled by either of the two T (or their dual π) couplings shown. The susceptances B are measured at the midfrequency of the reject band. #### Circuit-element values continued malized coefficient of coupling. The required actual resonant-circuit Q results from multiplying the fractional midfrequency by q. An experimental procedure for checking k and q values is available.* Fractional midfrequency $f_0/(bw)_{3db} = reciprocal$ of fractional 3-decibels-down bandwidth. Fig. 24 supplies the data for small-percentage band-reject filters. ## Butterworth, Chebishev, and maximally linear phase designs Elegant closed-form equations for k and q values producing optimum Chebishev and Butterworth response shapes for filters having any number of total arms may be obtained if lossless reactances are used.† The design data in Figs. 25–30 are based on such equations. The k and q values for the maximally linear phase shape result from the Darlington synthesis procedure applied to (6). The tables provide data for two limiting cases of terminations; equal resistive loading at the two ends of the filter and resistive loading at only one end. For Figs. 25–30, the $(V_p/V_v)_{\rm db}$ column gives the ripple in decibels in the passband, and the corresponding curves on Figs. 5–10 give the complete attenuation shape. For low-pass circuits. g_{2.3.4} . . . is the required unloaded Q, measured at the required 3-decibeldown frequency, of the internal inductors and capacitors to be used. For band-pass circuits, the unloaded resonator Q reavired in the internal resonators is obtained by multiplying the required 3-decibel fractional midfrequency $[f_0/(bw)_{3db}]$ by Q2.3.4 · · · Fig. 25—2-pole no-zero filter 3-decibel-down k and q values. | $(V_p/V_v)_{\mathrm{db}}$ | q 1 | k ₁₂ | \mathbf{q}_2 | |---------------------------|---|---|---------------------------------------| | Equal resistive ter | minations | | | | 0
0.3
1.0
3.0 | 0.576
1.414
1.82
2.21
3.13 | 0.899
0.707
0.717
0.739
0.779 | 2.15
1.414
1.82
2.21
3.13 | | Resistive terminat | tion at only o | one end | | | 0
0.3
1.0
3.0 | 0.455
0.707
0.910
1.11
1.56 | 1.27
1.00
0.904
0.866
0.840 | >10
>14
>18
>23
>32 | ^{*} M. Dishal, "Alignment and Adjustment of Synchronously Tuned Multiple-Resonant-Circuit Filters," Proceedings of the IRE, vol. 39, pp. 1448–1455; November, 1951: Also, Electrical Communication, vol. 29, pp. 154–164; June, 1952. [†] V. Belevitch, "Tchebyshev Filters and Amplifier Networks," Wireless Engineer, vol. 29, pp. 106–110; April, 1952; H. J. Orchard, "Formulae for ladder Filters," Wireless Engineer, vol. 30, pp. 3–5; January, 1953, E. Green, "Exact Amplitude–Frequency Characteristics of Ladder Networks," Marconi Review, vol. 16, no. 108, pp. 25–68; 1953. M. Dishal, "Two New Equations for the Design of Filters," Electrical Communication, vol. 30, pp. 324–337; December, 1952. #### Circuit-element values It should be realized that designs can be made that call for unloaded Q's that are one-tenth of those called for in these designs. continued For the detailed way in which the q and k columns fix the required element values see Figs. 21, 22, 23, and 24 and related discussion. The first column of the tables gives the peak-to-valley ratio within the pass band. Except for Fig. 25, the second column gives the unloaded q of the elements on which the remaining design values are based. Proceeding across the table, figuratively from the left end of the filter, the next column gives q_1 Fig. 26-3-pole no-zero filter 3-decibel-down k and q values. | $(V_p/V_v)_{\mathrm{db}}$ | \mathbf{q}_2 | q ı | k ₁₂ | k ₂₃ | q 3 | |---------------------------|----------------|------------|------------------------|------------------------|------------| | iqual resistive ter | minations | | ı | | | | linear phase | >10 | 0.338 | 1.74 | 0.682 | 2.21 | | 0 | >20 | 1.00 | 0.707 | 0.707 | 1.00 | | 1.0 | >29 | 1.43 | 0.665 | 0.665 | 1.43 | | 1.0 | >45 | 2.21 | 0.645 | 0.645 | 2.21 | | 3.0 | >67 | 3.36 | 0.647 | 0.647 | 3.36 | | esistive terminat | ion at only c | one end | | | | | Linear phase | >10 | 0.293 | 2.01 | 0.899 | >10 | | 0 | >20 | 0.500 | 1.22 | 0.707 | >20 | | 0.1 | >29 | 0.714 | 0.961 | 0.661 | >29 | | 1.0 | >45 | 1.11 | 0.785 | 0.645 | >45 | | 3.0 | >67 | 1.68 | 0.714 | 0.649 | >67 | Fig. 27-4-pole
no-zero filter 3-decibel-down k and q values. | $(V_p/V_v)_{ m db}$ | q 2,3 | q 1 | k ₁₂ | k ₂₃ | k ₃₄ | q 4 | |---------------------|---------------|------------|------------------------|-----------------|-----------------|------------| | Equal resistive to | erminations | | | , | | | | linear phase | >10 | 2.24 | 0.644 | 1.175 | 2.53 | 0.233 | | 0 | >26 | 0.766 | 0.840 | 0.542 | 0.840 | 0.766 | | 0.01 | >36 | 1.05 | 0.737 | 0.541 | 0.737 | 1.05 | | 0.1 | >46 | 1.34 | 0.690 | 0.542 | 0.690 | 1.34 | | 1.0 | >76 | 2.21 | 0.638 | 0.546 | 0.638 | 2.21 | | 3.0 | >118 | 3.45 | 0.624 | 0.555 | 0.624 | 3.45 | | Resistive termin | ation at only | one end | | | | | | linear phose | >10 | 0.211 | 2.78 | 1.29 | 0.828 | >10 | | 0 | >26 | 0.383 | 1.56 | 0.765 | 0.644 | >26 | | 0.01 | >36 | 0.524 | 1.20 | 0.666 | 0.621 | >36 | | 0.1 | >46 | 0.667 | 1.01 | 0.626 | 0.618 | >46 | | 1.0 | >76 | 1.10 | 0.781 | 0.578 | 0.614 | >76 | | 3.0 | >118 | 1.72 | 0.692 | 0.567 | 0.609 | >118 | from which with the aid of Figs. 21-24 the relation between the terminating resistance R_1 and the first reactance element is obtained. The next column for k_{12} with Figs. 21-24 provides for the relation between the first and second reactances. Continuing across the table, all relations between adjacent elements will be obtained including that of the right-hand terminating resistance. #### Example Reverting to the previous example, a filter is required having (bw) 50db/(bw) 1db Fig. 28-5-pole no-zero filter 3-decibel-down k and q values. | $(V_p/V_v)_{ m db}$ | q 2,3,4 | q 1 | k ₁₂ | k 23 | k ₃₄ | k ₄₅ | q 5 | |---|--|---|---|---|---|--|--| | Equal resistive term | ninations | | | | ı | ı | ı | | 0
0.001
0.1
1.0
3.0 | >32
>43
>68
>118
>182 | 0.618
0.822
1.29
2.21
3.47 | 1.0
0.845
0.703
0.633
0.614 | 0.556
0.545
0.535
0.535
0.538 | 0.556
0.545
0.535
0.538
0.538 | 1.0
0.845
0.703
0.633
0.614 | 0.618
0.822
1.29
2.21
3.47 | | Resistive termination | on at only o | ne end | | | | | | | Linear phase
0
0.001
0.1
1.0
3.0 | >10
>32
>43
>68
>118
>182 | 0.162
0.309
0.412
0.649
1.105
1.74 | 3.62
1.90
1.48
1.044
0.779
0.679 | 1.68
0.900
0.760
0.634
0.570
0.554 | 1.14
0.655
0.603
0.560
0.544
0.542 | 0.804
0.619
0.606
0.595
0.595
0.597 | >10
>32
>43
>68
>118
>182 | Fig. 29-6-pole no-zero filter 3-decibel-down k and q values. 1 6 | $(\mathbf{V}_p/\mathbf{V}_v)_{\mathrm{db}}$ | q 2,3,4,5 | q | k ₁₂ | K ₂₃ | K34 | K45 | ₹56 | 9 6 | |---|------------------|------------|------------------------|-----------------|-------|-------|-------|------------| | | | | | | | | | | | Equal resistiv | e termine | ations | 1 | 1 | ı | I | 1 | ı | | 0 | >39 | 0.518 | 1.17 | 0.606 | 0.518 | 0.606 | 1.17 | 0.518 | | 0.001 | >51 | 0.679 | 0.967 | 0.573 | 0.518 | 0.573 | 0.967 | 0.679 | | 0.01 | >69 | 0.936 | 0.810 | 0.550 | 0.518 | 0.550 | 0.810 | 0.936 | | 0.1 | >95 | 1.27 | 0.716 | 0.539 | 0.518 | 0.539 | 0.716 | 1.27 | | 1.0 | >168 | 2.25 | 0.631 | 0.531 | 0.510 | 0.531 | 0.631 | 2.25 | | 3.0 | >261 | 3.51 | 0.610 | 0.582 | 0.524 | 0.582 | 0.610 | 3.51 | | | | | | | | | | | | Resistive terr | nination (| at only on | e end | | | | | | | Linear phase | >11 | 0.129 | 4.55 | 2.09 | 1.42 | 1.09 | 0.803 | 11< | | o. | >39 | 0.259 | 2.26 | 1.05 | 0.732 | 0.606 | 0.606 | >39 | | 0.001 | >51 | 0.340 | 1.76 | 0.689 | 0.650 | 0.573 | 0.596 | >51 | | 0.01 | >69 | 0.468 | 1.34 | 0.725 | 0.591 | 0.550 | 0.591 | >69 | | 0.1 | >95 | 0.637 | 1.06 | 0.642 | 0.560 | 0.539 | 0.589 | >95 | | 1.0 | >168 | 1.12 | 0.771 | 0.566 | 0.533 | 0.531 | 0.589 | >168 | | 3.0 | >261 | 1.75 | 0.673 | 0.546 | 0.529 | 0.531 | 0.591 | >261 | 1 6 1 6 1 #### Circuit-element values continued = 2.5 and $V_p/V_v < 1$ decibel. The 5-pole no-zero response with a pass-band peak-to-valley ratio of 1 decibel in Fig. 8 satisfied the requirement. Fig. 28 is for 5-pole networks and if the terminations are to be equal resistive loads, the upper part of the table should be used. If a shunt capacitance is to appear at one end of the low-pass filter, Fig. 21A will apply. Reading along the fourth row for $(V_p/V_v)_{db} = 1$, the second column requires normalized unloaded Q's of at least 118 at the over-all 3-decibels-down frequency, which for this example is 31 kilocycles. Realize that much-lower unloaded-Q designs can be accomplished. The required value of $q_1=2.21$ is found in the third column. From Fig. 21A, $1/R_1C_1=0.451\,\omega_{3db}$ from which R_1 or C_1 may be obtained. Experimentally, the 3-decibels-down bandwidth of R_1C_1 must measure 0.451 times the required 3-decibels-down bandwidth or $31\times0.451=14$ kilocycles. From the table, a value of 0.633 is obtained for k_{12} and from Fig. 21A it is found that $1/(C_1L_2)^{1/2}=0.633\omega_{3\mathrm{db}}$. This means that a resonant circuit made up of C_1 and L_2 must tune to 0.633 times the required 3-decibels-down bandwidth or $31\times0.633=19.7$ kilocycles. In this fashion, all the remaining elements are determined. Any one of them may be set arbitrarily (for instance, the input load resistance R_1), but once it has been set, all other values are rigidly determined by the k and q factors. | Fig. 30-7-pole no-zero | filter | 3-decibel-down | k | and | Ιq | values. | | |------------------------|--------|----------------|---|-----|----|---------|--| |------------------------|--------|----------------|---|-----|----|---------|--| | $(V_p/V_v)_{db}$ | q 2,3,4,5,6 | q 1 | k ₁₂ | k 23 | k ₃₄ | k ₄₅ | k 56 | k 67 | 9 7 | |--------------------------------------|----------------------------------|--|---|---|---|---|---|---|--| | Equal resistive | termination | | | | | | | , . | | | 0
0.00001
0.001
0.01
0.1 | >45
>59
>75
>93
>127 | 0.445
0.580
0.741
0.912
1.26 | 1.34
1.10
0.930
0.830
0.723 | 0.669
0.611
0.579
0.560
0.541 | 0.528
0.521
0.519
0.519
0.517 | 0.528
0.521
0.519
0.519
0.517 | 0.669
0.611
0.579
0.560
0.541 | 1.34
1.10
0.930
0.830
0.723 | 0,445
0,580
0,741
0,912
1,26 | | 1.0
3.0 | >223
>353 | 2.25
3.52 | 0.631 | 0.530 | 0.517 | 0.517 | 0.530 | 0.631 | 2.25
3.52 | | Resistive termi | nation at onl | y one er | nd | | | | | | | | Linear phase | >11 | 0.105 | 5.53 | 2.53 | 1.72 | 1.33 | 1.08 | 0.804 | >11 | | 0 | >45 | 0.223 | 2.62 | 1.20 | 0.824 | 0.659 | 0.579 | 0.598 | >45 | | 10000.0 | >59 | 0.290 | 2.05 | 0.981 | 0.710 | 0.601 | 0.552 | 0.589 | >58 | | 0.001 | >75 | 0.370 | 1.64 | 0.830 | 0.642 | 0.570 | 0.541 | 0.588 | >75 | | 0.01 | >93 | 0.456 | 1.38 | 0.744 | 0.602 | 0.551 | 0.538 | 0.588 | >93 | | 0.1 | > 127 | 0.629 | 1.08 | 0.648 | 0.560 | 0.531 | 0.530 | 0.587 | >127 | | 1.0 | >223 | 1.12 | 0.770 | 0.564 | 0.530 | 0.521 | 0.527 | 0.587 | >223 | | 3.0 | >353 | 1.76 | 0.669 | 0.542 | 0.523 | 0.520 | 0.528 | 0.588 | >353 | #### Elements of lower Q Designs may be based on elements having unloaded Q's of only 1/10th those given in Figs. 25–30. These designs are necessary for small-percentage band-pass filters. As is evident from Fig. 23, the Q of the internal resonators measured at the midfrequency must be the normalized q multiplied by the fractional midfrequency $f_0/(bw)_{3ab}$. If the bandwidth percentage is small, the fractional midfrequency and therefore the actually required Q will be large. Practical values of end q's and all k's will result if the internal elements have finite q's above the minimum values given in Figs. 5–10. For a required response shape, such as for 0.1-decibel pass-band ripple, the resulting data can be expressed as in Figs. 31–36. These curves are for zero-decibel ripple (Butterworth) and for the maximally linear phase shape. Fig. 31—3-pole filter of finite-Q elements producing a maximally flat amplitude shape. See curve 1 of Fig. 5. #### Example - **a.** The filter to be designed must have a relative attenuation of (bw) $_{70db}/$ (bw) $_{3db}=5$ and there must be no ripple in the pass band. Curve 1 of Fig. 8 satisfies these conditions and calls for a 5-pole network. - **b.** The specified fractional midfrequency is 20 (pass band = 5 percent of the midfrequency), the Q_{min} from Fig. 8 becomes 3.24 \times 20 = 65. Assume further that resonators with unloaded midfrequency Q's of 100 are available. As the normalized unloaded q is the actual unloaded Q divided by the fractional midfrequency, the filter must produce a Butterworth shape with 5 resonators having normalized unloaded q's of 100/20 = 5. - c. There are three possible generator and load conditions. Fig. 32—3-pole filter of finite-Q elements producing α maximally lineαr phase shape. See Figs. 11 and 12. - 1. Resistive generator and resistive load. It is usually desirable to maximize the ratio of the power delivered to the load to that available from the generator. The generator resistance and the load resistances will have to be tapped onto their associated
resonators to obtain the required q_1 and q_n . - 2. Resistive generator and reactive load or vice versa. The function to be considered here is the transfer impedance or admittance. Again the resistive impedance must be transformed by tapping it onto the associated resonator. - **3.** Reactive generator and load. The transfer impedance or admittance is the significant factor and a loading resistance must be added to either or both end resonators. Fig. 33—4-pole filter of finite-Q elements producing a maximally flat amplitude shape. See curve 1 of Fig. 6. Figs. 31-36 provide optimum design data for cases (2) and (3). Assuming a high-impedance filter to be required, the network of Fig. 37 might well be used. High-side capacitance coupling will be employed and the element values will be obtained from Fig. 35. - **a.** The q_1 curve of Fig. 35 intersects the abscissa value of 5 at 0.405. By tapping a resistive generator or load onto it, or placing a resistor across it, the resonator C_1L_1 must be loaded to produce an actual Q of 0.405 f_0 /(bw)_{3db} = 8.1 (see Fig. 23A). - **b.** As a convenience, the same size of inductor may be used for resonating each node, say 4 millihenries. For a required midfrequency of 80 kilocycles Fig. 34—4-pole filter of finite-Q elements producing a maximally linear phase shape. See Figs. 11 and 12. for this example, each node total capacitance will be 1000 micromicrofarads. **c.** Again from Fig. 35, we get k_{12} of 1.35 for an abscissa value of 5. From Fig. 23, $C_{12} = 1.35 \, [\text{(bw)}_{3\text{db}}/f_0] \, (C_1C_2)^{1/2} = 1.35 \times 0.05 \times 1000 = 67.5$ micromicrofarads. At the midfrequency of 80 kilocycles, node 1 must be resonant when all other nodes are short-circuited. To produce the required capacitance in shunt of L_1 , C_a must be 1000 - 67.5 = 933 micromicrofarads. **d.** From Fig. 35, a value of 0.67 is obtained for k_{23} , and $C_{23}=0.67\times0.05\times1000=33.5$ micromicrofarads. To resonate node 2 at the midfrequency with all other nodes short-circuited $C_b=1000-33.5-67.5=899$ micromicrofarads. Fig. 35—5-pole filter of finite-Q elements producing a maximally flat amplitude shape. See turve 1 of Fig. 7. Fig. 36—5-pole filter of finite-Q elements producing a maximally linear phase shape. See Figs. 11 and 12. Fig. 37—5-resonator filter with high-side capacitance coupling. **e.** Additional computations give values for C_{34} of $0.53 \times 0.05 \times 1000 = 26.5$ micromicrofarads, $C_e = 1000 - 33.5 - 26.5 = 940$, $C_{45} = 0.73 \times 0.05 \times 1000 = 36.5$, $C_d = 1000 - 36.5 - 26.5 = 937$, and $C_e = 1000 - 36.5 = 963.5$ micromicrofarads. All inductances will be identical and of 4 millihenries and there will be no inductive coupling among them. # Stagger tuning of single-tuned interstages ## Butterworth response (Figs. 4 and 38) The required Q's are given by $$\frac{1}{Q_m} = \frac{(bw)_{\beta}/f_0}{\sqrt[2n]{(V_n/V_{\beta})^2 - 1}} \sin\left(\frac{2m - 1}{n}90^{\circ}\right)$$ The required stagger tuning is given by $$(f_a - f_b)_m = \frac{(bw)_\beta}{[(V_p/V_\beta)^2 - 1]^{1/2n}} \cos\left(\frac{2m - 1}{n} 90^\circ\right)$$ $$(f_a + f_b)_m = 2f_0$$ # Stagger tuning of single-tuned interstages continued The amplitude response is given by $$V_p/V = \{1 + [(V_p/V_\beta)^2 - 1] [(bw)/(bw)_\beta]^{2n}\}^{1/2}$$ $$\frac{\text{(bw)}}{\text{(bw)}_{\beta}} = \left[\frac{(V_p/V)^2 - 1}{(V_p/V_{\beta})^2 - 1} \right]^{1/2n}$$ $$n = \frac{\log \left[\frac{(V_p/V)^2 - 1}{(V_p/V_\beta)^2 - 1} \right]}{2 \log \left[(bw)/(bw)_\beta \right]}$$ Stage gain = $$\frac{g_m}{2\pi (bw)_{\beta}C} \left[(V_p/V_{\beta})^2 - 1 \right]^{1/2n}$$ ОГ $$n = \frac{\log \left\{ \frac{(\text{total gain})}{[(V_p/V_\beta)^2 - 1]^{1/2}} \right\}}{\log \left(\frac{g_m}{2\pi (\text{bw})_\beta C} \right)}$$ where $g_m =$ geometric-mean transconductance of n tubes C = geometric-mean capacitance # Chebishev response (Figs. 4 and 39) The required Q's are given by $$\frac{1}{Q_m} = \frac{(bw)_{\beta}}{f_0} S_n \sin \left[\frac{2m-1}{n} 90^{\circ} \right]$$ $$S_n = \sinh \left\{ \frac{1}{n} \sinh^{-1} \frac{1}{[(V_p/V_\beta)^2 - 1]^{1/2}} \right\}$$ The required stagger tuning is given by $$(f_a - f_b)_m = (bw)_{\beta} C_n \cos\left(\frac{2m-1}{n}90^{\circ}\right)$$ $$(f_a + f_b)_m = 2f_0$$ $$C_n = \cosh \left\{ \frac{1}{n} \sinh^{-1} \frac{1}{[(V_p/V_{\beta})^2 - 1]^{1/2}} \right\}$$ # Stagger tuning of single-tuned interstages continued Shape outside pass band is $$\frac{V_{p}}{V} = \left\{ 1 + \left[\left(\frac{V_{p}}{V_{\beta}} \right)^{2} - 1 \right] \left\{ \cosh^{2} \left[n \cosh^{-1} \frac{(bw)}{(bw)_{\beta}} \right] \right\}^{1/2} \right.$$ $$\frac{(bw)}{(bw)_{\beta}} = \cosh \left\{ \frac{1}{n} \cosh^{-1} \left[\frac{(V_{p}/V)^{2} - 1}{(V_{p}/V_{\beta})^{2} - 1} \right]^{1/2} \right\}$$ $$n = \frac{\cosh^{-1} \left[\frac{(V_{p}/V)^{2} - 1}{(V_{p}/V_{\beta})^{2} - 1} \right]^{1/2}}{\cosh^{-1} \left[(bw) / (bw)_{\beta} \right]}$$ Shape inside pass band is $$\frac{V_p}{V} = \left\{ 1 + \left[\left(\frac{V_p}{V_\beta} \right)^2 - 1 \right] \left\{ \cos^2 \left[n \cos^{-1} \frac{\text{(bw)}}{\text{(bw)}_\beta} \right] \right\} \right\}^{1/2}$$ $$\frac{\text{(bw)}_{\text{crest}}}{\text{(bw)}_\beta} = \cos \left(\frac{2m-1}{n} 90^\circ \right)$$ $$\frac{\text{(bw)}_{\text{trough}}}{\text{(bw)}_\beta} = \cos \left(\frac{2m}{n} 90^\circ \right)$$ # Stagger tuning of single-tuned interstages continued Stage gain = $$\frac{g_m}{2^{1/n}\pi \{bw\}_{\beta}C} \left[(V_p/V_{\beta})^2 - 1 \right]^{1/2n}$$ $$n = \frac{\log \left[\frac{\{total\ gain\}}{\frac{1}{2} \left[(V_p/V_{\beta})^2 - 1 \right]^{1/2}} \right]}{\log \left[\frac{g_m}{\pi \{bw\}_{\beta}C} \right]}$$ where $g_m = geometric-mean transconductance of n tubes$ C = geometric-mean capacitance ### Quartz-crystal band-pass filters When a filter requires a small-percentage bandwidth as well as a high rate of cutoff, it is not practical to obtain sufficiently high unloaded Q in ordinary L-C resonators. Such filters can be constructed utilizing piezoelectric quartz crystals or mechanically resonant rods of some low-mechanical-loss material such as NiSpan-C. The design information presented in Figs. 25-31 can be applied to filters of the constant-K type using rods. However, frequent use is made of quartz crystals in a lattice structure, to which the following design information is applicable. # High-impedance lattice filters An "open-circuited" lattice is shown in Fig. 40. The arrangements of the impedance arms Z_A and Z_B are shown in Fig. 41. In each arm there is an L-C parallel-resonant circuit shunted by (n/2)-1 quartz crystals. The number of complex poles in the transfer function is equal the n. The L-C circuit is loaded by R_p to give the required $Q_p = \omega_0 C_p R_p$. Its capacitance includes those of the crystal holders and it is resonant to $(f_0 + \Delta f_p)$ as shown in the diagrams. The motional capacitance C_1 , C_2 , C_3 , etc., must have a particular value, and each crystal must be resonant to a particular frequency, $(f_0 \pm \Delta f_1)$, $(f_0 \pm \Delta f_2)$, etc. Fig. 40—High-impedance lattice section. # Quartz-crystal band-pass filters continued Frequently, divided-electrode crystals are used so one crystal can be used for the identical resonators in the two series arms, and likewise in the lattice arms. The structure can be modified by converting the lattice to its equivalent in accordance with Fig. 42. The elements Z that are lifted out of the arms and shunted across the terminals consist of L_p , R_p , and most of C_p . ### Design information The data of Fig. 43 is for the Chebishev and Butterworth response shapes of 4-pole no-zero networks for which the relative attenuation is plotted Fig. 41—Detailed structure of the lattice arms indicated in Fig. 40. in Fig. 7. Similarly, Fig. 44 is for 6-pole no-zero networks, plotted in Fig. 9. Examination of the tables shows that the required Q_p of the L-C parallel-resonant circuit is roughly the same as the fractional midfrequency. This Fig. 42-Equivalent lattices. limits the practical design to $f_0/(bw)_{3db}$ less than about 250. A lower limit to the $f_0/(bw)_{3db}$ is of the order of 10 due to the fact that C_p/C_1 is roughly equal to the square of $f_0/(bw)_{3db}$, and C_p includes those of the crystal # Quartz-crystal band-pass filters continued holders and coil and stray distributed capacitances, so cannot be reduced indefinitely. The impedance Z in (Fig. 42), must include the equivalent-generator and equivalent-load impedances. Since R_p often comes to some hundreds of | $(V_p/V_v)_{\mathrm{db}}$ | $\Delta f_1/\Delta f_{3db}$ | $\frac{C_p/C_1}{[f_0/(bw)_{3\mathrm{db}}]^2}$ | $\frac{Q_p}{f_0/(bw)_{3 ext{db}}}$ | |---------------------------|-----------------------------|---|------------------------------------| | 0 | 0.542 | 1,414 | 0.766 | | 0.001 | 0.541 | 1.66 | 0.912 | | 0.01 | 0.540 | 1.84 | 1.05 | | 0.1 | 0.541 | 2.10 | 1.34 | | 1.0 | 0.546 | 2.46 | 2.21 | | 3.0 | 0.552 | 2.57 | 3.44 | Fig. 43—4-pole no-zero lattice-filter design for Chebishev response. Note that $\Delta f_{\rm 3db}$ is one-half the total 3-decibel bandwith, or, $2\Delta f_{\rm 3db} = ({\sf bw})_{\rm 3db}$. | $(V_p/V_v)_{ m db}$ | $\Delta f_1/\Delta f_{3db}$ | C_1/C_2 | $\Delta f_2/\Delta f_{3db}$ | $\frac{C_p/C_1}{[f_0/(bw)_{3\mathrm{db}}]^2}$ | $ rac{{f Q}_p}{{f f}_0/({f bw})_{ m 3db}}$ | |---------------------|-----------------------------|-----------|-----------------------------|---|--| | 0 | 0.400 | 2.30 | 0.920 | 1.05 | 0.518 | | 0.0001 | 0.370 | 2.40 | 0.889 | 1.51 | 0.680 | | 0.01 | 0.350 | 2.47 | 0.869 | 2.14 | 0.936 | | 0.1 | 0.339 | 2.53 | 0.859 | 2.73 | 1.28 | | 1.0 | 0.330 | 2.57 | 0.850 | 3.49 | 2.25 | | 3.0 | 0.332 | 2.58 | 0.858 | 3.72 | 3.51 | Fig. 44—6-pole no-zero
lattice-filter design for Chebishev response. Note that $\Delta f_{\rm 3db}$ is one-half the total 3-decibel bandwith, or, $2\Delta f_{\rm 3db}=({\sf bw})_{\rm 3db}$. # Quartz-crystal band-pass filters continued thousands of ohms, it is obvious that this type of filter requires a very-highimpedance equivalent generator and load. ### Example Required, a filter for $f_0=175$ kilocycles, (bw) $_{3db}=2.0$ kilocycles, (bw) $_{60db}<5.0$ kilocycles, $(V_p/V_v)_{db}<0.3$. Then, $f_0/(bw)_{3db}=87.5$ and $(bw)_{60db}/(bw)_{3db}<2.5$. The latter requirement is satisfied by the curve for $(V_p/V_v)_{db}=0.1$ -decibel ripple on Fig. 9 with a 6-pole, no-zero network. The internal resonators must have $q_{\min} f_0/(bw)_{3db}=9.5\times87.5=831$. This is far beyond L-C possibilities, but crystal unloaded Q usually exceeds 25,000. In Fig. 44, let $C_1 = 0.020$ micromicrofarads, which can be obtained. Lower values for C_2 can also be realized. $$C_2 = C_1/2.53 = 0.00800$$ micromicrofarads. $$\Delta f_1 = 0.339 \Delta f_{3db} = 0.339 \times 1000 = 339$$ cycles Then the first crystal in arm A is series-resonant at 175 kilocycles minus 339 cycles. In arm B, it is plus 339 cycles. Similarly, $$\Delta f_2 = 0.859 \times 1000 = 859$$ cycles. In the parallel-resonant circuits, $$C_p = 2.73 C_1 [f_0/\text{(bw)}_{3db}]^2 = 2.73 \times 0.020 \times (87.5)^2 = 422 \text{ micromicrofarads}$$ Since $F_p=0$, they are parallel-resonant at 175 kilocycles. The loaded $Q_p=1.28\times87.5=112$. The equivalent $$R_p = Q_p/2\pi f.C_p = 112/2\pi \times 175 \times 422 \times 10^{-9} = 240,000 \text{ ohms}$$ If the unloaded Q of the inductor L_p is 200, the added loading due to generator or load must be in excess of one-half megohm. # Low-impedance generator and load A low-impedance generator and/or load may be used with above filter design by the following procedure: After the arms of Fig. 41 have been designed, convert the resulting lattice of Fig. 40 to the configuration of Fig. 42 so that the Z across each end of the filter consists of L_p , R_p , and most of C_p . Then use either of the following two steps: ## Quartz-crystal band-pass filters continued - **a.** Couple the generator to one L_p and load to the other L_p via mutual inductance, with an effective turns ratio that transforms the low impedance to the value required to produce the proper R_p across each Z. - **b.** In each Z, across the filter ends, open the inductor L_p at its midpoint and connect directly in series with L_p a generator and load of the proper resistance R_s to produce the required Q_p . The required terminal resistances R_s can be calculated from the simple relationship that, with series loading, $Q_p = X_p/R_s$. With practical crystals, the value of R_s is some tens of ohms for percentage bandwidths around 1 percent, and some hundreds of ohms for bandwidths around 5 percent. #### Lattice equivalent* An important lattice equivalent (Fig. 45) halves the number of crystals required for the full-lattice filter. After the full-lattice design is completed, it is merely necessary to double the reactances of one L-C resonator and to center-tap it; halve the reactances of the second L-C resonator and ground its bottom side; and then, as shown in Fig. 45B, two arms of the full lattice may be omitted. This equivalence is valid when dealing with small-percentage bandwidths and with high L-C-resonator loaded Q's (Q_p) . For large-percentage bandwidths and/or low loaded Q's, it is necessary to use an inductive center tap with a coupling coefficient between the two sides of the coil (L_p) approaching unity. The use of a capacitive center tap greatly simplifies the problem of "trimming-in" the tap point, which is always necessary in practice. A. Full-lattice crystal filter. B. Modified equivalent crystal filter. Fig. 45—Modification of L-C resonators to halve the required number of crystals. ^{*} This late development was added in the fourth printing of "Reference Data for Radio Engineers," fourth edition. It also appears in a paper by M. Dishal, "Practical Modern Network Theory Design Data for Crystal Filters," IRE 1957 National Convention Record, Part 8. # Filters, simple bandpass design # Coefficient of coupling* Several types of coupled circuits are shown in Figs. 1B to F, together with formulas for the coefficient of coupling in each case. Also shown is the dependence of bandwidth on resonance frequency. This dependence is only a rough approximation to show the trend and may be altered radically if L_m , M, or C_m are adjusted as the circuits are tuned to various frequencies. $$k = X_{120} / \sqrt{X_{10}X_{20}} = \text{coefficient of coupling}$$ $X_{120} =$ coupling reactance at resonance frequency f_0 X_{10} = reactance of inductor (or capacitor) of first circuit at f_0 X_{20} = reactance of similar element of second circuit at f_0 $(bw)_C = bandwidth with capacitive tuning$ $(bw)_L = bandwidth with inductive tuning$ ## Gain at resonance ## Single circuit In Fig. 1A, $$\frac{E_0}{E_p} = -g_m |X_{10}| Q$$ where E_0 = output volts at resonance frequency f_0 E_{g} = input volts to grid of driving tube $g_m = transconductance of driving tube$ # Pair of coupled circuits (Figs. 2 and 3) In any figure—Figs. 1B to F, $$\frac{E_0}{E_g} = jg_m \sqrt{X_{10}X_{20}} \, Q \, \frac{kQ}{1 + k^2 Q^2}$$ This is maximum at critical coupling, where kQ = 1. $Q = \sqrt{Q_1Q_2} = \text{geometric-mean } Q \text{ for the two circuits, as loaded with the tube grid and plate impedances}$ ^{*} See also "Coefficient of coupling—geometrical consideration," pp. 141–142. | selectivity far from resonance | formula* curve in Fig. 4 | Input to PB or to P'B': $\frac{E_0}{E} = fQ\left(\frac{f}{f_0} - \frac{f_0}{f}\right)$ | Input to PB: $\frac{E_0}{F} = -A \frac{f}{f_0}$ | Input to $P'B'$: $\frac{E_0}{E} = -A \frac{f_0}{f}$ D | Input to PB: $\frac{E_0}{\tilde{E}} = -A \frac{f}{f_0}$ | Input to $P'B'$: $\frac{E_0}{E} = -A \frac{f_0}{f}$ | - | |--------------------------------|-----------------------------|--|---|--|---|--|---| | | variation with
frequency | - Input E ₀ = E | (bw)c & fo | e ⁰ σ 7 (wq) | lbwl _C & f ₀ | (pw) Γ α f ₀ * | Table continued on next page. | | | coefficient of coupling | | $k = L_m / \sqrt{(L_1 + L_m) (L_2 + L_m)}$ | = | $k = M/\sqrt{L_1 L_2}$ | = $\omega_0^2 MV C_1 C_2$
M may be positive or negative | Table con | | | dlagram | (S) | " " " " " " " " " " " " " " " " " " " | | | | *Where $A= rac{Q^2}{1+k^2Q^2}\left(rac{f}{f_0}- rac{f_0}{f} ight)^2$ | Table continued on next page. | $\mathbf{\sigma}$ | |-------------------| | ð | | 5 | | = | | • | | 7 | | ≂ | | ĸ | | | | | | • | | _ | | _ | | ÷ | | | | 覀 | | _ | | | - | - | _ | | |--|---|---|---|-----------------| | | | approximate | selectivity far from resonance | resonance | | dlagram | coefficient af coupling | variatian with
frequency | formula* | curve in Fig. 4 | | | $k = -\left[\frac{C_1C_2}{(C_1 + C_m) (C_1 + C_m)}\right]^{\frac{1}{2}}$ $= -1/\omega_0^2 C_m \sqrt{L_1 L_2}$ $\approx -\sqrt{C_1C_2}/C_m$ | $(bw)_C \propto 1/f_0$ $(bw)_L \propto f_0$ | Input to PB or to P'B': $\frac{E_0}{E} = -A \frac{f_0}{f}$ | Δ | | | $k = \frac{-C_{m'}}{\sqrt{(c_{1}' + C_{m'}) (c_{2}' + C_{m'})}}$ $= -\omega_{1}^{3} C_{m'} \sqrt{L_{1} L_{2}}$ $\approx -C_{m'} / \sqrt{C_{1}' C_{2}'}$ | (bw) _C α fa
(bw) _L α f | Input to PB or to P'B': $\frac{E_0}{E} = -A \frac{I_0}{f}$ | ۵ | | , | $k = -\left[\frac{C_1C_2}{(C_1 + C_m)(C_2 + C_m)}\right]_2^{\frac{1}{2}}$ | (bw) c ∝ 1/f ₀ | Input to PB: $\frac{E_0}{E} = -A\left(\frac{t}{f_0}\right)^4$ | മ | | - J | $= -1/\omega_0^2 C_{\mathfrak{m}} \sqrt{\iota_1 l_2}$ $\approx -\sqrt{C_1 C_3} / C_{\mathfrak{m}}$ | $(bw)_L \propto f_0$ | Input to $P'B'$: $\frac{E_0}{E} = -A \frac{f}{f_0}$ | U | | * Where $A= rac{Q^2}{1+k^2Q^3}\left(rac{f}{f_0}- rac{f_0}{f} ight)^3$ | _ | | - | _ | ## Gain at resonance continued For circuits with critical coupling and over coupling, the approximate gain is $$\left|\frac{E_0}{E_0}\right| \approx \frac{0.1 \text{ g}_m}{\sqrt{C_1 C_2 \text{ (bw)}}}$$ where (bw) is the useful pass band in megacycles, g_m is in micromhos, and C is in micromicrofarads. P B F G Fig. 2—Connection wherein k_m opposes k_c . (k_c may be due to stray capacitance.) Peak of attenuation is at $f=f_0\sqrt{-k_m/k_c}$. Reversing connections or winding direction of one coil causes k_m to aid k_c . Fig. 3—Connection wherein k_m aids k_c . If mutual-inductance coupling is reversed, k_m will oppose k_c and there will be a transfer minimum at $f = f_0 \sqrt{-k_m/k_c}$. # Selectivity far from resonance The selectivity curves of Fig. 4 are based on the presence of only a single type of coupling between the circuits. The curves are useful beyond the peak region treated on pp. 241-246. In the equations for selectivity in Fig. 1 E= output volts at signal frequency f for same value of E_{ϱ} as that producing E_{0} # For inductive coupling $$A = \frac{Q^2}{1 + k^2 Q^2} \left[\left(\frac{f}{f_0} - \frac{f_0}{f} \right)^2 - k^2 \left(\frac{f}{f_0} \right)^2 \right] \approx \frac{Q^2}{1 + k^2 Q^2} \left(\frac{f}{f_0} - \frac{f_0}{f} \right)^2$$ # For capacitive coupling A is defined by a similar equation, except that the neglected term is
$-k^2(f_0/f)^2$. The 180-degree phase shift far from resonance is indicated by the minus sign in the expression for E_0/E . ## Selectivity far from resonance continued Fig. 4—Selectivity for frequencies far from resonance. Q = 100 and |k|Q = 1.0. **Example:** The use of the curves, Figs. 4, 5, and 6, is indicated by the following example. Given the circuit of Fig. 1C with input to PB, across capacitor C_1 . Let Q=50, kQ=1.50, and $f_0=16.0$ megacycles. Required is the response at f=8.0 megacycles. Here $f/f_0=0.50$ and curve C, Fig. 4, gives -75 decibels. Then applying the corrections from Figs. 5 and 6 for Q and kQ, we find Response = -75 + 12 + 4 = -59 decibels Fig. 5—Correction for $Q \neq 100$. Fig. 6—Correction for $|\mathbf{k}|Q \neq 1.0$. # Selectivity of single- and double-tuned circuits near resonance Formulas and curves are presented for the selectivity and phase shift: Of n single-tuned circuits Of m pairs of coupled tuned circuits The conditions assumed are **a.** All circuits are tuned to the same frequency f_0 . **b.** All circuits have the same Q, or each pair of circuits includes one circuit having Q_1 and the other having Q_2 . c. Otherwise the circuits need not be identical. **d.** Each successive circuit or pair of circuits is isolated from the preceding and following ones by tubes, with no regeneration around the system. Certain approximations have been made in order to simplify the formulas. In most actual applications of the types of circuits treated, the error involved is negligible from a practical standpoint. Over the narrow frequency band in question, it is assumed that **a.** The reactance around each circuit is equal to $2X_0 \Delta f/f_0$. **b.** The resistance of each circuit is constant and equal to X_0/Q . **c.** The coupling between two circuits of a pair is reactive and constant. (When an untuned link is used to couple the two circuits, this condition frequently is far from satisfied, resulting in a lopsided selectivity curve.) **d.** The equivalent input voltage, taken as being in series with the tuned circuit (or the first of a pair), is assumed to bear a constant proportionality to the grid voltage of the input tube or other driving source, at all frequencies in the band. **e.** Likewise, the output voltage across the circuit (or the final circuit of a pair) is assumed to be proportional only to the current in the circuit. The following symbols are used in the formulas in addition to those defined on pages 236 and 239. $$\frac{\Delta f}{f_0} = \frac{f - f_0}{f_0} = \frac{\text{(deviation from resonance frequency)}}{\text{(resonance frequency)}}$$ (bw) = bandwidth = $2\Delta f$ X_0 = reactance at f_0 of inductor in tuned circuit n = number of single-tuned circuits m = number of pairs of coupled circuits ϕ = phase shift of signal at f relative to shift at f_{θ} as signal passes through cascade of circuits #### near resonance continued $\rho=k^2Q^2$ or $\rho=k^2Q_1Q_2$, a parameter determining the form of the selectivity curve of coupled circuits $$B = \rho - \frac{1}{2} \left(\frac{Q_1}{Q_2} + \frac{Q_2}{Q_1} \right)$$ # Selectivity and phase shift of single-tuned circuits $$\frac{E}{E_0} = \left[\frac{1}{\sqrt{1 + \left(2Q \frac{\Delta f}{f_0} \right)^2}} \right]^n$$ $$\frac{\Delta f}{f_0} = \pm \frac{1}{2Q} \sqrt{\left(\frac{E_0}{E}\right)^{\frac{2}{n}} - 1}$$ Decibel response = $20 \log_{10} \left(\frac{E}{E_0} \right)$ (db response of n circuits) = $n \times$ (db response of single circuit) $$\phi = n \tan^{-1} \left(-2Q \frac{\Delta f}{f_0} \right)$$ These equations are plotted in Figs. 7 and 8, following. # Q determination by 3-decibel points For a single-tuned circuit, when $E/E_0 = 0.707$ (3 decibels down) $$Q = \frac{f_0}{2\Delta f} = \frac{\text{(resonance frequency)}}{\text{(bandwidth)}_{3db}}$$ # Selectivity and phase shift of pairs of coupled tuned circuits Case 1: When $$Q_1 = Q_2 = Q$$ These formulas can be used with reasonable accuracy when Q_1 and Q_2 differ by ratios up to 1.5 or even 2 to 1. In such cases use the value $Q = \sqrt{Q_1Q_2}$. $$\frac{E}{E_0} = \left[\frac{\rho + 1}{\sqrt{\left[\left(2Q\frac{\Delta f}{f_0} \right)^2 - (\rho - 1) \right]^2 + 4\rho}} \right]^m$$ one of several types of coupling #### near resonance continued $$Q \frac{2\Delta f}{f_0} = Q \frac{\text{(bw)}}{f_0}$$ The selectivity curves are symmetrical about the axis Q $\frac{\Delta f}{f_0}=0$ for practical purposes. Extrapolation beyond lower limits of chart: useful limit Δ response (bw) error for circuit doubling ∆f becomes 6 db 0.6 1 to 2 db ← single -12 db ← pair → 0.4 3 to 4 db Fig. 7 — Selectivity curves showing response of a single circuit n=1, and a pair of coupled circuits m=1. **Example:** Of the use of Figs. 7 and 8. Suppose there are three single-tuned circuits (n=3). Each circuit has a Q=200 and is tuned to 1000 kilocycles. The results are shown in the following table: | abscissa
Q (bw)
f ₀ | bandwidth
kilocycles | ordinate db response for n = 1 | decibels response for n = 3 | φ* for n = 1 | φ* for n = 3 | |--------------------------------------|-------------------------|--------------------------------|-----------------------------|--------------|--------------| | 1.0 | 5.0 | -3.0 | -9 | 干45° | ∓135° | | 3.0 | 15 | -10.0 | -30 | 干71½° | ∓215° | | 10.0 | 50 | -20.2 | -61 | 干84° | ∓252° | * ϕ is negative for $f > f_0$, and vice versa. #### near resonance continued Fig. 8—Phase-shift curves for a single circuit n=1 and a pair of coupled circuits m=1. For $f > f_0$, ϕ is negative, while for $f < f_0$, ϕ is positive. The numerical value is identical in either case for the same $|f - f_0|$. ### near resonance continued $$\frac{\Delta f}{f_0} = \pm \frac{1}{2Q} \sqrt{(p-1)^2 \pm \sqrt{(p+1)^2 \left(\frac{E_0}{E}\right)^{\frac{2}{m}} - 4p}}$$ For very small values of E/E_0 the formulas reduce to $$\frac{E}{E_0} = \left[\frac{p+1}{\left(2Q \frac{\Delta f}{f_0} \right)^2} \right]^m$$ Decibel response = $20 \log_{10} (E/E_0)$ (db response of m pairs of circuits) = $m \times$ (db response of one pair) $$\phi = m \tan^{-1} \left[\frac{-4Q\frac{\Delta f}{f_0}}{(p+1) - \left(2Q\frac{\Delta f}{f_0}\right)^2} \right]$$ As p approaches zero, the selectivity and phase shift approach the values for n single circuits, where n = 2m (gain also approaches zero). The above equations are plotted in Figs. 7 and 8. # For overcoupled circuits (p > 1) Location of peaks: $$\frac{f_{\text{peak}} - f_0}{f_0} = \pm \frac{1}{2Q} \sqrt{p-1}$$ Amplitude of peaks: $$\frac{E_{\text{peak}}}{E_0} = \left(\frac{p+1}{2\sqrt{p}}\right)^m$$ Phase shift at peaks: $$\phi_{\text{peak}} = m \tan^{-1}(\mp \sqrt{p-1})$$ Approximate pass band (where $E/E_0=1$) is $$\frac{f_{\text{unity}} - f_0}{f_0} = \sqrt{2} \frac{f_{\text{peak}} - f_0}{f_0} = \pm \frac{1}{Q} \sqrt{\frac{p - 1}{2}}$$ Case 2: General formula for any Q1 and Q2 $$\frac{E}{E_0} = \left[\frac{p+1}{\sqrt{\left[\left(2Q \frac{\Delta f}{f_0} \right)^2 - B \right]^2 + (p+1)^2 - B^2}} \right]^m$$ (For B see top of p. 242.) #### near resonance continued $$\frac{\Delta f}{f_0} = \pm \frac{1}{2Q} \sqrt{B \pm \left[(\rho + 1)^2 \left(\frac{E_0}{E} \right)^{\frac{2}{m}} - (\rho + 1)^2 + B^2 \right]^{\frac{1}{2}}}$$ $$\phi = m \tan^{-1} \left[-\frac{2Q \frac{\Delta f}{f_0} \left(\sqrt{\frac{Q_1}{Q_2}} + \sqrt{\frac{Q_2}{Q_1}} \right)}{(\rho + 1) - \left(2Q \frac{\Delta f}{f_0} \right)^2} \right]$$ #### For overcoupled circuits Location of peaks: $$\frac{f_{\text{peak}} - f_0}{f_0} = \pm \frac{\sqrt{B}}{2Q} = \pm \frac{1}{2} \sqrt{k^2 - \frac{1}{2} \left(\frac{1}{Q_1^2} + \frac{1}{Q_2^2} \right)}$$ Amplitude of peaks: $\frac{E_{\text{peak}}}{E_0} = \left[\frac{p+1}{\sqrt{(p+1)^2 - B^2}} \right]^m$ # Case 3: Peaks just converged to a single peak Here B = 0 or $$k^2 = \frac{1}{2} \left(\frac{1}{Q_1^2} + \frac{1}{Q_2^2} \right)$$ $$\frac{E}{E_o} = \left[\frac{2}{\sqrt{\left(2Q' \frac{\Delta f}{f_0} \right)^4 + 4}} \right]^m$$ where $Q' = \frac{2Q_1Q_2}{Q_1 + Q_2}$ $$\frac{\Delta f}{f_0} = \pm \frac{\sqrt{2}}{4} \left(\frac{1}{Q_1} + \frac{1}{Q_2} \right) \sqrt[4]{\left(\frac{E_0}{F} \right)^{\frac{2}{m}} - 1}$$ $$\phi = m \tan^{-1} \left[-\frac{4Q' \frac{\Delta f}{f_0}}{2 - \left(2Q' \frac{\Delta f}{f_0}\right)^2} \right]$$ The curves of Figs. 7 and 8 may be applied to this case, using the value p = 1, and substituting Q' for Q. #### ■ Attenuators ## **Definitions** An attenuator is a network designed to introduce a known loss when working between resistive impedances Z_1 and Z_2 to which the input and output impedances of the attenuator are matched. Either Z_1 or Z_2 may be the source and the other the load. The attenuation of such networks expressed as a power ratio is the same regardless of the direction of working. Three forms of resistance network that may be conveniently used to realize these conditions are shown on page 252. These are the T section, the π section, and the bridged-T section. Equivalent balanced sections also are shown. Methods are given for the computation of attenuator networks, the hyperbolic expressions giving rapid solutions with the aid of tables of hyperbolic functions on pages 1103-1105. Tables of the various types of attenuators are given on pages 255 to 262. #### Ladder attenuator Ladder attenuator, Fig. 1, input switch points P_0 , P_1 , P_2 , P_3 at shunt arms. Also intermediate point P_m tapped on series arm. May be either unbalanced, as shown, or balanced. Fig. 1—Ladder attenuator. Ladder, for design purposes, Fig. 2, is resolved into a cascade of π sections by imagining each shunt arm split into two resistors. Last section matches Z_2 to $2Z_1$. All other sections are symmetrical, matching impedances $2Z_1$, with a terminating resistor $2Z_1$ on the first section. Each section is designed for the loss required between the switch points at the ends of that section. Input to $$P_0$$: Loss in decibels =
$10 \log_{10} \frac{(2Z_1 + Z_2)^2}{4Z_1Z_2}$ Input impedance $Z_1' = \frac{Z_2}{2}$ Output impedance = $\frac{Z_1Z_2}{Z_1 + Z_2}$ ## Ladder attenuator continued Input to P_1 , P_2 , or P_3 : Loss in decibels = $3 + (\text{sum of losses of } \pi \text{ sections})$ between input and output). Input impedance $Z_1' = Z_1$ Fig. 2—Ladder attenuator resolved into a cascade of π sections. Input to P_m (on a symmetrical π section): $$\frac{e_0}{e_m} = \frac{1}{2} \frac{m(1-m)(K-1)^2 + 2K}{K-m(K-1)}$$ where $e_0 = \text{output voltage when } m = 0 \text{ (switch on } P_1)$ $e_m = \text{output voltage with switch on } P_m$ $K = \text{current ratio of the section (from } P_1 \text{ to } P_2)$ K > 1 Input impedance $$Z_{1}' = Z_{1} \left[m(1-m) \frac{(K-1)^{2}}{K} + 1 \right]$$ Maximum $$Z_{1}' = Z_{1} \left[\frac{(K-1)^{2}}{4K} + 1 \right]$$ for $m = 0.5$. The unsymmetrical last section may be treated as a system of voltage-dividing resistors. Solve for the resistance R from P_0 to the tap, for each value of $$\left(\frac{\text{output voltage with input on } P_0}{\text{output voltage with input on tap}}\right)$$ #### A useful case When $Z_1 = Z_2 = 500$ ohms. Then loss on P_0 is 3.52 decibels. Let the last section be designed for loss of 12.51 decibels. Then ## Ladder attenuator continued $R_{13} = 2444$ ohms (shunted by 1000 ohms) $R_{23} = 654$ ohms (shunted by 500 ohms) $R_{12} = 1409 \text{ ohms}$ The table shows the location of the tap and the input and output impedances for several values of loss, relative to the loss on P_0 : | relative
loss in
decibels | tap
R
ohms | input
impédance
ohms | output
impedance
ohms | |---------------------------------|------------------|----------------------------|-----------------------------| | 0 | 0 | 250 | 250 | | 2 | 170 | 368 | 304 | | 4 | 375 | 478 | 353 | | 6 | 615 | 562 | 394 | | 8 | 882 | 600 | 428 | | 10 | 1157 | 577 | 454 | | 12 | 1409 | 500 | 473 | Input to P_0 : Output impedance = 0.6 Z (See Fig. 3.) Input to P_0 , P_1 , P_2 , or P_3 : Loss in decibels = 6 + (sum of losses of π sections between input and output). Input impedance = Z Input to P_m : $$\frac{e_0}{e_m} = \frac{1}{4} \frac{m(1-m)(K-1)^2 + 4K}{K-m(K-1)}$$ Input impedance: $$Z' = Z \left[\frac{m(1-m)(K-1)^2}{2K} + 1 \right]$$ Maximum $$Z' = Z \left[\frac{(K-1)^2}{8K} + 1 \right]$$ for $m = 0.5$ Fig. 3—A variation of the ladder attenuator, useful when $Z_1=Z_2=Z$. Simpler in design, with improved impedance characteristics, but having minimum insertion loss 2.5 decibels higher than attenuator of Fig. 2. All π sections are symmetrical. # Load impedance ## Effect of incorrect load impedance on operation of an attenuator In the applications of attenuators, the question frequently arises as to the effect upon the input impedance and the attenuation by the use of a load impedance which is different from that for which the network was designed. The following results apply to all resistive networks that, when operated between resistive impedances Z_1 and Z_2 , present matching terminal impedances Z_1 and Z_2 , respectively. The results may be derived in the general case by the application of the network theorems and may be readily confirmed mathematically for simple specific cases such as the T section. For the designed use of the network, let Z_1 = input impedance of properly terminated network Z_2 = load impedance that properly terminates the network N = power ratio from input to output K = current ratio from input to output $$K = \frac{i_1}{i_2} = \sqrt{\frac{NZ_2}{Z_1}}$$ (different in the two directions except when $Z_2 = Z_1$) For the actual conditions of operation, let $$(Z_2 + \Delta Z_2) = Z_2 \left(1 + \frac{\Delta Z_2}{Z_2}\right) = \text{actual load impedance}$$ $$(Z_1 + \Delta Z_1) = Z_1 \left(1 + \frac{\Delta Z_1}{Z_1}\right) = \text{resulting input impedance}$$ $$(K + \Delta K) = K \left(1 + \frac{\Delta K}{K}\right) = \text{resulting current ratio}$$ While Z_1 , Z_2 , and K are restricted to real quantities by the assumed nature of the network, ΔZ_2 is not so restricted, e.g., $$\Delta Z_2 = \Delta R_2 + j \Delta X_2$$ As a consequence, ΔZ_1 and ΔK can become imaginary or complex. Furthermore, ΔZ_2 is not restricted to small values. # Load impedance continued The results for the actual conditions are $$\frac{\Delta Z_1}{Z_1} = \frac{2\Delta Z_2/Z_2}{2N + (N-1)\frac{\Delta Z_2}{Z_2}} \quad \text{and} \quad \frac{\Delta K}{K} = \left(\frac{N-1}{2N}\right)\frac{\Delta Z_2}{Z_2}$$ ## Certain special cases may be cited Case 1: For small $\Delta Z_2/Z_2$ $$\frac{\Delta Z_1}{Z_1} = \frac{1}{N} \frac{\Delta Z_2}{Z_2} \quad \text{or} \quad \Delta Z_1 = \frac{1}{K^2} \Delta Z_2$$ $$\frac{\Delta i_2}{i_2} = -\frac{1}{2} \frac{\Delta Z_2}{Z_2}$$ but the error in insertion power loss of the attenuator is negligibly small. Case 2: Short-circuited output $$\frac{\Delta Z_1}{Z_1} = \frac{-2}{N+1}$$ or input impedance = $\left(\frac{N-1}{N+1}\right) Z_1 = Z_1 \tanh \theta$ where heta is the designed attenuation in nepers. Case 3: Open-circuited output $$\frac{\Delta Z_1}{Z_1} = \frac{2}{N-1}$$ or input impedance $= \left(\frac{N+1}{N-1}\right) Z_1 = Z_1 \coth \theta$ Case 4: For N=1 (possible only when $Z_1=Z_2$ and directly connected) $$\frac{\Delta Z_1}{Z_1} = \frac{\Delta Z_2}{Z_2}$$ $$\Delta K$$ $$\frac{\Delta K}{K} = 0$$ Case 5: For large N $$\frac{\Delta K}{K} = \frac{1}{2} \frac{\Delta Z_2}{Z_2}$$ # Attenuator network design see page 254 for symbols | | configuration | | | | |--

---|--|--| | description | unbalanced | balanced | | | | Unbalanced T
and
balanced H
(see Fig. 8) | $ \begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & $ | $ \begin{array}{c c} & & & & \\ \hline \hline$ | | | | Symmetrical T and H $(Z_1 = Z_2 = Z)$ (see Fig. 4) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c} & \xrightarrow{R_1} & \xrightarrow{R_2} & \xrightarrow{R_1} & \xrightarrow{R_2} & \xrightarrow{Z} $ | | | | Minimum-loss
pad matching
Z_1 and Z_2
$(Z_1 > Z_2)$
(see Fig. 7) | $\begin{array}{c} R_1 \\ \\ Z_1 \\ \\ R_2 \\ \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | Unbalanced π and balanced 0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c} C & & & & & & \\ \hline Z_1 & & & & & \\ R_1 & & & & \\ R_1 & & & & \\ \hline R_2 & & & & \\ \hline \end{array} $ | | | | Symmetrical π and 0 ($Z_1 = Z_2 = Z$) (see Fig. 5) | R_1 R_2 R_1 R_2 R_3 R_4 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | Bridged T
and
bridged H
(see Fig. 6) | $\begin{array}{c} \begin{array}{c} \begin{array}{c} R_{i} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\$ | $ \begin{array}{c c} R_1 \\ \hline Z \\ R_1 \\ R_2 \end{array} $ $ \begin{array}{c c} R_2 \\ \hline R_3 \\ \hline R_3 \end{array} $ $ \begin{array}{c c} R_2 \\ \hline R_3 \\ \hline R_4 \end{array} $ | | | | design | ļ. | | |---|---|--| | hyperbolic | arithmetical | checking equations | | $R_3 = \frac{\sqrt{Z_1 Z_2}}{\sinh \theta}$ $R_1 = \frac{Z_1}{\tanh \theta} - R_3$ $R_2 = \frac{Z_2}{\tanh \theta} - R_3$ | $R_3 = \frac{2\sqrt{NZ_1Z_2}}{N-1}$ $R_1 = Z_1 \left(\frac{N+1}{N-1}\right) - R_3$ $R_2 = Z_2 \left(\frac{N+1}{N-1}\right) - R_3$ | | | $R_{3} = \frac{Z}{\sinh \theta}$ $R_{1} = Z \tanh \frac{\theta}{2}$ | $R_8 = \frac{2Z\sqrt{N}}{N-1} = \frac{2ZK}{K^2 - 1}$ $= \frac{2Z}{K - 1/K}$ $R_1 = Z\frac{\sqrt{N} - 1}{\sqrt{N} + 1} = Z\frac{K - 1}{K + 1}$ $= Z[1 - 2/(K + 1)]$ | $R_1 R_3 = \frac{Z^2}{1 + \cosh \theta} = Z^2 \frac{2K}{(K + 1)^2}$ $\frac{R_1}{R_3} = \cosh \theta - 1 = 2 \sinh^2 \frac{\theta}{2}$ $= \frac{(K - 1)^2}{2K}$ $Z = R_1 \sqrt{1 + 2\frac{R_3}{R_1}}$ | | $\cosh \theta = \sqrt{\frac{Z_1}{Z_2}}$ $\cosh 2\theta = 2\frac{Z_1}{Z_2} - 1$ | $R_{1} = Z_{1} \sqrt{1 - \frac{Z_{2}}{Z_{1}}}$ $R_{3} = \frac{Z_{2}}{\sqrt{1 - \frac{Z_{2}}{Z_{1}}}}$ | $R_{1}R_{3} = Z_{1}Z_{2}$ $\frac{R_{1}}{R_{3}} = \frac{Z_{1}}{Z_{2}} - 1$ $N = \left(\sqrt{\frac{Z_{1}}{Z_{2}}} + \sqrt{\frac{Z_{1}}{Z_{2}} - 1}\right)^{2}$ | | $R_3 = \sqrt{Z_1 Z_2} \sinh \theta$ $\frac{1}{R_1} = \frac{1}{Z_1 \tanh \theta} - \frac{1}{R_3}$ $\frac{1}{R_2} = \frac{1}{Z_2 \tanh \theta} - \frac{1}{R_3}$ | $R_{8} = \frac{N-1}{2} \sqrt{\frac{Z_{1}Z_{2}}{N}}$ $\frac{1}{R_{1}} = \frac{1}{Z_{1}} \left(\frac{N+1}{N-1}\right) - \frac{1}{R_{3}}$ $\frac{1}{R_{2}} =
\frac{1}{Z_{2}} \left(\frac{N+1}{N-1}\right) - \frac{1}{R_{3}}$ | | | $R_{1} = \frac{Z}{\tanh \frac{\theta}{2}}$ | $R_{3} = Z \frac{N-1}{2\sqrt{N}} = Z \frac{K^{2}-1}{2K}$ $= Z(K - 1/K)/2$ $R_{1} = Z \frac{\sqrt{N+1}}{\sqrt{N-1}} = Z \frac{K+1}{K-1}$ $= Z[1 + 2/(K-1)]$ | $R_1 R_8 = Z^2 \{1 + \cosh \theta\} = Z^2 \frac{(K+1)^2}{2K}$ $\frac{R_8}{R_1} = \cosh \theta - 1 = \frac{(K-1)^2}{2K}$ $Z = \frac{R_1}{\sqrt{1 + 2\frac{R_1}{R_8}}}$ | | | $R_1 = R_2 = Z$ $R_4 = Z(K - 1)$ $R_8 = \frac{Z}{K - 1}$ | $R_3R_4 = Z^2$ $\frac{R_4}{R_8} = \{K - 1\}^2$ | Four-terminal networks: The hyperbolic equations above are valid for passive linear four-terminal networks in general, working between input and output impedances matching the respective image impedances. In this case: Z_1 and Z_2 are the image impedances; R_1 , R_2 and R_3 become complex impedances; and θ is the image transfer constant. $\theta = \alpha + j\beta$, where α is the image attenuation constant and β is the image phase constant. ## Attenuator network design continued ## **Symbols** Z_1 and Z_2 are the terminal impedances (resistive) to which the attenuator is matched. ${\it N}$ is the ratio of the power absorbed by the attenuator from the source to the power delivered to the load. K is the ratio of the attenuator input current to the output current into the load. When $Z_1 = Z_2$, $K = \sqrt{N}$. Otherwise K is different in the two directions. Attenuation in decibels = $10 \log_{10} N$ Attenuation in nepers = $\theta = \frac{1}{2} \log_e N$ For a table of decibels versus power and voltage or current ratio, see page 40. Factors for converting decibels to nepers, and nepers to decibels, are given at the foot of that table. #### Notes on error formulas The formulas and figures for errors, given in Figs. 4 to 8, are based on the assumption that the attenuator is terminated approximately by its proper terminal impedances Z_1 and Z_2 . They hold for deviations of the attenuator arms and load impedances up to \pm 20 percent or somewhat more. The error due to each element is proportional to the deviation of the element, and the total error of the attenuator is the sum of the errors due to each of the several elements When any element or arm R has a reactive component ΔX in addition to a resistive error ΔR , the errors in input impedance and output current are $$\Delta Z = A(\Delta R + j\Delta X)$$ $$\frac{\Delta i}{i} = B\left(\frac{\Delta R + j\Delta X}{R}\right)$$ where A and B are constants of proportionality for the elements in question. These constants can be determined in each case from the figures given for errors due to a resistive deviation ΔR . The reactive component ΔX produces a quadrature component in the output current, resulting in a phase shift. However, for small values of ΔX , the error in insertion loss is negligibly small. For the errors produced by mismatched terminal load impedance, refer to Case 1, page 251. ## Symmetrical T or H attenuators ### Interpolation of symmetrical T or H attenuators (Fig. 4) Column R_1 may be interpolated linearly. Do not interpolate R_3 column. For 0 to 6 decibels interpolate the $1000/R_3$ column. Above 6 decibels, interpolate the column $\log_{10} R_3$ and determine R_3 from the result. Fig. 4—Symmetrical T and H attenuator values, $\emph{Z}=500$ ohms resistive (diagram on page 252). | attenuation
in decibels | series arm R ₁
ohms | shunt arm Rs
ohms | 1000/R ₃ | logio R ₃ | |----------------------------|-----------------------------------|----------------------|---------------------|----------------------| | 0.0 | 0.0 | inf | 0.0000 | | | 0.2 | 5.8 | 21,700 | 0.0461 | | | 0.4 | 11.5 | 10,850 | 0.0921 | _ | | 0.4 | 17.0 | 7.000 | 0.1202 | | | 0.6 | 17.3 | 7,230 | 0.1383 | | | 0.8 | 23.0 | 5,420 | 0.1845 | | | 1.0 | 28.8 | 4,330 | 0.2308 | | | 2.0 | 57.3 | 2,152 | 0.465 | | | 3.0 | 85.5 | 1,419 | 0.705 | | | 4.0 | 113.1 | 1,048 | 0.954 | | | 5.0 | 140.1 | 822 | 1.216 | | | 6.0 | 166.1 | 669 | 1,494 | 2.826 | | 7.0 | 191.2 | 558 | 1.374 | 2.747 | | 7.0 | 171.2 | 330 | | 2.747 | | 8.0 | 215.3 | 473.1 | | 2.675 | | 9.0 | 238.1 | 405.9 | | 2.608 | | 10.0 | 259.7 | 351.4 | | 2.546 | | 12.0 | 299.2 | 268.1 | | 2.428 | | 14.0 | 333.7 | 207.8 | | 2.318 | | 16.0 | 363.2 | 162.6 | | 2.211 | | 10.0 | 303.2 | 102.0 | | 2.211 | | 18.0 | 388.2 | 127.9 | | 2.107 | | 20.0 | 409.1 | 101.0 | | 2.004 | | 22.0 | 426.4 | 79.94 | | 1.903 | | 24.0 | 440.7 | 63.35 | | 1.802 | | 26.0 | 452.3 | 50.24 | | 1.701 | | 28.0 | 461.8 | 39.87 | | 1.601 | | 20.0 | 401.0 | 37.07 | | 1.601 | | 30.0 | 469.3 | 31.65 | | 1.500 | | 35.0 | 482.5 | 17.79 | | 1.250 | | 40.0 | 490.1 | 10.00 | | 1.000 | | 50.0 | 496.8 | 3.162 | | 0.500 | | 60.0 | 499.0 | 1.000 | | 0.000 | | 80.0 | 499.9 | 0.1000 | | -1.000 | | 00.0 | 7/// | 0.1000 | | -1.000 | | 100.0 | 500.0 | 0.01000 | | -2.000 | # Symmetrical T or H attenuators continued ## Errors in symmetrical T or H attenuators Series arms R_1 and R_2 in error: Error in input impedances: $$\Delta Z_1 = \Delta R_1 + \frac{1}{K^2} \Delta R_2$$ and $$\Delta Z_2 = \Delta R_2 + \frac{1}{K^2} \, \Delta R_1$$ Error in insertion loss, in decibels, db = 4 $$\left(\frac{\Delta R_1}{Z_1} + \frac{\Delta R_2}{Z_2}\right)$$ approximately ## Shunt arm R₃ in error (10 percent high) | designed loss,
in decibels | error in insertion
loss, in decibels | error in input impedance $\frac{\Delta Z}{Z} \text{ percent}$ | |-------------------------------|---|---| | 0.2 | -0.01 | 0.2 | | 1 | 0.05 | 1.0 | | 6 | -0.3 | 3.3 | | 12 | -0.5 | 3.0 | | 20 | -0.7 | 1.6 | | 40 | -0.8 | 0.2 | | 100 | -0.8 | 0.0 | Error in input impedance: $$\frac{\Delta Z}{Z} = 2 \frac{K - 1}{K(K + 1)} \frac{\Delta R_3}{R_3}$$ Error in output current: $$\frac{\Delta i}{i} = \frac{K - 1}{K + 1} \frac{\Delta R_3}{R_3}$$ See notes on page 254. ### Symmetrical π and 0 attenuators # Interpolation of symmetrical π and 0 attenuators (Fig. 5). Column R_1 may be interpolated linearly above 16 decibels, and R_3 up to 20 decibels. Otherwise interpolate the $1000/R_1$ and log_{10} R_3 columns, respectively. Fig. 5—Symmetrical π and 0 attenuator. Z=500 ohms resistive (diagram, page 252). | attenuation
in decibels | shunt arm R ₁
ohms | 1000/ R ₁ | series arm R ₃
ohms | log ₁₀ R ₃ | |----------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------------| | 0.0 | | 0.000 | | | | | ω | 0.000 | 0.0 | _ | | 0.2 | 43,400 | 0.023 | 11.5 | _ | | 0.4 | 21,700 | 0.046 | 23.0 | _ | | 0.6 | 14,500 | 0.069 | 34.6 | _ | | 0.8 | 10,870 | 0.092 | 46.1 | | | 1.0 | 8,700 | 0.115 | 57.7 | - | | 2.0 | 4,362 | 0.229 | 116.1 | | | | | | | | | 3.0 | 2,924 | 0.342 | 176.1 | | | 4.0 | 2,210 | 0.453 | 238.5 | _ | | 5.0 | 1,785 | 0.560 | 304.0 | _ | | 6.0 | 1,505 | 0.665 | 373.5 | _ | | 7.0 | 1,307 | 0.765 | 448.0 | – | | 8.0 | 1,161.4 | 0.861 | 528.4 | _ | | 9.0 | 1,049.9 | 0.952 | 615.9 | _ | | 10.0 | 962.5 | | | _ | | 10.0 | Y62.5 | 1.039 | 711.5 | - | | 12.0 | 835.4 | 1.197 | 932.5 | _ | | 14.0 | 749.3 | 1.335 | 1,203.1 | l — | | 16.0 | 688.3 | 1.453 | 1,538 | | | 10.0 | 000.0 | 1.455 | 1,550 | | | 18.0 | 644.0 | _ | 1,954 | | | 20.0 | 611.1 | _ | 2,475 | 3.394 | | 22.0 | 586.3 | | 3,127 | 3.495 | | | • | İ | | | | 24.0 | 567.3 | _ | 3,946 | 3.596 | | 26.0 | 552.8 | <u> </u> | 4,976 | 3.697 | | 28.0 | 541.5 | _ | 6,270 | 3.797 | | 30.0 | 532.7 | _ | 7,900 | 3,898 | | 35.0 | 518.1 | _ | 14,050 | 4.148 | | 40.0 | 510.1 | _ | 25,000 | 4.398 | | 40.0 | 310.1 | _ | 25,000 | 4.370 | | 50.0 | 503.2 | _ | 79,100 | 4.898 | | 60.0 | 501.0 | _ | 2.50×10^{6} | 5.398 | | 80.0 | 500.1 | _ | 2.50 × 10 ⁶ | 6.398 | | | | | 2.00 /(10 | | | 100.0 | 500.0 | _ | 2.50×10^{7} | 7.398 | #### Symmetrical π and 0 attenuators continued ### Errors in symmetrical π and 0 attenuators Error in input impedance: $$\frac{\Delta Z'}{Z'} = \frac{K - 1}{K + 1} \left(\frac{\Delta R_1}{R_1} + \frac{1}{K^2} \frac{\Delta R_2}{R_2} + \frac{2}{K} \frac{\Delta R_3}{R_3} \right)$$ Error in insertion loss, nominally $R_1 = R_2$ and Z' = Z decibels = $$-8 \frac{\Delta i_2}{i_2}$$ (approximately) $$=4\frac{K-1}{K+1}\left(-\frac{\Delta R_1}{R_1}-\frac{\Delta R_2}{R_2}+2\frac{\Delta R_3}{R_3}\right)$$ See notes on page 254. ## **Bridged T or H attenuators** ### Interpolation of bridged T or H attenuators (Fig. 6) Bridge arm R_4 : Use the formula log_{10} ($R_4 + 500$) = 2.699 + decibels/20 for Z = 500 ohms. However, if preferred, the tabular values of R_4 may be interpolated linearly, between 0 and 10 decibels only. Fig. 6—Values for bridged T or H attenuators. Z=500 ohms resistive, $R_1=R_2=$ 500 ohms (diagram on page 252). | attenuation
in decibels | bridge
arm R ₄
ohms | shunt
arm R ₃
ohms | attenuation
in decibels | bridge
arm R ₄
ohms | shunt
arm R ₃
ohms | |----------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|-------------------------------------| | | | | , | | | | 0.0 | 0.0 | 80 | 12.0 | 1,491 | 167.7 | | 0.2 | 11.6 | 21,500 | 14.0 | , 2,006 | 124.6 | | 0.4 | 23.6 | 10,610 | 16.0 | 2,655 | 94.2 | | 0.6 | 35.8 | 6,990 | 18.0 | 3,472 | 72.0 | | 0.8 | 48.2 | 5,180 | 20.0 | 4,500 | 55.6 | | 1.0 | 61.0 | 4,100 | 25.0 | 8,390 | 29.8 | | | | | | | | | 2.0 | 129.5 | 1,931 | 30.0 | 15,310 | 16.33 | | 3.0 | 206.3 | 1,212 | 40.0 | 49,500 | 5.05 | | 4.0 | 292.4 | 855 | 50.0 | 157,600 | 1.586 | | 5.0 | 389.1 | 642 | 60.0 | 499,500 | 0.501 | | 6.0 | 498 | 502 | 80.0 | 5.00 × 106 | 0.0500 | | 7.0 | 619 | 404 | 100.0 | 50.0 × 10° | 0.00500 | | 7.0 | 017 | 404 | 100.0 | 30.0 × 10 | 0,00000 | | 8.0 | 756 | 331 | | | | | 9.0 | 909 | 275.0 | | | | | 10.0 | 1,081 |
231.2 | l — | l | | ### Bridged T or H attenuators continued **Shunt arm R**₃: Do not interpolate R₃ column. Compute R₃ by the formula $R_3 = 10^6/4R_4$ for Z = 500 ohms. **Note:** For attenuators of 60 db and over, the bridge arm R_4 may be omitted provided a shunt arm is used having twice the resistance tabulated in the R column. (This makes the input impedance 0.1 of 1 percent high at 60 db.) ## Errors in bridged T or H attenuators Resistance of any one arm 10 percent higher than correct value | designed loss
decibels | A decibels* | B percent* | C percent* | |---------------------------|-------------|------------|------------| | 0.2 | 0.01 | 0.005 | 0.2 | | 1 | 0.05 | 0.1 | 1.0 | | 6 | 0.2 | 2.5 | 2.5 | | 12 | 0.3 | 5.6 | 1.9 | | 20 | 0.4 | 8.1 | 0.9 | | 40 | 0.4 | 10 | 0.1 | | 100 | 0.4 | 10 | 0.0 | ^{*} Refer to following tabulation. | element in error
(10 percent high) | error in
loss | error in terminal | remarks | |---|------------------|------------------------------|---| | Series arm R_1 (analogous for arm R_2) | Zero | B, for odjacent
terminals | Error in impedance at op-
posite terminals is zero | | Shunt arm R ₈ | - A | С | Loss is lower than designed loss | | Bridge arm R4 | ^ | С | Loss is higher than de-
signed loss | Error in input impedance: $$\frac{\Delta Z_1}{Z_1} = \left(\frac{K-1}{K}\right)^2 \frac{\Delta R_1}{R_1} + \frac{K-1}{K^2} \left(\frac{\Delta R_3}{R_3} + \frac{\Delta R_4}{R_4}\right)$$ For $\Delta Z_2/Z_2$ use subscript 2 in formula in place of subscript 1. Error in output current: $$\frac{\Delta i}{i} = \frac{K - 1}{2K} \left(\frac{\Delta R_3}{R_3} - \frac{\Delta R_4}{R_4} \right)$$ See notes on page 254. ## Minimum-loss pads ### Interpolation of minimum-loss pads (Fig. 7) This table may be interpolated linearly with respect to Z_1 , Z_2 , or Z_1/Z_2 except when Z_1/Z_2 is between 1.0 and 1.2. The accuracy of the interpolated value becomes poorer as Z_1/Z_2 passes below 2.0 toward 1.2, especially for R_3 . ### For other terminations If the terminating resistances are to be Z_A and Z_B instead of Z_1 and Z_2 , respectively, the procedure is as follows. Enter the table at $\frac{Z_1}{Z_2} = \frac{Z_A}{Z_B}$ and Fig. 7—Values for minimum-loss pads matching Z_1 and Z_2 , both resistive (diagram on page 252). | Z ₁ | Z ₂
ohms | $\mathbf{Z}_1/\mathbf{Z}_2$ | loss in
decibels | series arm R ₁
ohms | shunt arm R ₃ | |----------------|------------------------|-----------------------------|---------------------|-----------------------------------|--------------------------| | 10,000 | 500 | 20.00 | 18.92 | 9,747 | 513.0 | | 8,000 | 500 | 16.00 | 17.92 | 7,746 | 516.4 | | 6,000 | 500 | 12.00 | 16.63 | 5,745 | 522.2 | | 5,000 | 500 | 10.00 | 15.79 | 4,743 | 527.0 | | 4,000 | 500 | 8.00 | 14.77 | 3,742 | 534.5 | | 3,000 | 500 | 6.00 | 13.42 | 2,739 | 547.7 | | 2,500 | 500 | 5.00 | 12.54 | 2,236 | 559.0 | | 2,000 | 500 | 4.00 | 11.44 | 1.732 | 577.4 | | 1,500 | 500 | 3.00 | 9.96 | 1,224,7 | 612.4 | | 1,200 | 500 | 2.40 | 8.73 | 916.5 | 654.7 | | 1,000 | 500 | 2.00 | 7.66 | 707.1 | 707.1 | | 800 | 500 | 1.60 | 6.19 | 489.9 | 816.5 | | 600 | 500 | 1.20 | 3.77 | 244.9 | 1,224.7 | | 500 | 400 | 1.25 | 4.18 | 223.6 | 894.4 | | 500 | 300 | 1.667 | 6.48 | 316.2 | 474,3 | | 500 | 250 | 2.00 | 7.66 | 353.6 | 353.6 | | 500 | 200 | 2.50 | 8.96 | 387.3 | 258.2 | | 500 | 160 | 3.125 | 10.17 | 412.3 | 194.0 | | 500 | 125 | 4.00 | 11.44 | 433.0 | 144.3 | | 500 | 100 | 5.00 | 12.54 | 447.2 | 111.80 | | 500 | 80 | 6.25 | 13.61 | 458.3 | 87.29 | | 500 | 65 | 7.692 | 14.58 | 466.4 | 69.69 | | 500 | 50 | 10.00 | 15.79 | 474.3 | 52,70 | | 500 | 40 | 12.50 | 16.81 | 479.6 | 41.70 | | 500 | 30 | 16.67 | 18.11 | 484.8 | 30.94 | | 500 | 25 | 20.00 | 18.92 | 487.3 | 25.65 | ## Minimum-loss pads continued read the loss and the tabular values of R_1 and R_3 . Then the series and shuntarms are, respectively, MR_1 and MR_3 , where $M = \frac{Z_A}{Z_1} = \frac{Z_B}{Z_2}$. ### Errors in minimum-loss pads | impedance ratio
Z ₁ /Z ₂ | D decibels* | E percent* | F percent* | |---|-------------|------------|------------| | 1.2 | 0.2 | +4.1 | +1.7 | | 2.0 | 0.3 | 7.1 | 1.2 | | 4.0 | 0.35 | 8.6 | 0.6 | | 10.0 | 0.4 | 9.5 | 0.25 | | 20.0 | 0.4 | 9.7 | 0.12 | #### * Notes Series arm R_1 10 percent high: Loss is increased by D decibels from above table. Input impedance Z_1 is increased by E percent. Input impedance Z_2 is increased by F percent. Shunt arm R_3 10 percent high: Loss is decreased by D decibels from above table. Input impedance Z_2 is increased by E percent. Input impedance Z_1 is increased by F percent. ## Errors in input impedance $$\frac{\Delta Z_1}{Z_1} = \sqrt{1 - \frac{Z_2}{Z_1}} \left(\frac{\Delta R_1}{R_1} + \frac{1}{N} \frac{\Delta R_3}{R_3} \right)$$ $$\frac{\Delta Z_2}{Z_2} = \sqrt{1 - \frac{Z_2}{Z_1}} \left(\frac{\Delta R_3}{R_3} + \frac{1}{N} \frac{\Delta R_1}{R_1} \right)$$ ## Error in output current, working either direction $$\frac{\Delta i}{i} = \frac{1}{2} \sqrt{1 - \frac{Z_2}{Z_1}} \left(\frac{\Delta R_3}{R_3} - \frac{\Delta R_1}{R_1} \right)$$ See notes on page 254. ### Miscellaneous T and H pads (F Fig. 8-Values for miscellaneous T and H pads (diagram on page 252). | resistive te | rminations | 1 | | attenuator arms | | |------------------------|------------------------|------------------|-------------------------------|-------------------------------|------------------| | Z _i
ohms | Z ₂
ohms | loss
decibels | series R ₁
ohms | series R ₂
ohms | shunt Ra
ohms | | 5,000 | 2,000 | 10 | 3,889 | 222 | 2,222 | | 5,000 | 2,000 | 15 | 4,165 | 969 | 1,161 | | 5,000 | 2,000 | 20 | 4,462 | 1,402 | 639 | | 5,000 | 500 | 20 | 4,782 | 190.7 | 319.4 | | 2,000 | 500 | 15 | 1,763 | 165.4 | 367.3 | | 2,000 | 500 | 20 | 1,838 | 308.1 | 202.0 | | 2,000 | 200 | 20 | 1,913 | 76.3 | 127.8 | | 500 | 200 | 10 | 388.9 | 22.2 | 222.2 | | 500 | 200 | 15 | 416.5 | 96.9 | 116.1 | | 500 | 200 | 20 | 446.2 | 140.2 | 63.9 | | 500 | 50 | 20 | 478.2 | 19.07 | 31.94 | | 200 | 50 | 15 | 176.3 | 16.54 | 36.73 | | 200 | 50 | 20 | 183.8 | 30.81 | 20.20 | ### Errors in T and H pads Series arms R_1 and R_2 in error: Errors in input impedances are $$\Delta Z_1 = \Delta R_1 + \frac{1}{N} \frac{Z_1}{Z_2} \Delta R_2$$ and $\Delta Z_2 = \Delta R_2 + \frac{1}{N} \frac{Z_2}{Z_1} \Delta R_1$ Error in insertion loss, in decibels = $$4\left(\frac{\Delta R_1}{Z_1} + \frac{\Delta R_2}{Z_2}\right)$$ approximately ## Shunt arm R₃ in error (10 percent high) | | | | error in input impedance | | | |-----------------------------|------------------------|---------------------------|------------------------------|------------------------------|--| | $\mathbf{Z}_1/\mathbf{Z}_2$ | designed loss decibels | error in loss
decibels | $100 \frac{\Delta Z_1}{Z_1}$ | $100 \frac{\Delta Z_2}{Z_2}$ | | | 2.5
2.5
2.5 | 10
15
20 | -0.4
-0.6
-0.7 | 1.1%
1.2
0.9 | 7.1%
4.6
2.8 | | | 4.0
4.0 | 15
20 | -0.5
-0.65 | 0.8
0.6 | 6.0
3.6 | | | 10 | 20 | -0.6 | 0.3 | 6.1 | | $$\frac{\Delta \dot{Z}_1}{Z_1} = \frac{2}{N-1} \left(\sqrt{\frac{NZ_2}{Z_1}} + \sqrt{\frac{Z_1}{NZ_2}} - 2 \right) \frac{\Delta R_3}{R_3} \qquad \begin{cases} \text{for } \Delta Z_2 Z_2 \text{ interchange subscripts 1 and 2} \\ \text{scripts 1 and 2} \end{cases}$$ $$\frac{\Delta i}{i} = \frac{N+1-\sqrt{N}\left(\sqrt{\frac{Z_1}{Z_2}}+\sqrt{\frac{Z_2}{Z_1}}\right)}{N-1} \frac{\Delta R_3}{R_3} \left\{ \text{where } i \text{ is the output current.} \right.$$ # **■** Bridges and impedance measurements In the diagrams of bridges below, the source is shown as a generator, and the detector as a pair of headphones. The positions of these two elements may be interchanged as dictated by detailed requirements in any individual case, such as location of grounds, etc. For all but the lowest frequencies, a shielded transformer is required at either the input or output (but not usually at both) terminals of the bridge. This is shown in some of the following diagrams. The detector is chosen according to the frequency of the source. When insensitivity of the ear makes direct use of headphones impractical, a simple radio receiver or its equivalent is essential. Some selectivity is desirable to discriminate against harmonics, for the bridge is often frequency sensitive. The source may be modulated in order to obtain an audible signal, but greater sensitivity and discrimination against interference are obtained by the use of a continuous-wave source and a heterodyne detector. An amplifier and oscilloscope or an output meter are sometimes preferred for observing nulls. In this case it is convenient to have an audible output signal available for the preliminary setup and for locating trouble, since much can be deduced from the quality of the audible signal that would not be apparent from observation of amplitude only. #### Fundamental alternating-current or #### Wheatstone bridge Balance condition is $Z_x = Z_{\bullet} Z_{a}/Z_b$ Maximum sensitivity when Z_d is the conjugate of the bridge output impedance and Z_g the conjugate of its input impedance. Greatest sensitivity when bridge arms are equal, e.g., for resistive arms, $$Z_d = Z_a = Z_b = Z_s = Z_s = Z_g$$ ### Bridge with double-shielded transformer Shield on secondary may be floating, connected to either end, or to center of secondary winding. It may be in two equal parts and connected to opposite ends of the winding. In any case, its capacitance to ground must be kept to a minimum. #### Wagner earth connection None of the bridge elements are grounded directly. First balance bridge with switch to B. Throw switch to G and rebalance by means of R and C. Recheck bridge balance and repeat as required. The capacitor balance C is necessary only when the frequency is above the audio
range. The transformer may have only a single shield as shown, with the capacitance of the secondary to the shield kept to a minimum. #### Capacitor balance Useful when one point of bridge must be grounded directly and only a simple shielded transformer is used. Balance bridge, then open the two arms at P and Q. Rebalance by auxiliary capacitor C. Close P and Q and check balance. #### Series-resistance-capacitance bridge $$R_x = R_s R_a / R_b$$ #### Wien bridge $$\frac{C_x}{C_s} = \frac{R_b}{R_a} - \frac{R_s}{R_x}$$ $$C_s C_x = 1/\omega^2 R_s R_s$$ ### Wien bridge continued For measurement of frequency, or in a frequency-selective application, if we make $C_x = C_s$, $R_x = R_s$, and $R_b = 2R_a$, then $$f = \frac{1}{2\pi C_a R_a}$$ ### Owen bridge $$L_x = C_b R_a R_d$$ $$R_x = \frac{C_b R_a}{C_d} - R_c$$ ### Resonance bridge $$\omega^2 LC = 1$$ $$R_x = R_a R_a / R_b$$ ## Maxwell bridge $$L_x = R_a R_b C_a$$ $$R_x = \frac{R_a R_b}{R_s}$$ $$Q_x = \omega \frac{L_x}{R_x} = \omega C_s R_s$$ #### Hay bridge For measurement of large inductance. $$L_x = \frac{R_a R_b C_s}{1 + \omega^2 C_s^2 R_s^2}$$ $$Q_x = \frac{\omega L_x}{R_x} = \frac{1}{\omega C_s R_s}$$ ## Schering bridge $$C_x = C_s R_b/R_a$$ $$1/Q_x = \omega C_x R_x = \omega C_b R_b$$ #### Substitution method for high impedances Initial balance (unknown terminals x - x open): C_s' and R_s' Final balance (unknown connected to x - x): $C_s^{\prime\prime}$ and $R_s^{\prime\prime}$ Then when $R_x > 10/\omega C_x'$, there results, with error < 1 percent, $$C_x = C_s' - C_s''$$ The parallel resistance is $$R_x = \frac{1}{\omega^2 C_s^{\prime 2} (R_s^{\prime} - R_s^{\prime \prime})}$$ If unknown is an inductor, $$L_x = -\frac{1}{\omega^2 C_x} = \frac{1}{\omega^2 (C_x'' - C_s')}$$ #### Measurement with capacitor in series #### with unknown Initial balance (unknown terminals x-x short-circuited): C'_s and R'_s Final balance (x - x un-shorted): $C_s^{\prime\prime}$ and $R_s^{\prime\prime}$ Then the series resistance is $$R_{\star} = (R_{s}^{\prime\prime} - R_{s}^{\prime})R_{a}/R_{b}$$ $$C_x = \frac{R_b C_s' C_s''}{R_a (C_s' - C_s'')}$$ $$= \frac{R_b}{R_a} C_s' \left(\frac{C_s'}{C_s' - C_s''} - 1 \right)$$ When $C_s'' > C_s'$, $$L_x = \frac{1}{\omega^2} \frac{R_a}{R_b C_s'} \left(1 - \frac{C_s'}{C_s''} \right)$$ #### Measurement of direct capacitance Connection of N to N' places C_{nq} across phones, and C_{np} across R_b which requires only a small readjustment of R_a . Initial balance: Lead from P disconnected from X_1 but lying as close to connected position as practical. Final balance: Lead connected to X_1 . By the substitution method above, $C_{pq} = C'_s - C''_s$ #### Felici mutual-inductance balance At the null: $$M_x = -M_s$$ Useful at lower frequencies where capacitive reactances associated with windings are negligibly small. #### Mutual-inductance capacitance balance Using low-loss capacitor. At the null $M_x = 1/\omega^2 C_A$ ### Hybrid-coil method At null: $$Z_1 = Z_2$$ The transformer secondaries must be accurately matched and balanced to ground. Useful at audio and carrier frequencies. ### Q of resonant circuit by bandwidth For 3-decibel or half-power points. Source loosely coupled to circuit. Adjust frequency to each side of resonance, noting bandwidth when $$v = 0.71 \times (v \text{ at resonance})$$ $$Q = \frac{(resonance frequency)}{(bandwidth)}$$ #### Q-meter (Boonton Radio Type 160A) $R_1 = 0.04 \text{ ohm}$ $R_2 = 100 \text{ megohms}$ V = vacuum-tube voltmeter I =thermal milliammeter $L_xR_xC_0$ = unknown coil plugged into COIL terminals for measurement. #### Correction of Q reading For distributed capacitance Co of coil $$Q_{true} = Q \frac{C + C_0}{C}$$ where Q = reading of Q-meter (corrected for internal resistors R_1 and R_2 if necessary) C = capacitance reading of Qmeter ### Measurement of C_0 and true L_z C plotted vs $1/f^2$ is a straight line. ### Measurement of C_0 and true L_x continued $L_x = \text{true inductance}$ $$=\frac{1/f^2_2-1/f^2_1}{4\pi^2\left(C_2-C_1\right)}$$ C_0 = negative intercept f_0 = natural frequency of coil When only two readings are taken and $f_1/f_2 = 2.00$, $$C_0 = (C_2 - 4C_1)/3$$ Using μh , mc, and $\mu \mu f$. $$L_x = 19,000/f_2 (C_2 - C_1)$$ ### Measurement of admittance Initial readings C'Q' (LRp is any suitable coil) Final readings C'' Q" $$1/Z = Y = G + jB = 1/R_p + j\omega C$$ Then $$C = C' - C''$$ $$1/Q = G/\omega C$$ $$= \frac{C'}{C} \left(\frac{1000}{Q''} - \frac{1000}{Q'} \right) \times 10^{-3}$$ If Z is inductive, C'' > C ### Measurement of impedances lower than 269 #### those directly measurable For the initial reading, C'Q', COND terminals are open. On second reading, C"Q", a capacitive divider C_aC_b is connected to the COND terminals. Final reading, C'"Q", unknown connected to x-x. $$Y_a = G_a + j\omega C_a$$ $Y_b = G_b + j\omega C_b$ G_a and G_b not shown in diagrams. Then the unknown impedance is $$Z = \left(\frac{Y_a}{Y_a + Y_b}\right)^2 \frac{1}{Y''' - Y''} - \frac{1}{Y_a + Y_b} \text{ ohms}$$ $= \frac{C'}{C} \left(\frac{1000}{Q''} - \frac{1000}{Q'} \right) \times 10^{-3} \quad \text{where, with capacitance in micro-micro-farads and } \omega = 2\pi \times \text{(free-micro-farads)}$ quency in megacycles/second): #### Measurement of Impedances lower than #### those directly measurable continue $$\frac{1}{Y''' - Y''} = \frac{10^{8}/\omega}{C'\left(\frac{1000}{Q'''} - \frac{1000}{Q''}\right) \times 10^{-8} + f(C'' - C''')}$$ Usually G_a and G_b may be neglected, when there results $$Z = \left(\frac{1}{1 + C_b/C_a}\right)^2 \frac{1}{Y''' - Y''} + j \frac{10^6}{\omega(C_a + C_b)} \text{ ohms}$$ For many measurements, C_a may be 100 micromicrofarads. $C_b = 0$ for very low values of Z and for highly reactive values of Z. For unknowns that are principally resistive and of low or medium value, C_b may take sizes up to 300 to 500 micromicrofarads. When $C_b = 0$ $$Z = \frac{1}{Y''' - Y''} + j \frac{10^6}{\omega C_a}$$ ohms and the "second" reading above becomes the "initial", with C'=C'' in the formulas. #### Parallel-T (symmetrical) Conditions for zero transfer are $\omega^2 C_1 C_2 = 2/R_2^2$ $$\omega^2 C_1{}^2 = 1/2R_1R_2$$ $$C_2R_2 = 4 C_1R_1$$ When used as a frequency-selective network, if we make $R_2 = 2R_1$ and $$C_2 = 2C_1$$ then $f = 1/2\pi C_1 R_2 = 1/2\pi C_2 R_1$ For additional information, see G. E. Valley, Jr. and H. Wallman, "Vacuum Tube Amplifiers," McGraw-Hill Book Company, Inc., New York, N. Y.; 1948: pp. 387–389. #### Twin-T admittance-measuring circuit #### (General Radio Co. Type 821-A) This circuit may be used for measuring admittances in the range somewhat exceeding 400 kilocycles to 40 megacycles. It is applicable to the special measuring techniques described above for the Q-meter. Conditions for null in output $$G + G_{i} = R\omega^{2}C_{1}C_{2}(1 + C_{o}/C_{3})$$ $$C + C_{b} = 1/\omega^{2}L$$ $$- C_{1}C_{2}\left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}\right)$$ With the unknown disconnected, call the initial balance C'_b and C'_g . With unknown connected, final balance is $C_b^{\prime\prime}$ and $C_a^{\prime\prime}$. Then the components of the unknown $$Y = G + j\omega C$$ are $$C = C_b' - C_b''$$ $$G = \frac{R\omega^2 C_1 C_2}{C_2} (C_0^{\prime\prime} - C_0^{\prime})$$ ### ■ Iron-core transformers and reactors Iron-core transformers are, with few exceptions, closely coupled circuits for transmitting alternating-current energy and matching impedances. The equivalent circuit of a generalized transformer is shown in Fig. 1. $a = turns ratio = N_p/N_s$ $C_p = \text{primary equivalent shunt capacitance}$ C_8 = secondary equivalent shunt capaci- tance $E_g = \text{root-mean-square generator volt-}$ $E_{\text{out}} = \text{root-mean-square output voltage}$ cout = root-mean-square output voitage k = coefficient of coupling $L_p = primary inductance$ I_p = primary leakage inductance I₈ = secondary leakage inductance $R_a = \text{core-loss equivalent shunt}$ resistance $R_a = \text{generator impedance}$ $R_l = load impedance$ $R_p = primary-winding resistance$ R_s = secondary-winding resistance Fig. 1—Equivalent network of a transformer. ## Major transformer types used in electronics #### **Power transformers** Power transformers operate from a source of nearly zero impedance at a single low frequency, primarily to transfer power at convenient voltages. Rectifier plate and/or filament: Power rectifiers and tube heaters. **Vibrator power supply:** Permit the operation of radio receivers from directcurrent sources, such as automobile batteries, when used in conjunction with vibrator inverters. Scott connection: Serve to transmit power from 2-phase to 3-phase systems, or vice versa. **Autotransformer:** Is a special case of the usual isolation type in that a part of the primary and secondary windings are physically common. The size, voltage regulation, and leakage inductance are, for a given rating, less than those for an isolation-type transformer handling the same power. ## Major transformer types used in electronics continued ### **Audio-frequency transformers** Match impedances and transmit audio frequencies. Output: Couple the plate(s) of an amplifier to an output load. **Input or interstage:** Couple a magnetic pickup, microphone, or plate of a tube to the grid of another tube. **Driver:** Couple the plate(s) of a driver stage (preamplifier) to the grid(s) of an amplifier stage where grid current is drawn. **Modulation:** Couple the plate(s) of an audio-output stage to the grid or plate of a modulated amplifier. ### **High-frequency transformers** Match impedances and transmit a band of frequencies in the carrier or higher-frequency ranges. **Power-line carrier-amplifier:** Couple different stages, or couple input and output stages to the line. **Intermediate-frequency:** Are coupled tuned circuits used in receiver intermediate-frequency amplifiers to pass a band of frequencies (these units may,
or may not have magnetic cores). **Pulse:** Transform energy from a pulse generator to the impedance level of a load with, or without, phase inversion. Also serve as interstage coupling or inverting devices in pulse amplifiers. Pulse transformers may be used to obtain low-level pulses of a certain repetition rate in regenerative-pulse-generating circuits (blocking oscillators). **Sawtooth-amplifier:** Provide a linear sweep to the horizontal plates of a cathode-ray oscilloscope. ## Major reactor types used in electronics **Filter:** Smooth out ripple voltage in direct-current supplies. Here, swinging chokes are the most economical design in providing adequate filtering, in most cases, with but a single filtering section. **Audio-frequency:** Supply plate current to a vacuum tube in parallel with the output circuit. Radio-frequency: Pass direct current and present high impedance at the high frequencies. Wave-filter: Used as filter components to aid in the selection or rejection of certain frequencies. ### Special nonlinear transformers and reactors These make use of nonlinear properties of magnetic cores by operating near the knee of the magnetization curve. See pp. 323–326. **Peaking transformers:** Produce steeply peaked waveforms, for firing thyratrons. Saturable-reactor elements: Used in tuned circuits; generate pulses by virtue of their saturation during a fraction of each half cycle. Saturable reactors: Serve to regulate voltage, current, or phase in conjunction with glow-discharge tubes of the thyratron type. Used as voltage-regulating devices with dry-type rectifiers. Also used in mechanical vibrator rectifiers and magnetic amplifiers. ### Design of power transformers for rectiflers The equivalent circuit of a power transformer is shown in Fig. 2. **a.** Determine total output volt-amperes, and compute the primary and secondary currents from $$E_p I_p \times 0.9 = \frac{1}{\eta} \left[(E_s I_{de})_{pl} K + (EI)_{fil} \right]$$ $$I_s = K' I_{de}$$ Fig. 2—Equivalent network of a power transformer. l_p and l_s may be neglected when there are no strict requirements on voltage regulation. where the numeric 0.9 is the power factor, and the efficiency η and the K, K' factors are listed in Figs. 3 and 4. E_pI_p is the input volt-amperes, I_{de} refers to the total direct-current component drawn by the supply; and Fig. 3—Factors K and K' for single-phase-rectifier supplies. See pp. 306-307 for more complex circuits. Fig. 4—Efficiency of various sizes of power supplies.* | fliter | K | K' | watts
output | approximate
efficiency in
percent | |-----------------|-------|-------|-----------------|---| | Full-wave: | | | 20 | 70 | | Capacitor input | 0.717 | 1.06 | 30 | 75 | | Reactor input | 0.5 | 0.707 | 40 | 80 | | Half-wave: | | | 80 | 85 | | Capacitor input | 1.4 | 2.2 | 100 | 86 | | Reactor input | 1.06 | 1.4 | 200 | 90 | ^{*} From "Radio Components Handbook," Technical Advertising Associates; Cheltenham, Pa., May, 1948; p. 92. ## Design of power transformers for rectifiers continued the subscripts pl and fil refer to the volt-amperes drawn from the plate-supply and filament-supply (if present) windings, respectively. $E_{\rm s}$ is the total voltage across the secondary of the transformer. $$E_s = 2.35 E_{dc}$$ for single-phase full-wave rectifier. $E_{ m dc}$ is the direct-current output voltage of the rectifier. Factor 2.35 is twice the ratio of root-mean-square to average values plus an allowance for 5-percent regulation. Where a transformer is operated at different loads according to a regular duty cycle, the equivalent volt—ampere (VA)_{ea} rating is computed as follows: $$(VA)_{eq} = \left[\frac{(VA)^2 {}_1 f_1 + (VA)^2 {}_2 f_2 + (VA)^2 {}_3 f_3 + \dots (VA)^2 {}_n f_n}{f_1 + f_2 + f_3 + \dots f_n} \right]^{\frac{1}{2}}$$ where $(VA)_1 = \text{output during time } (t_1)$, etc. Example: 5 kilovolt-ampere output, 1 minute on, 1 minute off. $$\begin{aligned} (VA)_{eq} &= \left[\frac{(5000)^2 (1) + (0)^2 (1)}{1+1} \right]^{\frac{1}{2}} = \left[\frac{(5000)^2}{2} \right]^{\frac{1}{2}} \\ &= 5000/(2)^{\frac{1}{2}} = 3535 \text{ volt-amperes} \end{aligned}$$ **b.** Compute the size of wire of each winding, on the basis of current densities given by For 60-cycle sealed units, amperes/inch² = $$2470 - 585 \log W_{out}$$ or, inches diameter $$\approx 1.13$$ $\left[\frac{I \text{ (in amperes)}}{2470 - 585 \log W_{\text{out}}}\right]^{1/2}$ For 60-cycle open units, uncased, amperes/inch² = $$2920 - 610 \log W_{\text{out}}$$ or, inches diameter $$\approx 1.13$$ $\left[\frac{I \text{ (in amperes)}}{2920 - 610 \log W_{\text{out}}}\right]^{\frac{1}{2}}$ c. Compute, roughly, the net core area $$A_{c} = \frac{\sqrt{W_{out}}}{5.58} \sqrt{\frac{60}{f}} \text{ inches}^{2}$$ ## Design of power transformers for rectiflers continued where f is in cycles (see also Fig. 5). Select a lamination and core size from the manufacturer's data book that will nearly meet the space requirements, and provide core area for a flux density B_m not to exceed the values shown in Fig. 10. Further information on available core materials is given in Fig. 6. **d.** Compute the primary turns N_p from the transformer equation $$E_p = 4.44 \text{ fN}_p A_c B_m \times 10^{-8}$$ with A_c in square centimeters and B_m in gausses. Then the secondary turns $$N_e = 1.05 (E_e/E_p) N_p$$ (this allows 5 percent for IR drop of windings). e. Calculate the number of turns per layer that can be placed in the lamination window space, deducting from the latter the margin space given in Fig. 7 (see also Fig. 8). Fig. 5—Equivalent LI^2 and EI ratings of power transformers: $B_m=$ flux density in gausses: EI= volt-amperes. This table gives the maximum values of LI^2 and EI ratings at 60 and 400 cycles for various size cores. Ratings are based on a 50-degree-centigrade rise above ambient. These values can be reduced to obtain a smaller temperature rise. EI ratings are based on a two-winding transformer with normal operating voltage. When three or more windings are required, the EI ratings should be decreased slightly. | | at 60 | cycles | at 400 | cycles | | tongue
width | stack | amperes | |------------------------------------|----------------------------------|--------------------------------------|-----------------------------------|------------------------------|------------------------|-----------------------|--|------------------------------| | LI2 | EI | B _m * | EI | B _m * | El-type
punchings | of E
in inches | height
in inches | per
inch² | | 0.0195
0.0288
0.067
0.088 | 3.9
5.8
13.0
17.0 | 14,000
14,000
14,000
14,000 | 9.5
15.0
30.0
38.0 | 5000
4900
4700
4600 | 21
62.5
75
75 | 1250004 | 12
58
33
4 | 3200
2700
2560
2560 | | 0.111
0.200
0.300
0.480 | 24.0
37.0
54.0
82.0 | 13,500
13,000
13,000
12,500 | 50.0
80.0
110.0
180.0 | 4500
4200
4000
3900 | 11
12
12
12,5 | 1
1
1
114 | 78
112
114 | 2330
2130
2030
1800 | | 0.675
0.850
1.37
3.70 | 110.0
145.0
195.0
525.0 | 12,000
12,000
11,000
10,500 | 230.0
325.0
420.0
1100.0 | 3900
3700
3500
3200 | 12.5
13
13
19 | 14
1½
1½
134 | $ \begin{array}{c c} 1\frac{3}{4} \\ 1\frac{1}{2} \\ 2 \\ 1\frac{3}{4} \end{array} $ | 1770
1600
1500
1220 | From "Radio Components Handbook," Technical Advertising Associates; Cheltenham, Pa.; May, 1948: see p. 92. ^{*} B_m refers to 29-gauge silicon steel, 14 mils thick. Fig. 6—Data on metallic core materials.* | | | | | | | direct- | residual | | resis- | curie
femper- | |-------------------|---------------------------|--------------------------------|------------------------------|---------|--------------|--------------------|-------------------|----------------------|--------------------------------|---------------------| | , | | composition in | characteristic | ретже | permeability | satura-
tion in | induc-
tion in | coercive | fivity in
coercive microhm- | ature in
degrees | | metal or
alloy | material or
trade name | percent
(remainder is iron) | property or application | initial | maximum | kilo-
gausses | kilo-
gausses | force in
oersteds | centi-
meters | grade | | | Silicon-Iron | 4 Si | Transformer | 400 | 2,000 | 20 | 12 | 0.5 | 09 | 069 | | | Hypersil | | | | | | | 5 | | | | | Trancor 3X | 3. 5 Si | Grain | 1,500 | 35,000 | 20 | 13.7 | . e S | 8 | 750 | | Silicon-Iron | Silectron | | | | | | | 2.0 | | | | | Sendust | 9.5 Si, 5.5 Al | High-
freauency
powder | 30,000 | 120,000 | 10 | 5 | 0.05 | 80 | 1 | | - | Hyperco | 35 Co, 0.5 Cr | High | 959 | 10,000 | 2 | > 13 | _ | 28 | 970 | | Cobair-iron | Permendur 2V | 49 Co, 2 V | saturation | 800 | 4,500 | 47 | 4 | 2 | 25 | 980 | | | Perminvar 45–25 | 45 Ni, 25 Co | | 400 | 2,000 | 15.5 | 3.3 | 1.2 | 20 | 715 | | | Perminvar 7-70 | 70 Ni, 7 Co | "Constant" | 850 | 4,000 | 12.5 | 2.4 | 9.0 | 15 | 650 | | | Conpernik | 50 Ni | | 1,500 | 2,000 | 16 | | | 45 | l | | Nickel-iron | Isoperm 36 | 36 Ni, 9 Cu | High | 99 | 65 | | | | 70 | 300 | | | Isoperm 50 | 50 Ni | frequency | 8 | 100 | 91 | 1 | l | 40 | 500 | | | Permalloy 45 | 45 Ni | | 2,700 | 23,000 | 16.5 | 80 | 0.3 | 45 | 440 | | | Allegheny 4750 | 47 to 50 Ni | | 000'6 | 50,000 | | 6.2† | 0.08† | 52 | 430 | | | Armco 48 | 48 Ni | good | I | 1 | | 1 | | ı | 1 | | | Nicaloi | 64
7
17 | and flux | 1 | 1 | 91 | 1 | 1 | 1 | | | | High Perm 49 | | Qensiry | 5,000 | 50,000 | | 6.5 | 0.03 | 43 | 475 | | | Hipernik | 50 Ni, Si, Mn | | 4,000 | 100,000 | | 8 | 0.03† | 45 | 200 | | | | | | | | | | l | i | I | ļ | ı | I | 1 | |-------------|-------------|-----------------|-----------|----------|-------------|--------------------|----------|--------------
--------------------|-------------------|---------------|-------------------|-------------------------|---------| | 390 | 290 | | | 450 | 50S | | | 009 | 290 | 400 | 580 | | 400 | 460 | | 80 | 8 | | | 40 | 5 S | | | 50 | 55 | 99 | 91 | 55 | 65 | 58 | | 90.0 | 0.1 | | | 0.2 | 0.
4. | | | 0.03 | 0.02 | | 0.05 | | 0.002
to
0.05 | 90.0 | | ! | 1 | | | 55 | 55 | | | 13 | 2.5 | 9 | 9 | 5.5 | l | | | 15 | = | | | 15.5 | ბ გ | | | 13 | 9 | 8 | 10.7 | 80 | 6.8
to
7.8 | 80 | | 38,000 | 30,000 | | | 40,000 | 100,000 | | | 250,000 | | 100,000 | | 75,000 | 500,000 | 100,000 | | 2,000 | 3,500 | | | 400 | 1,700 | | | 1,500 | 40,000 | 20,000 | 9,000 | 20,000 | 55,000
to
150,000 | 10,000 | | High | resistivity | | | | Rectangular | hysteresis
loop | | | | | Highest | bility, | saturation | | | 47 Ni, 3 Mo | 42 Ni, 3 Si | | | | 45 to 50 Nr | | | 65 to 68 Ni | 72 Ni, 14 Cu, 3 Mo | 77 Ni, 5 Cu, 2 Cr | 78 Ni, 0.6 Mn | 79 Ni, 4 Mo | 79 Ni, 5 Mo | 80 Ni | | Monimax | Sinimax | Permenorm 5000Z | Permenite | Deltamax | Hypernik V | Orthonik | Orthonol | Permalloy 65 | Alloy 1040 | Mumetal | Permalloy 78 | Mo-Permalloy 4-79 | Supermalloy | Нуто 80 | | | | - | cont. | | | • | · | | | | | | | | Note 1—The table shows characteristics as listed by the manufacturers. The parameters of different lots of material may vary considerably from the above * Reprinted by permission from an article by S. R. Hoh, "Evaluation of High-Performance Magnetic Core Materials (Part 1)," Tele-Tech and Electronic Industries, vol. 12, pp. 86-89, 154-156; October, 1953. $\dagger B_{max} = 10,000$ gausses. values. In the cases of residual induction and coercive force, the difference may amount to 50 percent. Note 2—For information on ferrite materials, see page 74. Fig. 7—Wire table for transformer design. The resistance R_T at any temperature T is given by $R_T = \frac{234.5 + 1}{234.5 + 1} \times r$, where t = reference temperature of winding and r = resistance =temperature of winding, and r = resistance of winding at temperature t, all in degrees contigrade. | | AWG
B&S
gauge | 2525 | 4 5× | 18 | 82828 | 28488 | 88888 | 88888 | |--------------------|--------------------------------|--------------------------------------|-------------------------|----------------------------|--|--|--|--| | _ | interlayer
Insulation‡
t | 0.010K
0.010K
0.010K | 0.010K | 0.007K
0.007K
0.007K | 0.005K
0.003K
0.003K
0.003K | 0.002G
0.002G
0.002G
0.0015G
0.0015G | 0.0015G
0.0015G
0.0013G
0.0013G | 0.001G
0.001G
0.001G
0.0001G
0.0007G | | | margin
m in
inches | 0.25
0.25
0.25
0.25 | 0.25
0.25
0.1875 | 0.1875
0.1875
0.1562 | 0.1562
0.1562
0.125
0.125
0.125 | 0.125
0.125
0.125
0.125 | 0.125
0.125
0.0937
0.0937
0.0937 | 0.0937
0.0937
0.0937
0.0625
0.0625 | | | pounds
per
1000 ft | 31.43
24.92
19.77
15.68 | 12.43
9.858
7.818 | 6.200
4.917
3.899 | 3.092
2.452
1.945
1.542
1.223 | 0.9699
0.7692
0.6100
0.4837
0.3836 | 0.3042
0.2413
0.1913
0.1517
0.1203 | 0.0954
0.0757
0.0600
0.0476
0.0377
0.0299 | | | ohms per
1000 ft† | 0.9989
1.260
1.588
2.003 | 3.184 | 5.064
6.385
8.051 | 10.15
12.80
16.14
20.36
25.67 | 32.37
40.81
51.47
64.90
81.83 | 103.2
130.1
164.1
206.9
260.9 | 329.0
414.8
523.1
659.6
831.8 | | | space | 8888 | 8 88 | 888 | 88888 | 28888 | 88888 | 88888888 | | | hurns
per inch
(formvar) | 9
9
12 | 13 | 33.29: | %888¢4 | 48822 | 88
88
110
124 | 140
155
170
215
239 | | • | double | 0.1055
0.0942
0.0842
0.0753 | 0.0673 | 0.0482
0.0431
0.0386 | 0.0346
0.0310
0.0277
0.0229 | 0.0200
0.0179
0.0161
0.0145 | 0.0116
0.0104
0.0394
0.0084 | 0.0067
0.0060
0.0064
0.0048
0.0042 | | diameter in Inches | single
formvar* | 0.1039
0.0927
0.0827
0.0738 | 0.0659 | 0.0469
0.0418
0.0374 | 0.0234
0.0299
0.0266
0.0239
0.0213 | 0.0190
0.0169
0.0152
0.0135 | 0.0109
0.0097
0.0088
0.0079
0.0070 | 0.0062
0.0056
0.0045
0.0040
0.0036 | | • | bare | 0.1019
0.0907
0.0808
0.0719 | 0.0641 | 0.0453
0.0359 | 0.0285
0.0285
0.0253
0.0226 | 0.0179
0.0159
0.0142
0.0126 | 0.0100
0.0089
0.0080
0.0071 | 0.0056
0.0050
0.0045
0.0030
0.0033 | | | AWG
B&S
gauge | 2222 | ¥ 25 | 1812 | \$2828
\$ | 28288 | *88838 | 888888 | *Dimensions very nearly the same as for enamelled wire. \dagger Values are at 20 degrees centigrade. $\sharp K = \text{kraft paper}$, G = glassine. Additional data on wire will be found on pp. 50-57 and p. 114. ## Design of power transformers for rectiflers continued Fig. 8—Dimensions relating to the design of a transformer coil-build and core. **f.** From (d) and (e) compute the number of layers n_i for each winding. Use interlayer insulation of thickness t as given in Fig. 7, except that the voltage stress should be limited to 40 volts/mil. a. Calculate the coil-build a: $$a = 1.1[n_t(D+t) - t + t_c]$$ for each winding from (b) and (f), where D= diameter of insulated wire and $t_c=$ thickness of insulation under and over the winding; the numeric 1.1 allows for a 10-percent bulge factor. The total coil-build should not exceed 85–90 percent of the window width. (Note: Insulation over the core may vary from 0.025 to 0.050 inches for core-builds of $\frac{1}{2}$ to 2 inches.) **h.** Compute the mean length per turn (MLT), of each winding, from the geometry of core and windings as shown in Fig. 9. Compute length of each winding N(MLT). $$(MLT)_1 = 2(r + J) + 2(s + J) + \pi \alpha_1$$ $(MLT)_2 = 2(r + J) + 2(s + J) + \pi(2\alpha_1 + \alpha_2)$ where a_1 = build of first winding a_2 = build of second winding J = thickness of winding form r,s = winding-form dimensions ## Design of power transformers for rectiflers continued i. Calculate the resistance of each winding from (h) and Fig. 7, and determine IR drop and I^2R loss for each winding. **i.** Make corrections, if required, in the number of turns of the windings to allow for the IR drops, so as to have the required E_{\bullet} : $$E_s = (E_p - I_p R_p) N_s / N_p - I_s R_s$$ **k.** Compute core losses from weight of core and the table on core materials, Fig. 10, or the graph, Fig. 11. Fig. 9—Dimensions relating to coil mean length of turn (MLT). 1. Determine the percent efficiency η and voltage regulation (vr) from $$\eta = \frac{W_{\text{out}} \times 100}{W_{\text{out}} + (\text{core loss}) + (\text{copper loss})}$$ $$(vr) = \frac{I_s[R_s + (N_s/N_p)^2R_p]}{E_s}$$ **m.** For a more accurate evaluation of voltage regulation, determine leakage-reactance drop = $I_{\rm de}\omega I_{\rm sc}/2\pi$, and add to the above (vr) the value of $(I_{\rm de}\omega I_{\rm sc})/2\pi E_{\rm de}$. Here, $I_{\rm sc}=$ leakage inductance viewed from the secondary; see "Methods of winding transformers", p. 299 to evaluate $I_{\rm sc}$. Fig. 10—Typical operating conditions for core materials at various frequencies. | frequency
in cycles | lamination
thickness
in inches | core
material | core flux density B_{max} in gausses | approxi-
mate core
loss in
watts/lb | approxi-
mate
exciting
(VA)/Ib | |------------------------|--------------------------------------|-----------------------|--|--|---| | 25 | 0.025 | 2.5-percent silicon | 14,000 | 0.65 | 4.0 | | 60 | 0.023 | 4-percent silicon | 12,000 | 0.80 | 6.0 | | 00 | 0.014 | 4-percent sincon | 12,000 | 0.00 | 0.0 | | 60 | 0.014 | Grain-orient, silicon | 15,000 | 1.0 | 6.0 | | 400 | 0.004 | Groin-orient, silicon | 10,000 | 4.5 | 10.0 | | | | | | | | | 800 | 0.004 | Grain-orient, silicon | 6,000 | 4.5 | 10.0 | | 16,000 | - | Ferrite | 1,000 | 5.0 | _ | ## Design of power transformers for rectifiers continued Fig. 11—Typical core losses. ## Design of power transformers for rectifiers continued **n.** Bring out all terminal leads using the wire of the coil, insulated with suitable sleevings, for all sizes of wire heavier than 21; and by using 7–30 stranded and insulated wire for smaller sizes. Effect of power frequency on design: Design procedure is similar to that described above for 60-cycle transformers except for the flux density at which the core is operated. Operation at lower frequencies requires a larger core (see equation in paragraph (c) above) although reduction of core loss partially compensates the size increase. As an example, a 25-cycle transformer is approximately twice as large as its 60-cycle equivalent. High-frequency operation (Fig. 10) normally results in size and weight reduction and is used primarily in aircraft applications where power-supply frequencies are usually 400 or 800 cycles. A smaller core results from increased frequency; but greatly increased losses (Fig. 11) prevent proportional size decrease from 60-cycle equivalent. Use of thinner laminations partially compensates the effects of losses permitting further reduction in size. Voltage drop due to leakage reactance has greater effect than at 60 cycles and may require interleaved winding. Television flyback transformers supply power at 16 kilocycles, where normal core materials are not satisfactory since extremely thin, (0.001- to 0.002-inch) and expensive laminations are required. Molded ferrite cores are normally used due to their excellent loss characteristics at these frequencies. ## Design of filter reactors for rectiflers and plate-current supply These reactors carry direct current and
are provided with suitable air-gaps. Optimum design data may be obtained from Hanna curves, Fig. 12. These curves relate direct-current energy stored in core per unit volume, $U_{\rm dc}^2/V$ to magnetizing field $NI_{\rm dc}/I_c$ (where I_c = average length of flux path in core), for an appropriate air-gap. Heating is seldom a factor, but direct-current-resistance requirements affect the design; however, the transformer equivalent volt-ampere ratings of chokes (Fig. 5) should be useful in determining their sizes. This is based on the empirical relationship $(VA)_{eq} = 188LI_{dc}^2$. As an example, take the design of a choke that is to have an inductance of 10 henries with a superimposed direct current of 0.225 amperes, and a direct-current resistance \leq 125 ohms. This reactor shall be used for suppressing harmonics of 60 cycles, where the alternating-current ripple voltage (2nd harmonic) is about 35 volts. ## Design of filter reactors for rectiflers continued **a.** $L^2 = 0.51$. Based on data of Fig. 5, try 4-percent silicon-steel core, type El-12.5 punchings, with a core-build of 1.5 inches. From manufacturer's data, volume = 13.7 inches³; $I_c = 7.5$ inches; $A_c = 1.69$ inches². **b.** Compute $U_{\rm dc}^2/V=0.037$; from Fig. 12, $NI_{\rm dc}/l_c=85$; hence, by substitution, N=2840 turns. Also, gap ratio $I_g/I_c=0.003$, or, total gap $I_g=22$ mils. Alternating-current flux density $B_m = \frac{E \times 10^8}{4.44 f N A_c} = 210$ gausses, where A_c is in square centimeters. **c.** Calculate from the geometry of the core, the mean length/turn, (MLT) = 0.65 feet, and the length of coil = N(MLT) = 1840 feet, which is to have a maximum direct-current resistance of 125 ohms. Hence, $R_{\rm de}/N(\text{MLT})$ = 0.068 ohms/foot. From Fig. 7, the nearest size is No. 28. Fig. 12—Hanna curves for 4-percent silicon-steel core material, ## Design of filter reactors for rectiflers continued - **d.** Now see if 2840 turns of No. 28 single-Formex wire will fit in the window space of the core. (Determine turns per layer, number of layers, and coilbuild, as explained in the design of power transformers.) - **e.** This is an actual coil design; in case lamination window space is too small (or too large) change stack of laminations, or size of lamination, so that the coil meets the electrical requirements, and the total coil-build ≈ 0.85 to $0.90 \times$ (window width). Note: To allow for manufacturing variations in permeability of cores and resistance of wires, use at least 10-percent tolerance. Swinging reactors: Used where direct current in rectifier circuit varies. Reactor is designed to saturate under full-load current while providing adequate inductance for filtering. At light-load current, higher inductance is available to perform proper filtering and prevent "capacitor effect." Equivalent size to 60-cycle power transformer is approximated as $$(VA)_{eq} = 188(L_{max} \times L_{min})^{\frac{1}{2}} I^{2}_{dc \ (max)}$$ Design is similar to normal reactor and is based on meeting both L and $I_{\rm dc}$ extremes. Typical swing in inductance is 4:1 for a current swing of 10:1. ### Design of wave-filter reactors Wave-filter reactors must have high Q to provide attenuation at frequencies immediately off the pass band. Materials listed in Fig. 6 having both high initial permeability and high resistivity are generally suitable. Additional data on a few materials is given in Fig. 13. Cores are usually molded from powdered materials or wound from very thin strips to reduce eddy-current losses. They are usually of toroidal or "pot" form to minimize leakage flux. Maximum Q is obtained when: (copper loss) = (core loss) The inductance is given by $$L \approx \frac{1.25N^2A_c}{I_a + I_c/\mu_0} 10^{-8}$$ henries where dimensions are in centimeters and μ_0 = initial permeability. This relationship is valid primarily where the air-gap I_0 is small. Where large gaps are encountered, the effects of fringing flux at the gaps must be considered since the effective gap is generally smaller than the physical gap.* ^{*} P. K. McElroy, "Those Iron-Cored Coils Again", General Radio Experimenter, vol. 21, pp. 2–8; January, 1947. continued Design of wave-filter reactors Fig. 13—Characteristics of some core materials for wave-filter reactors. * R $_c/\mu=\mu_0$ (aB $_m+$ c) + μ_0 ef, where R $_c=$ ohm | | | | | - "mon\07 10 | c) $+$ μ_0 er, where μ | رہ ⊫ ohma | Action of the property | |------------------------------------|--------------------------------------|---|--|---|--|-------------|---| | alloy | initial
permeability
\$\mu_0\$ | resistivity
in microhms/
centimeter | hysteresis coefficient (a $ imes 10^6$) | residual
coefficient
(c × 10 ⁶) | eddy-current
coefficient
(e × 10°) | gauge
In | uses
(frequencies in | | 4-percent silicon steel | 400 | 09 | 120 | 75 | 870 | 4 | Rectifier filters | | Nicalloy | 3,500 | 43 to 45 | 0.4 | 14 | 1550 | 14 | Wave filters up to 0.1–0.2 | | | to 5,000 | | | | 284 | 9 | Wave filters up to 10 | | Hymn | 10,000 | 55 to 58 | 0.05 | 0.05 | 950 | 14 | Wave filters up to 0.1–0.2 | | | to 20,000 | | | | 175 | 9 | Wave filters up to 10 | | 2-81 molybdenum.
permalloy dust | 125 | 1 ohm/cm | 1.6 | 8 | 19 | J | Wave filters 0.2 to 7 | | | 09 | ı | 3.2 | 20 | 10 | 1 | Wave filters 5-20 | | | 26 | ı | 6.9 | 96 | 7.7 | | Wave filters 15-60 | | | 14 | 1 | 11.4 | 143 | 7.1 | | Wave filters 40-150 | | Carbonyl types C | 55 | 1 | 6 | 80 | 7 | 1 | Wave filters | | d T | 28 | 1 | 3.4 | 220 | 27 | | Wave filters | | - | 16 | 1 | 2.5 | 80 | ω | | Wave filters 40-high | | | | | | | | | | *Additional data on metallic core materials will be found on p. 276. Ferrite materials are listed on p. 74. †Data on molybdenum-permalloy dust and definition of constants a, c, and e are from an article by V. E. Legg, and F. J. Given, "Compressed Powdered Molybdenum-Permalloy for High-Quality Inductance Coils," Bell System Technical Journal, v. 19, pp. 385–406; July, 1940; #### Design of wave-filter reactors continued When using molybdenum-permalloy-dust toroidal cores, the inductance is given by $$L \approx \frac{1.25N^2A_c}{I_c} \mu_{ef} \times 10^{-8}$$ for $\mu_{ef} = 125$ $$L \approx 0.85 \frac{1.25 N^2 A_c}{I_c} \mu_{ef} \times 10^{-8} \text{ for } \mu_{ef} = 65$$ Ferrite cores may be used, but many ferrites have high temperature coefficients of resistance and low curie temperatures (see page 74). Small gaps in filter cores will reduce losses, improve Q, stabilize constants for varying alternating voltage, and reduce the effects of temperature changes in the case of ferrite cores. ## Design of audio-frequency transformers Important parameters are: generator and load impedances R_a , R_L , respectively, generator voltage E_{a} , frequency band to be transmitted, efficiency (output transformers only), harmonic distortion, and operating voltages (for adequate insulation). At mid-frequencies: The relative low- and high-frequency responses are taken with reference to mid-frequencies, $$\frac{\alpha E_{\text{out}}}{E_{\sigma}} = \frac{1}{(1 + R_{\bullet}/R_{I}) + R_{I}/\alpha^{2}R_{I}}$$ At low frequencies: The equivalent unity-ratio network of a transformer becomes approximately as shown in Fig. 14: $$Amplitude = \frac{1}{\sqrt{1 + (R'_{par}/X_m)^2}}$$ Phase angle = $$tan^{-1} \frac{R'_{par}}{X_m}$$ Fig. 14-Equivalent network of an audio-frequency transformer at low frequencies. $R_1 = R_g + R_p$ and $R_2 = R_s + R_l$. In a good output transformer, R_p , R_s , and Re may be neglected. In input or interstage transformers, R_c may be omitted. where $$R'_{par} = \frac{R_1 R_2 \sigma^2}{R_1 + R_0 \sigma^2}$$ $R_1 = R_0 + R_p$ $R_2 = R_1 + R_s$ $X_m = 2\pi i L_p$ #### Design of
audio-frequency transformers continued At high frequencies: Neglecting the effect of winding and other capacitances las in low-impedance-level output transformers), the equivalent unity-ratio network becomes approximately as in Fig. 15: Amplitude = $$\frac{1}{\sqrt{1 + (X_L/R'_{se})^2}}$$ Phase angle = $\tan^{-1} \frac{X_L}{R'_{se}}$ where $R'_{se} = R_1 + R_2a^2$ Fig. 15—Equivalent network of an audio-frequency transformer at high frequencies, neglecting the effect of the winding shunt capacitances. $I_{sep} = \text{inductance measured across primary with secondary short-circuited}$ = $I_p + a^2I_s$ ratio $I_{sep} = I_{sep} I_{sep}$ Fig. 16—Universal frequency and phase response of output transformers. 50 middle range high-frequency range ωl_{BCD}/R'se Courtesy of McGraw-Hill Publishing Company 02 1.0 low-frequency range $\omega L_p/R'_{par}$ # Design of audio-frequency transformers continued These low- and high-frequency responses are shown on the curves of Fig. 16. If at high frequencies, the effect of winding and other capacitances is appreciable, the equivalent network on a 1:1-turnsratio basis becomes as shown in Fig. 17. The relative highfrequency response of this network is given by $$\frac{(R_1 + R_2)/R_2}{\sqrt{\left(\frac{R_1}{X_c} + \frac{X_l}{R_l}\right)^2 + \left(\frac{X_l}{X_c} - \frac{R_g}{R_l} - 1\right)}}$$ Fig. 17—Equivalent network of a 1:1-turns-ratio audio-frequency transformer at high frequencies when effect of winding shunt capacitances is appreciable. In a step-up transformer, $C_2=$ equivalent shunt capacitances of both windings. In a step-down transformer, C_2 shunts both leakage inductances and R_2 . Reprinted from "Electronic Transformers and Circuits," by R. Lee, 2nd ed., p. 151, 1955; by permission, John Wiley & Sons, N. Y. Fig. 18—Transformer characteristics at high frequencies for matched impedances. At frequency f_r , $X_l = X_c$ and $B = X_c/R_1$. ## Design of audio-frequency transformers continued This high-frequency response is plotted in Figs. 18 and 19 for $R_1=R_2$ (matched impedances), and $R_2=\infty$ (input and interstage transformers) based on simplified equivalent networks as indicated. **Harmonic distortion** requirements may constitute a deciding factor in the design of transformers. Such distortion is caused by either variations in load impedance or nonlinearity of magnetizing current. The percent harmonic voltage appearing in the output of a loaded transformer is given by* (percent harmonics) = $$\frac{E_h}{E_f} = \frac{I_h}{I_f} \frac{R'_{par}}{X_m} \left(1 - \frac{R'_{par}}{4X_m} \right)$$ where $100 I_h/I_f$ = percent of harmonic current measured with zero-impedance source (values in Fig. 20 are for 4-percent silicon-steel core). *N. Partridge, "Harmonic Distortion in Audio-Frequency Transformers," Wireless Engineer, v. 19; September, October, and November, 1942. Reprinted from "Electronic Transformers and Circuits," by R. Lee, 2nd ed., p. 153, 1955, by permission, John Wiley & Sans, N. Y. Fig. 19—Input- or interstage-transformer characteristics at high frequencies. At f_r , $X_1 = X_c$ and $B = X_c/R_1$. ## Design of audio-frequency transformers continue Fig. 20—Harmonics produced by various flux densities B_m in a 4-percent silicon-steel-core audio transformer. | B_m | percent 3rd harmonic | percent 5th harmonic | | | |--------|----------------------|----------------------|--|--| | | | | | | | 100 | 4 | 1.0 | | | | 500 | 7 | 1.5 | | | | 1,000 | 9 | 2.0 | | | | 3,000 | 15 | 2.5 | | | | 5,000 | 20 | 3.0 | | | | 10,000 | 30 | 5.0 | | | **Insertion loss:** Loss introduced in circuit by addition of transformer. At midband, loss is caused by winding resistance and core loss. Frequency discrimination adds to this at low and high frequencies. Insertion loss is input divided by output expressed in decibels or, in terms of measured voltages and impedance: (db insertion loss) = $$10 \log \frac{E_g^2 R_l}{4 E_0^2 R_g}$$ Impedance match: For maximum power transfer, the reflected load impedance should equal generator impedance. Winding resistance should be included in this calculation: For matching, $$R_{q} = a^{2} (R_{l} + R_{s}) + R_{p}$$ Also, in properly matched transformer, $$R_g = a^2 R_l = (Z_{oc} \times Z_{sc})^{\frac{1}{2}}$$ where Z_{oc} = transformer primary open-circuit impedance. Z_{sc} = transformer primary impedance with secondary winding shortcircuited. Where more than one secondary is used, the turns ratio to match impedances properly depends on the power delivered from each winding. $$\frac{N_e}{N_p} = \left(\frac{R_n}{R_g} \times \frac{w_n}{w_p}\right)^{1/2}$$ Fig. 21—Multisecondary audio transformer. ## Design of audio-frequency transformers continued Example: Using Fig. 21, $\frac{N_2}{N_p} = \left(\frac{10}{600} \times \frac{10}{16}\right)^{\frac{1}{2}} = 0.102$ $\frac{N_3}{N_p} = \left(\frac{50}{600} \times \frac{5}{16}\right)^{\frac{1}{2}} = 0.161$ $\frac{N_4}{N_p} = \left(\frac{100}{600} \times \frac{1}{16}\right)^{\frac{1}{2}} = 0.102$ ## Example of audio-output-transformer design This transformer is to operate from a 4000-ohm impedance; to deliver 5 watts to a matched load of 10 ohms; to transmit frequencies of 60 to 15,000 cycles with a $V_{\rm out}/V_{\rm in}$ ratio of 71 percent of that at mid-frequencies (400 cycles); and the harmonic distortion is to be less than 2 percent. (See Figs. 14 and 15.) **a.** We have: $$E_s = (W_{\rm out}R_l)^{\frac{1}{2}} = 7.1$$ volts $$I_s = W_{\rm out}/E_s = 0.7 \text{ amperes}$$ $$\alpha = (R_g/R_l)^{\frac{1}{2}} = 20$$ Then $$I_p \approx 1.1 \, I_s/a = 0.039$$ amperes, and $E_p \approx 1.1 \, aE_s = 156$ **b.** To evaluate the required primary inductance to transmit the lowest frequency of 60 cycles, determine $R'_{\rm se}=R_1+a^2R_2$ and $R'_{\rm par}=\frac{R_1R_2a^2}{R_1+R_2a^2}$, where $R_1=R_g+R_p$ and $R_2=R_l+R_s$. We choose winding resistances $R_s=R_p/a^2\approx 0.05R_l=0.5$ (for a copper efficiency = $$\frac{R_l a^2 \times 100}{(R_l + R_s)a^2 + R_p} = 91$$ percent). Then, $$R'_{se} = 2R_1 = 8400$$ ohms, and $R'_{par} = R_1/2 = 2100$ ohms. **c.** In order to meet the frequency-response requirements, we must have according to Fig. 16, $\frac{\omega_{\text{low}}L_p}{R'_{\text{par}}} = 1 = \frac{\omega_{\text{high}}I_{\text{sep}}}{R'_{\text{se}}}$, which yield $$L_p \approx 5.6$$ henries and $l_{\rm sep} = 0.089$ henries ## Example of audio-output-transformer design continued **d.** Harmonic distortion is usually a more important factor in determining the minimum inductance of output transformers than is the attenuation requirement at low frequencies. Compute now the number of turns and inductance for an assumed $B_m = 5000$ for 4-percent silicon-steel core with type El-12 punchings in square stack. From manufacturer's catalog, A_c (net) = 5.8 centimeters², $I_c = 15.25$ centimeters. From Fig. 22, $\mu_{ac} \approx 5000$. $$N_p = \frac{E_p \times 10^8}{4.44 f A_c B_m} = 2020$$ $$N_s = 1.1 N_p/a = 111$$ $$L_p \approx \frac{1.25 N_p^2 \mu_{\rm ac} A_c}{l_c} \times 10^{-8} = 97 \text{ henries}$$ At 60 cycles, $$X_m = \omega L_p = 36,600$$ and $R'_{par}/X_m \approx 0.06$. From values of I_h/I_r for 4-percent silicon-steel (See Fig. 20): $$\frac{E_h}{E_f} = \frac{I_h}{I_f} \frac{R'_{\text{par}}}{X_m} \left(1 - \frac{R'_{\text{par}}}{4X_m} \right) \approx 0.012 \text{ or } 1.2 \text{ percent}$$ **e.** Now see if core window is large enough to fit windings. Assuming a simple method of winding (secondary over the primary), compute from geometry of core the approximate (MLT), for each winding (Fig. 9). Fig. 22—Incremental permeability $\mu_{\rm ac}$ characteristics of Allegheny audio-transformer "A" sheet steel at 60 cycles/second. No. 29 U.S. gauge, L-7 standard laminations stacked 100 percent, interleaved. This is 4-percent silicon-steel core material. $H_0=$ magnetizing field in oersteds. ## Example of audio-output-transformer design continued For the primary, (MLT) ≈ 0.42 feet and $N_p(MLT) \approx 850$ feet. For the secondary, (MLT) ≈ 0.58 feet and N_s (MLT) ≈ 65 feet. For the primary, then, the size of wire is obtained from $R_p/N_p (\text{MLT}) = 0.236 \text{ ohms/foot}$; and from Fig. 7, use No. 33. For the secondary, $R_s/N_s (\text{MLT}) \approx 0.008$, and size of wire is No. 18. - **f.** Compute the turns/layer, number of layers, and total coil-build, as for power transformers. For an efficient design, (total coil-built) \approx (0.85 to 0.90) \times (window width) - g. To determine if leakage inductance is within the required limit of (c) above, evaluate $$I_{\text{scp}} = \frac{10.6N_p^2 (\text{MLT}) (2nc + a)}{n^2 b \times 10^9} = 0.036 \text{ henries}$$ which is less than the limit 0.089 henries of (c). The symbols of this equation are defined in Fig. 28. If leakage inductance is high, interleave windings as indicated under "Methods of winding transformers", p. 298. ## Example of audio-input-transformer design This transformer must couple a 500-ohm line to the grids of 2 tubes in class-A push-pull. Attenuation to be flat to 0.5 decibel over 100 to 15,000 cycles; step-up = 1:10; and input to primary is 2 volts. - **a.** Due to low input power, use core material of high permeability, such as 4750 in Fig. 6. To allow for possible variation from manufacturer's stated value of 9000, assume $\mu_0 = 4000$. Interleave primary between halves of secondary. Use No. 40 wire for secondary. For interwinding insulation use 0.010 paper. Use winding-space tolerance of 10 percent. - **b.** Total secondary load resistance = $R'_{par} = \frac{\alpha^2 R_1 R_2}{\alpha^2 R_1 + R_2} \approx \alpha^2 R_1$ = $500 \times 10^2 = 50,000$ ohms From universal-frequency-response curves of Fig. 16 for 0.5 decibel down at 100 cycles (voltage ratio = 0.95), $$\frac{\omega_{\rm low} L_s}{R'_{\rm par}} = 3$$, or $L_s \approx 240$ henries **c.** Try Allegheny type El–68 punchings, square stack. From manufacturer's catalog, $A_c=3.05$ centimeters, $I_c=10.5$
centimeters, and window dimensions $=\frac{1}{32}\times 1_{\frac{3}{2}}$ inches, interleaved singly: $I_g=0.0005$. ## Example of audio-input-transformer design continued From formula $$L = \frac{1.25N^2A_c}{I_a + I_c/\mu_0} \times 10^{-8}$$ and above constants, compute $$N_s = 4400$$ $N_p = N_s/a = 440$ - **d.** Choose size of wire for primary winding, so that $R_p \approx 0.1R_g = 50$ ohms. From geometry of core, (MLT) ≈ 0.29 feet; also, R_p/N_p (MLT) = 0.392, or No. 35 wire (D = 0.0062 for No. 35F). - **e.** Turns per layer of primary = 0.9b/d = 110; number of layers $n_p = N_p/110 = 4$; turns per layer of secondary 0.9b/d = 200; number of layers $n_s = N_s/200 = 22$. - f. Secondary leakage inductance $$I_{\text{scs}} = \frac{10.6 \text{N}_s^2 \text{(MLT) (2nc} + \text{a)} \times 10^{-9}}{n^2 \text{b}} = 0.35 \text{ henries}$$ g. Secondary effective layer-to-layer capacitance $$C_e = \frac{4C_l}{3n_l} \left(1 - \frac{1}{n_l} \right)$$ (see p. 299) where $C_l = 0.225 A \epsilon/t = 1770$ micromicrofarads. Substituting this value of C_l into above expression of C_e , we find $C_e = 107$ micromicrofarads **h.** Winding-to-core capacitance = $0.225A\epsilon/t \approx 63$ micromicrofarads (using 0.030-inch insulation between winding and core). Assuming tube and stray capacitances total 30 micromicrofarads, total secondary capacitance C. = 200 micromicrofarads i. Series-resonance frequency of $l_{\rm sc}$ and $C_{\rm e}$ is $$f_r = \frac{1}{2\pi\sqrt{I_{sc}C_s}} = 19,200 \text{ cycles},$$ At f_r , $B = X_c/R_1 = 1/2\pi f_r C_{\bullet}R_1 = 0.83$; at 15,000 cycles, $f/f_r = 0.78$. From Fig. 18, decibels variation from median frequency is seen to be less than 0.5. If it is required to extend the frequency range, use Mumetal core material for its higher μ_0 (20,000). This will reduce the primary turns, the leakage inductance, and the winding shunt capacitance. ### Considerations in audio-transformer design ### **Output transformers** These are step-down low-impedance transformers in which the high-frequency response is governed mainly by leakage inductance since distributed capacitance has little effect on the low load impedance. Commonly used in the plate circuit of vacuum-tube amplifiers and thus has direct current in the primary unless shunt feeding or push-pull operation is employed. Usually employ silicon steel with gapped construction. Since transmission of power is concerned, the efficiency should be high. #### Input and interstage transformers Such transformers are usually step-up type to obtain as much voltage gain as possible to drive the grid of the following tube. The secondary works into a high impedance represented either by a shunt resistor or the grid itself. High-frequency response is analyzed in Fig. 19. When direct current is present in the primary, the incremental permeability is reduced as indicated in Fig. 22. This increases the number of winding turns required and the resulting increase in shunt capacitance makes it difficult to obtain good high-frequency response. When direct current is not present, high-permeability core material should be used. Since no power is transferred, the secondary wire size is limited only by winding techniques and is as small as possible. Low-frequency response can be manipulated where a coupling capacitor exists by applying filter theory to the coupling capacitance and to the inductances of the choke and primary winding as indicated in Fig. 23. Fig. 23—Equivalent filter used in determining the low-frequency response of shunt-fed interstage transformers. Interstage transformers usually have ratios of 1:1 or slightly higher. Both primary and secondary impedances are rather high and are thus susceptible to shunt capacitances. #### Modulation transformers These transformers are treated similarly to output transformers except that high power and low distortion must be given special consideration. This transformer usually works from a class-B push-pull amplifier and it is essential that the load impedance remain fairly constant with a power factor near unity. Such a condition can be obtained in the normal modulation ## Considerations in audio-transformer design continued circuit by treating the inductance of the transformer secondary, the coupling capacitance, and the inductance of the modulation choke as a high-pass filter with a cutoff frequency of $\frac{1}{2}$ to $\frac{1}{3}$ of the lowest frequency to be passed as indicated in Fig. 24A. Fig. 24—Equivalent filters used in determining the low- and high-frequency responses of modulation transformers. For the high-frequency end, the transformer primary capacitance, leakage inductance, and secondary capacitance are treated as a low-pass filter with cutoff frequency from 2 to 3 times the highest frequency to be transmitted (Fig. 24B). Modulation transformers commonly used in low-power circuits dispense with the modulation choke and coupling capacitor as indicated in Fig. 25. Fig. 25-Typical low-power modulation circuit. #### Driver transformers These transformers are used to drive high-power class-B amplifiers where the grids draw current over part of a cycle and thus require some power. Good regulation is a requirement to prevent poor waveform. The best way to do this is to employ a step-down ratio that will supply the necessary grid swing with adequate margin of safety. Low winding resistances and low leakage inductance in each half of the secondary are required to maintain good regulation. ### Considerations in audio-transformer design continued ### Class-A-amplifier transformers These transformers are used in common single-tube amplifier stages coupled by transformers. Since the tube is operated over the linear portion of its characteristic, minimum distortion is experienced, provided the transformer reflects the proper load to the tube. Unless shunt feed is used, the primary winding of the transformer carries the direct plate current. The alternating-current output consists of variations in the plate direct current. Input transformers are essentially unloaded except for tube capacitance or shunt resistance since the grid never draws current. ### Class-B-amplifier transformers Class-B amplifiers operate over a greater range of the tube characteristic than in class A and distortion is greater since part of the characteristic is nonlinear. Plate current flows essentially $\frac{1}{2}$ cycle at a time since negative swings of the grid cutoff plate current resulting in slightly lower average current than in the class-A case. The primary of transformer-coupled amplifiers carries direct current. The internal tube resistance varies greatly with grid voltage, thus the high-frequency response is difficult to predict. Input transformers have to supply some grid power and driver-transformer theory applies to them. ### Push-pull-amplifier transformers Class-A: Both tubes draw plate current at all times and thus contribute to output. For this reason, primary balance or coupling of the transformer is not too important and one-half of the winding may be placed over the other. Turns ratio of entire primary winding to secondary is equal to the square root of the impedance ratio (Fig. 26). Average direct current of primary is balanced out due to center feeding, although generally 5-percent unbalance should be allowable to take care of tube variations. Class-B: In contrast to class-A operation, only one tube conducts at a time since the other is biased off. Good coupling between primary halves and the entire secondary is a requirement. Primary-to-primary leakage inductance causes nicks in output wave because of transients as operation switches from one tube to the other. Since only one tube operates at a time, the turns ratio of each half of the primary to the whole secondary, equals the square root of one tube impedance to the secondary impedance (Fig. 27). Variations in tube impedance, which may become quite large, affect the high-frequency response. ## Considerations in audio-transformer design continued Class-AB₁: An intermediate case where the bias voltage is slightly higher than class A but the grids draw no current. Coupling transformers are similar to class A. Class- AB_2 : The tubes are biased near cutoff but not as far as class B. Grid current is drawn and for a portion of each cycle the tubes act independently. Class B transformer design applies. Fig. 26—Push-pull class-A amplifier with a 1.4:1 turns ratio. Fig. 27—Push-pull class-B amplifier with a 2:1 turns ratio. ## Methods of winding transformers Most common methods of winding transformers are shown in Fig. 28. Leakage Fig. 28—Methods of winding transformers. ## Methods of winding transformers continued inductance is reduced by interleaving, i.e., by dividing the primary or secondary coil in two sections, and placing the other winding between the two sections. Interleaving may be accomplished by concentric and by coaxial windings, as shown on Figs. 28B and C; reduction of leakage inductance is computed from the equation $$I_{\rm sc} = \frac{10.6N^2 (MLT) (2nc + a)}{n^2 b \times 10^9}$$ henries (dimensions in inches) to be the same for both Figs. 28B and C. Means of reducing leakage inductance are - a. Minimize turns by using high-permeability core. - b. Reduce build of coil. - c. Increase winding width. - d. Minimize spacing between windings. - e. Use bifilar windings. Means of minimizing capacitance are - a. Increase dielectric thickness (t). - b. Reduce winding width b and thus area A. - c. Increase number of layers. - **d.** Avoid large potential differences between winding sections as the effect of capacitance is proportional to applied potential. Note: Leakage inductance and capacitance requirements must be compromised in practice since corrective measures are opposites. Effective interlayer capacitance of a winding may be reduced by sectionalizing it as shown in D. This can be seen from the formula $$C_e = \frac{4C_l}{3n_l} \left(1 -
\frac{1}{n_l} \right) \text{micromicrofarads}$$ where $n_{l} = number of layers$ C_l = capacitance of one layer to another $$=\frac{0.225A\epsilon}{t}$$ micromicrofarads where ## Methods of winding transformers continued A =area of winding layer = (MLT) b inches2 t = thickness of interlayer insulation in inches ϵ = dielectric constant ≈ 3 for paper ### **Pulse transformers** Pulse transformers are designed to transmit square waves or trains of pulses as described in Fig. 7, page 538, while maintaining as closely as possible the original shape. Fourier analysis shows that such pulse waveforms consist of a wide range of frequency components. Thus the transformer must have suitable bandwidth to maintain fidelity. Pulse transformers can be analyzed by considering the leading edge, top, and trailing edge of the pulse separately. Fig. 29 portrays a typical transformer output pulse compared to input pulse. Refer to page 541 for Fig. 29—Output pulse shape. In the strictest sense, pulse rise and decay times are measured between the 10- and 90-percent values; width between the 50-percent values. pulse terminology. Fig. 30 shows the fundamental circuit and Fig. 31 illustrates equivalent circuits for the various transient conditions. Leading-edge reproduction requires transmission of a wide band of frequencies and is controlled by leakage inductance l_{sep} and winding capacitances C_p and C_s as indicated in Fig. 31A, B, and C. Analysis for step-up and step-down transformers varies slightly as shown. Leakage inductance and step-down transformers varies significant with an adversary and winding capacitance must be minimized to achieve a sharp rise; however, output voltage may overshoot input voltage and oscillation may be encountered where very abrupt rise times are involved. Fig. 30-Pulse-transformer circuit. ### Pulse transformers continued Pulse-top response is dependent on the magnitude of the open-circuit inductance of the transformer as indicated in Fig. 31D. The greater the inductance L_{p_r} the smaller the droop from input voltage level. Fig. 31—Pulse-transformers equivalent circuits. A—Leading-edge equivalent circuit. B—Leading-edge equivalent circuit for step-up-ratio transformer. C—Leading edge equivalent circuit step-down-ratio transformer. D—Top-of-pulse equivalent circuit. E—Trailing-edge equivalent circuit. Control of the trailing edge of the pulse is dependent on the open-circuit inductance and secondary winding capacitance as shown in Fig. 31E. The lower the capacitance, the faster the rate of voltage decay. Negative backswing depends on the magnitude of the transformer magnetizing current. The greater the magnetizing current, the greater the backswing. Pulse-transformer design involves analysis of transient effects and thus direct solution is complex. Empirical or graphical solution* is usually used. Low-loss core materials such as grain-oriented silicon-steel loop cores or nickel—iron alloys in 2-mil thickness are normally used. Small air gaps are commonly used to reduce remanent magnetism in core due to unidirectional pulses. Windings are normally interleaved to reduce leakage reactance. Where load impedance is high, single-layer primary and secondary windings are best; where low, interleaved windings are best. ^{*}R. Lee, "Electronic Transformers and Circuits," 2nd edition, John Wiley & Sons, Inc., New York; New York; 1955: chapter 10, p. 292. ## Pulse transformers cantinued Special winding techniques may be required to reduce winding capacitances. Construction is normally of core type, single or double coil, since capacitance may be more easily controlled. ### Temperature and humidity Fig. 32-Classification of electrical insulating materials.* | | | limiting
insulation | permissible rise in °C
above 40°C ambient | | | |-------|--|--|--|--|--| | class | insulating material | temperature
(hottest spot)
in °C | by ther-
mometer | by resistance
or imbedded
detector | | | 0 | Cotton, silk, paper and similar organic
materials when neither impregnated nor
immersed in a liquid dielectric | 90 | 35 | 45 | | | A . | (1) Cotton, silk, paper, and similar organic materials when either impregnated or immersed in a liquid dielectric; or (2) molded and laminated materials with cellulose filler, phenolic resins and other resins of similar properties; or (3) films and sheets of cellulose acetate and other cellulose derivatives of similar properties; or (4) varnishes (enamel) as applied to conductors | 105 | 50 | 60 | | | В | Mica, glass fiber, asbestos, etc., with suitable binding substances. Other materials or combinations of materials, not necessarily inorganic, may be included in this class if by experience or acceptance tests they can be shown to be capable of operation at class-B temperature limits | 130 | 70 | 80 | | | н | Silicone elastomer, mica, glass fiber, asbestos, etc., with suitable binding substances such as appropriate silicone resins. Other materials or combinations of materials may be included in this class if by experience or acceptance tests they can be shown to be capable of operation at class-H temperature limits | 180 | 100 | 120 | | | С | Entirely mica, porcelain, glass, quartz, and similar inorganic materials | No limit
selected | _ | _ | | ^{*}Abridged from, "General Principles Upon Which Temperature Limits Are Based In the Rating of Electrical Machines and Other Equipment," American Institute of Electrical Engineers Standard No. 1, with revisions proposed in a paper, "Problems of Revising AIEE Standard No. 1," Electrical Engineering, vol. 75, pp. 344-348; April, 1956. ## Temperature and humidity continued Standard classes of insulating materials and their limiting operating temperatures are listed in Fig. 32. A comparison of the properties of five high-temperature wire insulating coatings is shown in Fig. 33. Fig. 33—Comparison of five high-temperature wire-insulating materials.* | characteristic | modified
teflon | teflon | silicone
enamel
DC1360 | formvar
(vinyl
acetal) | plain
enamel | |---------------------------------|--------------------|-----------|-----------------------------------|------------------------------|-----------------| | Upper temp, limit | +250°C | +250°C | +180°C | +105°C | +80°C | | Lower temp, limit | -100°C | 100°C | -40°C | -40°C | -40°C | | Dielectric strength | Excellent | Very good | Very good | Good | Good | | Dielectric constant | 2.02.05† | 2.0-2.05† | inferior | Inferior | Inferior | | Power factor
(60cy—10,000mc) | 0.0002† | 0.0002† | Inferior,
about
0.006—0.007 | Inferior | Inferior | | Space factor | Excellent | Excellent | Excellent | Excellent | Excellent | | Solvent resistance | Excellent | Excellent | Fair | Fair | Poor | | Abrasion resistance | Good | Fair | Very good | Excellent | Good | | Thermoplastic flow | Good | Fair | Excellent | Excellent | Good | | Crazing resistance | Excellent | Very good | Fair | Fair | Fair | | Flame resistance | Excellent | Excellent | Fair | Poor | Poor | | Fungus resistance | Excellent | Excellent | Good | Good | Poor | | Moisture resistance | Excellent | Excellent | Good | Good | Good | | Continuity of insul. | Excellent | Excellent | Good | Good | Good | | Arc resistance | Excellent | Excellent | Good | Good | Good | | Flexibility | Excellent | Very good | Good | Good | Good | ^{*} Taken from, J. Holland, "Choosing Wire Insulation For High Temperatures," Electronic Design, vol. 2, p. 14; July, 1954 Open-type constructions generally permit greater cooling than enclosed types, thus allowing smaller sizes for the same power ratings. Moderate humidity protection may be obtained by impregnating and dip-coating or molding transformers in polyester or epoxy resins; these units provide good heat dissipation but are not as good in this respect as completely open transformers. Protection against the detrimental effects of humidity is commonly obtained by enclosing transformers in hermetically sealed metallic cases. This is particularly important if very-fine wire, high output voltage, or direct-current potentials are involved. Heat conductivity to the case exterior may be improved by the use of asphalt or thermosetting resins as filling materials. Best conductivity is obtained with high-melting-point silica-filled asphalts or resins of the polyester or epoxy types. Coils impregnated with these resins dissipate heat best since voids in the heat path may be eliminated. [†] Stable at temperatures up to 250° C. ## Temperature and humidity continued Immersion in oil is an excellent means of removing heat from transformers. An air space or bellows must be provided to accommodate expansion of oil when heated. ## Dielectric insulation and corona For class-A, a maximum dielectric strength of 40 volts/mil is considered safe for small thicknesses of insulation. At high operating voltages, due regard must be paid to corona that occurs prior to dielectric breakdown and will in time deteriorate insulation and cause dielectric failure. Best practice is to operate insulation at least 25 percent below the corona starting voltage. Approximate 60-cycle root-mean-square corona voltage V is: $$\log \frac{V \text{ (in volts)}}{800} = \frac{2}{3} \log (100t)$$ where t= total insulation thickness in inches. This may be used as a guide in determining the thickness of insulation. With the use of varnishes that require no solvents, but solidify by polymerization, the bubbles
present in the usual varnishes are eliminated, and much higher operating voltages and, hence, reduction in the size of high-voltage units may be obtained. Fosterite, and some polyesters, such as the Intelin 211 compound, belong in this group. In the design of high-voltage transformers, the creepage distance required between wire and core may necessitate the use of insulating channels covering the high-voltage coil, or taping of the latter. For units operating at 10 kilovolts or higher, oil insulation will greatly reduce creepage and, hence, size of the transformer. ### Rectifiers and filters ### Rectifler basic circuits Half-wave rectifier (Fig. 1): Most applications are for low-power direct conversion of the type necessary in small ac-dc radio receivers (without an intermediary transformer), and often with the use of a metallic rectifier. Not generally used in high-power circuits due to the low frequency of the ripple voltage and a large direct-current polarization effect in the transformer, if used. Fig. 1-Half-wave single-phase rectifier. Full-wave rectifier (Fig. 2): Extensively used due to higher frequency of ripple voltage and absence of appreciable direct-current polarization of transformer core because transformer-secondary halves are balanced. Bridge rectifier (Fig. 3): Transformer utilization better than in circuit of Fig. 2. Extensively used with semiconductor rectifiers (p. 311). Not often used with tube rectifiers: requiring 4 tubes and 3 well-insulated filament-transformer secondaries. Peak inverse voltage is half that of Fig. 2, but rectifier voltage drop is doubled (for same tube type). Voltage multiplier (Fig. 4): May be used with or without a line transformer. Without the transformer, it develops sufficiently high output voltage for low-power equipment: however, lack of electrical insulation from the power line may be objectionable. May also be used for Obtaining high voltages from a transformer having relatively low step-up ratio. Fig. 3-Bridge rectifier. Fig. 4-Voltage-doubler rectifier. ## Typical power rectifier circuit connections and circuit data | type
of | rectifier | single-phase
full-wave | single-phase
full-wave
(bridge) | 3-phase
half-wave | 3-phase
half-wave | |---|---|----------------------------|---------------------------------------|-------------------------|-------------------------| | circuit | transformer | single-phase
center-tap | single-phase | delta-wye | delta-zig zag | | circuit | secondary | -A- | | | | | | primary | | | | | | supp | r of phases of
y
r of rectifiers* | 1 2 | 1 4 | 3
3 | 3 | | Ripple 1 | voltage
requency | 0.48
2í | 0.48
2f | 0.18
3f | 0.18
3f | | line vo
line cui | - 1 | 1.11
1
0.90 | 1.11
1
0.90 | 0.855
0.816
0.826 | 0.855
0.816
0.826 | | volts Transfo ampe | rmer primary per leg rmer primary pres per leg rmer primary olf-amperes | 1.44
1
1.11 | 1.11
1
1.11 | 0.855
0.471
1.21 | 0,855
0,471
1,21 | | kilov | rmer average
olt-amperes | 1.34 | 1,11 | 1,35 | 1.46 | | ary v | rmer second-
rolts per leg | 1,11A | 1.11 | 0.855 | 0.493A | | ary o | rmer second-
imperes per leg | 0.707 | 1 | 0.577 | 0.577 | | Transformer second-
ary kilovolt-amperes | | 1.57 | 1.11 | 1.48 | 1.71 | | per r | verse voltage
ectifier | 3.14 | 1.57 | 2.09 | 2,09 | | tifier | rrent per rec- | 1 | 1 | 1. | 1 | | Precii | e current per
ler | 0.5 | 0.5 | 0.333 | 0.333 | Unless otherwise stated, factors shown express the ratio of the root-mean-square value of the circuit quantities designated to the average direct-current-output values of the rectifier. Factors are based on a sine-wave voltage input, infinite-inductance choke, and no transformer or rectifier losses. | 6-phase
half-wave | 6-phase
haif-wave | 6-phase
(double 3-phase)
half-wave | 3-phase
full-wave | 3-phase
full-wave | | |-------------------------|--------------------------|---|------------------------|-------------------------|--| | delta-star | delta-6-phase
fork | delta-double-
wye with
balance coil | delta-wye | delta-delta | | | | | | | | | | 3
6 | 3
6 | 3
6 | 3 . 6 | 3
6 | | | 0.042
6f | 0.042
6f | 0.042
6f | 0.042
6f | 0.042
6f | | | 0.740
0.816
0.955 | 0.428
1.41
0.955 | 0.855
0.707
0.955 | 0.428
1.41
0.955 | 0.740
0.816
0.955 | | | 0.740 | 0.428 | 0.855 | 0.428 | 0.740 | | | 0.577 | 0.816 | 0.408 | 0.816 | 0.471 | | | 1.28 | 1.05 | 1.05 | 1.05 | 1.05 | | | 1.55 | 1.42 | 1.26 | 1.05 | 1.05 | | | 0.740A | 0.428A | 0.855A | 0.428 | 0.740 | | | 0.408 | (0.577B)
(0.408C) | 0.289 | 0.816 | 0.471 | | | 1.81 | 1.79 | 1.48 | 1.05 | 1.05 | | | 2.09 | 2.09 | 2.42 | 1.05 | 1.05 | | | 1 | 1 | 0.5 | 1 | 1 | | | 0.167 | 0.167 | 0.167 | 0.333 | 0.333 | | ^{*} These circuit factors are equally applicable to electron-tube or metallic-plate rectifiers. ^{† (}Line power factor) = (direct-current output watts)/(line volt-amperes.) 308 CHAPTER 12 ### Semiconductor rectifiers ## **Applications** Foremost in the category of semiconductor- or dry-type rectifiers are selenium, germanium, silicon, and copper-oxide rectifiers. The various fields of application for the different types are governed by their basic voltage and current characteristics, environmental conditions, size and weight considerations, and cost. The uses of semiconductor rectifiers cover a wide range of applications that include battery chargers; radio, television, and miscellaneous direct-current power supplies; magnetic amplifiers; servomechanism circuits; and many special applications such as arc suppression, polarization of alternating-current circuits (direct-current restorers), drainage rectifiers (for cathodic protection), and many others. ### **Equivalent** circuit Semiconductor rectifiers may be regarded as resistive devices having low electrical resistance in the forward direction and high resistance in the reverse direction. (For high-impedance circuits, the capacitance across the rectifying layer may become important.) The voltage drop in the forward direction must be taken into account when the alternating-current input voltage of a rectifier is to be determined. ### Aging Some semiconductor rectifiers exhibit a phenomenon known as aging, which manifests itself in an increase of forward as well as reverse resistance with usage. The degree of aging is different for the various types. Depending on the application, means for compensating for the aging effect may or may not be required. ## Rating of a rectifler cell It is common practice to rate a rectifier cell on the basis of the root-meansquare sinusoidal voltage that it can withstand in the reverse direction and on the average forward current that it will pass at a certain current density. For selenium-rectifier cells, typical ratings at 35 degrees centigrade ambient are: 26 root-mean-square volts per cell 320 direct-current milliamperes per square inch of active rectifying area The cell voltage ratings for copper-oxide rectifiers are lower than for selenium; such rectifiers are used mostly in low-voltage circuits. ### Semiconductor rectifiers continued Voltage ratings of germanium and silicon rectifiers are higher than for selenium, so such rectifiers can be employed more advantageously in high-voltage circuits. ### Forward voltage drop Typical dynamic forward voltage-drop characteristics for selenium rectifiers are shown in Fig. 5. The forward voltage drop per rectifying element or plate is highest for battery-charging and capacitive load applications, due to the high ratio of root-mean-square current to average direct current. Fig. 5—Typical dynamic forward voltage-drop curves for selenium-rectifier cells, at 65-degree-centigrade cell temperature. A—Battery or capacitive loads: Single-phase half-wave, bridge, or center-tap. B—Resistive or inductive loads: Single-phase half-wave, bridge or center-tap; and 3-phase half-wave. C—All types of loads: 3-phase bridge or center-tap. ## Rating of a selenium rectifier stack Stacks are operated at a given temperature that is a safe value with allowance for aging. Catalog rating is in most cases based on an ambient temperature of 35 degrees centigrade. Ratings for higher temperatures than that (Fig. 6) are based on reduction in forward current to reduce forward-current losses, reduction in reverse voltage to reduce reverse-current losses, or a combination of both forward-current and reverse-voltage reductions to obtain the desired operating temperature with good electrical ### Semiconductor rectiflers co continued efficiency. The forward voltage drop and consequent heating depend to a small degree on the temperature of the rectifier cell, as does also the reverse current. The 35-degree-centigrade rating of a rectifier is based on a current density for a cell of about 320 milliamperes per square inch of active rectifying area. While each cell has this basic rating, it is common practice to increase the current density for the same temperature rise by increasing the space between cells or by using forced-air or oil cooling. The increase in spacing allows for current density increases from 20 to 50 percent; the higher percentage applies to smaller-size cells. This causes some reduction in efficiency due to higher voltage drop. Fig. 6—Selenium-rectifier temperature derating curves (approximate), for root-meansquare alternating input voltage and average direct output current based on 35-degreecentigrade ambient. The cells at each end of a stack have the lowest temperature due to greatest cooling there. Cell temperatures rise successively from each end toward the center of the stack. In a long stack, the temperatures of a number of the central cells are practically identical. As a consequence, some manufacturers raise the
rating of stacks of 1 to 8 cells as much as 50 percent, and of stacks of 9 to 16 cells as much as 25 percent. These increases apply only to the normal-spaced convection-cooled ratings and not to the wide-spaced or forced-air- or oil-cooled ratings. Past practice for forced-air- or oil-cooled rectifiers has been to rate them up to 2.5-times normal rating with adequate cooling. Experience shows that up to 2-times normal is a better design figure to use when long life and good efficiency and voltage regulation are factors. Development of new techniques in selenium-rectifier manufacture permit operating at higher reverse voltages, higher current densities, and higher cell temperatures. This is in addition to ratings that may be given to regular production stacks, which permit greater output or increased-temperature operation coincident with a reduction in life expectancy. New processes may also carry a reduction in life expectancy subject to further experience in use and in the laboratory. ### Circuit design for semiconductor power rectifiers For most applications, particularly with single-phase input, full-wave bridge circuits are used, although half-wave and center-tap rectifiers are frequently used where low direct voltage is required. However, when direct-voltage requirements exceed the output of a single series rectifier element, use of the full-wave bridge circuit is preferred, since the same number of rectifier plates are then required for half-wave or center-tap connections as for a full-wave bridge connection. A half-wave rectifier has a relatively poor power factor, high ripple content in the output, and requires a larger transformer than a full-wave bridge circuit. A center-tap rectifier requires a somewhat larger transformer than an equivalent full-wave bridge rectifier, with the added complication of bringing out the center tap. The table on pages 306 and 307 for typical power-rectifier circuit connections and circuit data show the theoretical values of direct and alternating voltages, current, and power for the basic rectifier and transformer elements of single-phase and polyphase conversion circuits, based on perfect rectifiers and transformers. The information in Figs. 7 and 8 can be used to determine the input values of alternating voltages and output direct currents and the number of rectifier cells for various basic rectifier circuits. The formulas and the values of the constants K and I_{ac} are approximate, but are sufficiently accurate for practical design purposes. ## Symbols for Figs. 7 and 8 $I_{ac}=$ transformer secondary current in root-mean-square amperes I_{de} = average load direct current in amperes K = circuit form factor n = number of cells in series in each arm of rectifier $V_{ac}=$ alternating root-mean-square input voltage per secondary winding (see diagrams) $V_{lpha c \Delta} =$ phase-to-phase alternating input voltage for 3-phase full-wave bridge V_{dc} = average value of direct-current output voltage V_p = reverse root-mean-square voltage per plate (rating of rectifier cell) ΔV = root-mean-square voltage drop per cell at I_{dc} (see Fig. 5) # Semiconductor rectiflers continued Fig. 7—Single-phase-rectifler circuits, formulas, and design constants. | cons | stant | half-wave | full-wave center tap | fult-wave bridge | |---------------------------------------|----------------|---
---|--| | Circuit | | V _{dc} | I _{ac} V | V _{ac} I _{dc} V _{de} load + | | V | ae | $KV_{dc} + n\Delta V$ | $KV_{de} + n\Delta V$ | $KV_{dc}+2n\Delta V$ | | | n | $KV_{de}/(V_p - \Delta V)$ | $2KV_{de}/(V_p-2\Delta V)$ | $KV_{dc}/(V_p-2\Delta V)$ | | Resistive
and | V _p | V _{ac} /n | 2V _{ac} /n | V _{ac} /n | | inductive
loads | К | 2.26 | 1.13 | 1.13 | | | Iac,rms | 1.57 Ide, avg | 0.785 Ide, avg | 1.11 I _{de,avg} | | | n | $2KV_{de}/(V_p-2\Delta V)$ | $2KV_{dc}/(V_p-2\Delta V)$ | $KV_{de}/(V_p-2\Delta V)$ | | Battery
and
capacitive
loads | V _p | 2V _{ac} /n | 2V _{ac} /n | V _{ac} /n | | | К | 1.0 | 0.85 | 0.85 | | | Iac,rms | 2.3 Ido,avg | 1.15 Ide; ang | 1.65 I _{de,arg} | | į | | l | | | # Semiconductor rectifiers continued Fig. 8—Three-phase-rectifier circuits, formulas, and design constants. For all loads. | constant | half-wave | full-wave bridge | | | |---------------------|---|---------------------------------------|--|--| | Circuit | V _{dc} V _{dc} V _{dc} V _{dc} V _{dc} | Ide Pool | | | | Input | $V_{ac} = KV_{dc} + n\Delta V$ | $V_{ac\Delta} = KV_{dc} + 2n\Delta V$ | | | | n | 1.73 $KV_{dc}/(V_p - 1.73\Delta V)$ | $KV_{de}/(V_p-2\Delta V)$ | | | | V _p | 1.73 V _{ac} /n | V _{ac} Δ/n | | | | К | 0.855 | 0.74 | | | | I _{ac,rms} | 0.577 I _{de,arg} 0.816 I _{de,arg} | | | | ### Semiconductor rectiflers continued ### Rectiflers for magnetic ampliflers Rectifiers used in conjunction with magnetic amplifiers (chapter 13) must have low reverse leakage currents to obtain as high a gain as possible with a given set of components. Rectifier leakage current behaves like negative feedback, thus reducing amplification. Changes in the rectifier operating temperature, which result in changes in the reverse leakage current, may also result in objectionable unbalances between associated amplifiers. For best amplifier performance the reverse leakage of rectifiers for magnetic-amplifier applications should be held to approximately 0.2 percent of the required forward current. This can be achieved by reducing the operating voltage per plate below the normal value. ### Grid-controlled gaseous rectiflers Grid-controlled rectifiers are used to obtain closely controlled voltages and currents. They are commonly used in the power supplies of high-power radio transmitters. For low voltages, gas-filled tubes, such as argon (those that are unaffected by temperature changes) are used. For higher voltages, mercury-vapor tubes are used to avoid flash-back (conduction of current when plate is negative). These circuits permit large power to be handled, with smooth and stable control of voltage, and permit the control of short-circuit currents through the load by automatic interruption of the rectifier output for a period sufficient to permit short-circuit arcs to clear, followed by immediate reapplication of voltage. plate voltage critical grid voltage Fig. 9—Critical grid voltage versus plate voltage. In a thyratron, the grid has a oneway control of conduction, and serves to fire the tube at the instant that it acquires a critical voltage. Relationship of the critical voltage to the plate voltage is shown in Fig. 9. Once the tube is fired, current flow is generally determined by the external circuit conditions; the grid then has no control, and plate current can be stopped only when the plate voltage drops to zero. Fig. 10—Basic thyratron circuit. The grid voltage has direct- and alternating-current components. ### Grid-controlled gaseous rectiflers continued Fig. 11—Control of plate-current conduction period by means of variable direct grid voltage. E_{σ} lags E_{p} by 90 degrees. #### Basic circuit The basic circuit of a thyratron with alternating-current plate and grid excitation is shown in Fig. 10. The average plate current may be controlled by maintaining - **a.** A variable direct grid voltage plus a fixed alternating grid voltage that lags the plate voltage by 90 degrees (Fig. 11). - **b.** A fixed direct grid voltage plus an alternating grid voltage of variable phase (Fig. 12). Fig. 12—Control of plate-current conduction period by fixed direct grid voltage (not indicated in schematic) and alternating grid voltage of variable phase. Either inductance-resistance or capacitance-resistance phase-shift networks (A and B, respectively) may be used. I may be a variable inductor of the saturable-reactor type. ###
Grid-controlled gaseous rectiflers continued ## **Phase shifting** The phase of the grid voltage may be shifted with respect to the plate voltage by: - a. Varying the indicated resistor in Fig. 12. - b. Variation of the inductance of the saturable reactor in Fig. 12. - c. Varying the capacitor in Fig. 13. On multiphase circuits, a phase-shifting transformer may be used. For a stable output with good voltage regulation, it is necessary to use an inductor-input filter in the load circuit. The value of the inductance is critical, increasing with the firing angle. The design of the plate-supply transformer of a full-wave circuit (Fig. 13) is the same as that of an ordinary full-wave rectifier, to which the circuit of Fig. 13 is closely similar. Grid-controlled rectifiers yield larger harmonic output than ordinary rectifier circuits. ## Filters for rectifler circuits Rectifier filters may be classified into three types: Inductor input (Fig. 14): Have good voltage regulation, high transformerutilization factor, and low rectifier peak currents, but also give relatively low output voltage. ### Filters for rectifier circuits continued Fig. 14—Inductor-Input filter. Capacitor input (Fig. 15): Have high output voltage, but poor regulation, poor transformer-utilization factor, and high peak currents. Used mostly in radio receivers. $R_s = \frac{1}{2} \times \{$ secondary-winding resistance $\}$ $L_s = \text{leakage inductance viewed from } \frac{1}{2} \text{ secondary winding}$ $R_r = \text{equivalent resistance of tube } IR \text{ drop}$ Fig. 15—Capacitor-input filter. C1 is the input capacitor. Resistor input (Fig. 16): Used for low-current applications. ## Design of inductor-input filters The constants of the first section (Fig. 14) are determined from the following considerations: **a.** There must be sufficient inductance to insure continuous operation of rectifiers and good voltage regulation. Increasing this critical Fig. 16-Resistor-input filter. regulation. Increasing this critical value of inductance by a 25-percent safety factor, the minimum value becomes ### Filters for rectifler circuits continued $$L_{\min} = \frac{K}{f_e} R_l \text{ henries} \tag{1}$$ where f_a = frequency of source in cycles/second $R_{I} = \text{maximum value of total load resistance in ohms}$ K = 0.060 for full-wave single-phase circuits = 0.0057 for full-wave two-phase circuits = 0.0017 for full-wave three-phase circuits At 60 cycles, single-phase full-wave, $$L_{\min} = R_{\rm I}/1000 \text{ henries} \tag{1A}$$ **b.** The LC product must exceed a certain minimum, to insure a required ripple factor $$r = \frac{E_{\tau}}{E_{de}} = \frac{\sqrt{2}}{\rho^2 - 1} \frac{10^6}{(2\pi f_{\bullet} \rho)^2 L_1 C_1} = \frac{K'}{L_1 C_1}$$ (2) where, except for single-phase half-wave, p = effective number of phases of rectifier $E_r = \text{root-mean-square ripple voltage appearing across } C_1$ $E_{de} = direct$ -current voltage on C_1 L_1 is in henries and C_1 in microfarads. For single-phase full-wave, p = 2 and $$r = \frac{0.83}{L_1 C_1} \left(\frac{60}{f_s}\right)^2 \tag{2A}$$ For three-phase, full-wave, p = 6 and $$r = (0.0079/L_1C_1)(60/f_s)^2 (2B)$$ Equations (1) and (2) define the constants L_1 and C_1 of the filter, in terms of the load resistor R_i and allowable ripple factor r. ### Filters for rectifler circuits continued Swinging chokes: Swinging chokes have inductances that vary with the load current. When the load resistance varies through a wide range, a swinging choke, with a bleeder resistor R_b (10,000 to 20,000 ohms) connected across the filter output, is used to guarantee efficient operation; i.e., $L_{\min} = R_l'/1000$ for all loads, where $R_l' = (R_l R_b)/(R_l + R_b)$. Swinging chokes are economical due to their smaller relative size, and result in adequate filtering in many cases. **Second section:** For further reduction of ripple voltage E_{r1} , a smoothing section (Fig. 14) may be added, and will result in output ripple voltage E_{r2} : $$E_{r2}/E_{r1} \approx 1/(2\pi f_r)^2 L_2 C_2$$ (3) where f_r = ripple frequency ### Design of capacitor-input filters The constants of the input capacitor (Fig. 15) are determined from: a. Degree of filtering required. $$r = \frac{E_r}{E_{do}} = \frac{\sqrt{2}}{2\pi f_r C_1 R_l} = \frac{0.00188}{C_1 R_l} \left(\frac{120}{f_r}\right)$$ (4) where C_1R_l is in microfarads \times megohms, or farads \times ohms. **b.** A maximum-allowable C_1 so as not to exceed the maximum allowable peak-current rating of the rectifier. Unlike the inductor-input filter, the source impedance (transformer and rectifier) affects output direct-current and ripple voltages, and the peak currents. The equivalent network is shown in Fig. 15. Neglecting leakage inductance, the peak output ripple voltage E_{r1} (across the capacitor) and the peak plate current for varying effective load resistance are given in Fig. 17. If the load current is small, there may be no need to add the L-section consisting of an inductor and a second capacitor. Otherwise, with the completion of an L_2C_2 or RC_2 section (Fig. 15), greater ## Filters for rectifier circuits continued filtering is obtained, the peak output-ripple voltage E_{r2} being given by (3) or $$E_{r2}/E_{r1} \approx 1/\omega RC_2 \tag{5}$$ respectively. effective load resistance = actual load resistance plus filter-choke resistance in ohms Reprinted from "Radia Engineers Handbook" by F. E. Terman, 1st ed., p. 672, 1943; by permission, McGraw-Hill Book Co., N. Y. $R = R_s + R_r$ (see Fig. 15) Fig. 17—Performance of capacitor-input filter for 60-cycle full-wave rectifier, assuming negligible leakage-inductance effect. — input capacitance = ∞ — = 8μf — - - = 4μf ### Surge suppression and contact protection * When the current in an inductive circuit is suddenly interrupted, the resulting surge can have several undesirable effects: - **a.** Contact arcing, producing deterioration that eventually results in circuit failure due to mechanical locking or snagging, or to high contact resistance. - b. High-voltage transients resulting in insulation breakdown. - c. Wide-band electrical interference. One method of suppressing surges is to shunt a selenium rectifier across the inductor as shown in Figs. 18 and 19. pressor. Fig. 18—Conventional method of using the selenium rectifier as a spark sup- Fig. 19—Method of improving the release time by adding a second rectifier. The rectifier in Fig. 18 appreciably lengthens the release time (as when the electromagnet is a relay coil). By connecting the rectifier across the contact A instead of across the coil, a release time only slightly lengthened is secured. This, however, is usually a less desirable connection, especially when there are several contacts controlling the same coil. Also, when contact A is open, a small reverse current flows, of the order of 0.5 milliampere. The system of Fig. 18 is applicable to direct-current circuits only. The system of Fig. 19 gives good protection with only a small lengthening of the release time over that when no protection is used. It is applicable to both alternating and direct-current circuits. When contact A is closed, rectifier 1 blocks current flow from the battery. Upon opening contact A, the reverse-resistance characteristic of rectifier 2 comes into play. It is high at low voltages and decreases as the voltage is increased. The voltage rise due to the inductive surge is thus limited to a value insufficient to ^{*} H. F. Herbig and J. D. Winters, "Investigation of the Selenium Rectifier for Contact Protection," Transactions of the American Institute of Electrical Engineers, vol. 70, part 2, pp. 1919–1923; 1951: Also, Electrical Communication, vol. 30, pp. 96–105; June, 1953. ## Surge suppression and contact protection cause arcing at the contact. However, the inductor is not immediately short-circuited, so the current decays rapidly. continued Typical performance data are shown in Fig. 20. For comparison, data are included for cases where a capacitor with series resistor is shunted across the coil; also for a silicon-carbide varistor in place of the rectifier shown in Fig. 18. Fig. 20—Peak voltages and release times for electromagnets with different contact protections.* | | L = 0.48
R = 164 | • | L = 3.45
R = 165 | ne relay
5 henries
0 ohms
19 ampere | | |--|---|----------------------------------|---|--|--| | contact protection | release
time in
milli-
seconds | peak
voltage
at
contact | release
time in
milli-
seconds | peak
voltage
at
contact | | | Three 9/32-inch-diameter cells (Figure 18) | 4.0 | 83 | 55.0 | 57 | | | Two 9/32-inch-diameter cells (Figure 19)† | 1.3 | 180 | 12.0 | 150 | | | Three 1-inch square cells (Figure 19)† | 1.3 | 192 | 10.9 | 169 | | | Silicon-carbide varistor | 1.3 | 210 | 12.8 | 140 | | | 0.5 microfarad + 510 ohms | _ | arcing | 10.9 | 160 | | | 0.1 microfarad + 510 ohms | <u> </u> | arcing | 7.9 | 259 | | | Unprotected | 1.0 | 400 to 900 | 7.6 | 450 to 750 | | ^{*} Courtesy of Transactions of the AIEE. [†] For each rectifier, 1 and 2. ## ■ Magnetic amplifiers ## Elementary theory The simple magnetic amplifiers of Figs. 1A and 1B consist of an iron-core reactor T with windings l-2 and 3-4, an inductor L, and a load resistor R_l . E_p is the power supply, which must be an alternating voltage; $E_{c,dc}$ is the control voltage; $I_{c,dc}$ is the control current; and I_l is the load current. In Fig. 1B, rectifier RE permits unidirectional I_l to flow only during half-cycles of E_p . The practical magnetic amplifier of Fig. 1C uses two separate reactors T_1 and T_2 to secure fullwave I_l . The intermittent flow of I_l induces voltages in the control windings and the inductor restricts flow of
resulting alternating current in the control circuit. Amplification occurs because relatively small variations in $E_{c,dc}$ or $I_{c,dc}$ cause larger changes of E_l or I_l . Fig. 1—Simple magnetic-amplifier circuits. In A and B, symbol N= number of turns on the reactors. In the circuits, arrows and \pm signs indicate instantaneous directions. Referring to Fig. 1A, when $E_{c,dc}$ is zero, the inductive impedance of winding l-2 is much greater than R_l and most of E_p appears across l-2. When $E_{c,dc}$ increases until $I_{c,dc}$ magnetically saturates the core, no further change of flux can occur. Since an inductive voltage drop occurs only where there is change in flux, only a small voltage drop then occurs across the resistance of l-2 and practically all of E_p appears across R_l . # Elementary theory continued In Fig. 1B, assume $E_{c,dc}$ to be zero and assume the core material of T to have a hysteresis loop similar to Fig. 2A. During part of each positive half-cycle of E_p , current flows in I-2 and the flux density in T rises to $+B_{max}$. Winding I-2 now offers only a low impedance and I_t is limited only by R_t . During the negative half-cycle, the flux density returns to $+B_r$. Fig. 2—Hysteresis loops for magnetic core materials. If now some value of $E_{c,dc}$ is applied in Fig. 1B, resulting in sufficient ampereturns to produce $+H_{max}$, the core becomes saturated. During negative half-cycles, current in I-2 is blocked by RE and the iron remains saturated. Thus, no change in flux can occur and winding I-2 absorbs only a small voltage due to its resistance. Maximum possible I_L flows through R_L . If $I_{e,de}$ is in the direction of and of a magnitude corresponding to $-H_{max}$ while the flow of I_t in l-2 during positive half-cycles is sufficient to overcome this and to saturate the core in the opposite direction, then flux density varies from $-B_{max}$ to $+B_{max}$. Then maximum voltage drop occurs across T and minimum current flows through R_t . The ampere-turns needed for control depend on the B-H characteristic of the iron, assuming an ideal rectifier. Smaller H_{max} values require less control current. H_{max} is usually made as small as possible by employing gapless toroidal cores wound of thin tape made from high-nickel-content alloys or from grain-oriented steels. Hysteresis loops of such cores have quasirectangular shapes as in Fig. 2B. In reactors using these materials, maximum I_l will flow even when $E_{c,dc}$ is zero. To secure control, $I_{c,dc}$ must produce magnetizing forces between $-H_{min}$ and $-H_{max}$. In practice, rectifier RE has some reverse leakage and an increase in the ideal control current is needed to overcome this. ### Elementary theory co continued When $I_{c,dc}$ is such that it produces a magnetizing force in the control range between $-H_{max}$ and $-H_{min}$ in Fig. 2B, a rapid transition of the magnetic state of the iron from partial desaturation to saturation occurs during each positive half-cycle of E_p . The reactor ceases to provide counter-electromotive force very suddenly, since the change in flux stops abruptly as B_{max} is reached. At this instant, the full voltage and current appear on the load and continue for the remaining portion of the half-cycle. The action is similar to that of a thyratron tube. The time at which the transition occurs is called the firing point or firing angle and is expressed in degrees of a cycle. The firing point depends upon $I_{c,dc}$. In straight saturating amplifiers, illustrated in their simplest form by Fig. 1A, the ampere—turns of the control winding must be equal to the ampere—turns of the output winding. Such amplifiers act as constant-current generators and the voltage across the load depends on its impedance. Output current is controlled by $I_{c.dc}$. The more-common self-saturating amplifiers, illustrated by Figs. 1B and 1C act as constant-voltage generators. Voltage across the load is virtually independent of load impedance. Output voltage is controlled by $I_{e,de}$. #### Control curves A typical curve of output load voltage E_l against signal current $I_{c,de}$ for a self-saturating magnetic amplifier using nickel-alloy cores is shown in Fig. 3A. The solid curve is for an amplifier with ideal rectifiers while the B. Far transformer-type steel. Fig. 3—Typical control curves for different core materials. dashed curves are for practical amplifiers using rectifiers having appreciable leakage. Control generally occurs when $I_{o,dc}$ has a value between AO and BO on this curve. The difference AB should be as small as possible for maximum #### Control curves continued sensitivity. Values of OB and AB for typical cores are listed in Fig. 4. The values are nearly independent of core dimensions for toroidal cores smaller than 2 to 3 inches outside diameter. To obtain control in the region AB, the relative directions of the magnetizing forces due to the control and load windings must be as indicated by the arrows in Fig. IC. To the left of point A, the control curve for amplifiers operating at low frequencies, such as 60 cycles/second, slopes slightly upward as shown in Fig. 3. At higher frequencies such as 400 cycles/second, there is a greater upward slope to the left. Fig. 4—Characteristics of cores for magnetic amplifiers. For toroidal cores up to 3 inches outside diameter for groups A and B and up to 2 inches for groups C and D materials.* | control range
and flux | group A Hypersil Magnesil Silectron | group B Deltamax Hipernik V Orthonic Orthonol Permeron | group C
HY-MU-80
4-79 Mo
Permailoy
Squaremu | group D Supermalloy | |--|-------------------------------------|--|---|---------------------| | OB (bias) in
milliampere—turns
(Fig. 3A) | 1,000 to 2,500 | 500 to 1,500 | 100 to 150 | 50 to 80 | | AB (signal) in
milliampere—turns
(Fig. 3A) | 750 to 1,500 | 500 to 1,000 | 80 to 200 | 50 to 80 | | Saturation flux
density
in gausses | 18,000 to 20,000 | 13,500 to 15,500 | 7,000 to 8,000 | 6,800 to 7,800 | ^{*} See pp. 276-277 for other similar materials. To the right of point A, the voltage across the load is practically independent of load impedance and is determined by signal ampere—turns and the core material. It is generally not desirable to operate self-saturating amplifiers in the region to the left of point A, since their characteristics then become similar to straight saturating amplifiers, i.e., ampere—turns of the output winding approximates the ampere—turns of the control winding on this portion of the curve. Fig. 3B is a typical control curve for a magnetic amplifier using cores of grain-oriented or transformer-grade steel laminations. When using reactors of transformer steel, rectifier leakage usually may be disregarded. In large magnetic-amplifier cores including gaps, AB is about 5 ampere—turns/inch of magnetic path for grain-oriented steels and up to 10 ampere—turns/inch for lower grades of transformer steel. ### **Bias winding** When the control curve of the magnetic amplifier is similar to the full line of Fig. 3A, energy required from the control source can be reduced by biasing the amplifier to point B. The full signal can then be used to produce changes in $I_{c,dc}$ from point B to point A in the control region. A separate direct-current bias winding capable of producing the OB ampere—turns (listed in Fig. 4 for small cores) is used for this purpose. Due to rectifier leakage or due to the shape of the hysteresis loop of the core material, point B may fall on the zero axis or to the right of zero as shown by the lower dashed line in Fig. 3A. In such cases, the bias winding may be omitted, or it may be retained if available $I_{c,dc}$ or $E_{c,dc}$ does not have the magnitude and polarity needed for operation at the desired initial point on the hysteresis loop. #### Control inductor Referring to Fig. 1C, while one core is firing, the other is desaturating due to the action of the control current. The voltages induced in the control windings by these two actions oppose each other. Theoretically, the voltages would be equal and opposite if the signal source had zero impedance and the cores and rectifiers were perfectly matched. In practice, the net voltage induced in the control windings is a function of the impedance of the signal source, of the control point at which the amplifier is operating, and of the mismatch of cores and rectifiers. For design purposes, it may be assumed that the maximum total induced voltage will not exceed the voltage that would be induced in one core alone. The frequency of this voltage is equal to the power-supply frequency for half-wave amplifiers like Fig. 1B and to twice the power-supply frequency for full-wave amplifiers like Fig. 1C and Fig. 5. It is good practice to put an inductor L in series with the control winding. If this choke is omitted, additional control ampere—turns may be required to offset alternating current circulating in the control circuit. # Direct-current loads The circuits of Figs. 5A, B, or C may be used for direct-current loads. If $E_{l,dc}$ is the required voltage across the load, the required E_p will depend partially on the forward voltage drop through the rectifiers. Power-supply voltage may be approximated for design purposes as in Fig. 6. # Direct-current loads continued The peak inverse voltage across the rectifiers is also given in Fig. 6. The lower reverse leakage of Fig. 5C permits higher gains with this circuit, but the speed of response of Fig. 5C is less than that of Fig. 5A. Fig. 5—Practical magnetic-amplifier circuits for direct-current output. Polarity of $E_{c,dc}$ depends on value of \bar{I}_{bias} . #### **Direct-current loads** continued Fig. 5-Continued. Fig. 6-Required
supply voltage and inverse rectifier voltage for circuits of Fig. 5. | circuit,
Fig. 5 | E _p using selenium rectifiers | E _p using germanium or silicon diodes | peak inverse voltage
across rectifiers RE _{1,2} | |--------------------|--|--|---| | Α | 1.6 E _{1,dc} | 1.4 E _{1,de} | 1.4 E _p | | В | 3.2 E _{I,dc} | 2.9 E _{1,dc} | 1.4 E _p | | С | 1.7 E _{1,dc} | 1.6 E _{1,dc} | 0.5 E _p | Fig. 7 is a 3-phase amplifier with direct-current output. Six separate reactors are used. The bias windings have been omitted in the figure. This circuit may produce ripple $E_{I,ac}$ across the load as high as 0.3 $E_{I,dc}$. Frequency of the induced voltage across inductor L is 6 times the supply frequency. Output turns required on each reactor can be calculated by assuming a voltage across the reactor of $E_p/(3)^{1/2}$. Control ampere—turns required in a 3-phase amplifier are higher than in a single-phase amplifier partly because the inverse voltage across the rectifiers is higher for a longer portion of each cycle and the effect of rectifier leakage is thus more pronounced. The control curve of the Fig. 7 amplifier with selenium rectifiers is similar to that of Fig. 3B. Using cores of group-B materials Fig. 4, AO would be approximately 2 to 3 ampere—turns and OB would be between 1 and 7 ampere—turns. # Direct-current loads continued Fig. 7-Three-phase bridge magnetic amplifler. # Two-stage amplifiers Fig. 8 shows a two-stage amplifier with direct-current output. This circuit is useful where small control signals are available and high outputs are required. Cores of the first stage may be made of materials listed under Fig. 8—Two-stage magnetic amplifier. The bias circuit is omitted for simplicity. continued groups C or D in Fig. 4, while b cores of the second stage are generally of group-A or -B materials. Inductor L_2 has the same function as L_1 and, in addition, it prevents alternating currents induced in control windings of the second stage from flowing through rectifiers RE_1 to RE_4 , thereby causing unwanted direct currents in the control windings of the second stage and the output windings of the first stage. Fig. 9 is a push-pull amplifier driving a single stage. If well designed and if the preamplifier push-pull stage uses group-D core material, the power stage can be driven to full output with the application of 10 milliampere—turns of signal at the preamplifier. In this balanced circuit, $E_{c,dc}$ may assume either polarity. Fig. 9—Push-pull magnetic amplifier driving a single-stage magnetic amplifier. The bias circuits are not shown. ### **AC** control signal Fig. 10—Magnetic amplifier controlled by alternating-current signal. The operating characteristic of the circuit is also given. Fig. 10 is the basic circuit of a magnetic amplifier controlled by an alternating-current signal. Control and supply voltages are of the same frequency and their phase relationship must be as shown in the figure. The + and - signs indicate relative instantaneous polarities of the two waves. The relationship between the output voltage $E_{l,ac}$, control voltage $E_{c,ac}$, and control current $I_{c,ac}$ is shown in Fig. 10. With no voltage applied to the control winding, the amplifier operates at maximum output. When a signal is applied, the output is reduced as indicated. Fig. 11—Ampliflers with alternating-current control and direct-current output are shown at the right. ### AC control signal continued The basic circuit of Fig. 10 can be modified for direct-current output as shown in Figs. 11A and B. The response times τ of the three amplifiers are: For Fig. 10, $1 \leqslant \tau \leqslant 4$ cycles, for Fig. 11A, $0.5 \leqslant \tau \leqslant 2$ cycles, and for Fig. 11B, $0.5 \leqslant \tau \leqslant 1$ cycle. The poor response time of Fig. 10 is due to circulating currents that may occur in the reactors-and-rectifiers circuit indicated by the dashed oval. Any circulating currents in Figs. 11A and B must flow through the load impedance and they are thus minimized. # Combination transistor-magnetic ampliflers To control a magnetic amplifier with an alternating-current signal, the signal must be strong enough to change the flux of the core completely during a half-cycle of the power-supply voltage. When the available signal is too small, a transistor preamplifier may be used. Figs. 12 and 13 show two methods of coupling transistors to magnetic amplifiers. Instead of the single-stage transistor amplifiers shown, there may be several transistor stages in cascade. In Fig. 12, an $E_{c,ac}$ of power-line frequency is impressed on a single-ended transistor circuit. The transistor is biased on the emitter electrode to act as a class-A amplifier and its output is coupled to the magnetic amplifier by the inductor L and capacitor C. The control signal of the magnetic amplifier is then the amplified version of the $E_{c,ac}$ signal received by the transistor. Fig. 12-Transistor coupled to alternating-current-controlled magnetic amplifier. ### Combination transistor-magnetic ampliflers continued Output of the magnetic amplifier is dependent on phase and amplitude of the output of the transistor and thus of the initial signal. In Fig. 13, the transistor stage has a push-pull output that feeds a double-ended diode phase discriminator (demodulator). Alternatively, conventional ring demodulators or transistor demodulators* might be used to secure control direct current for this type of magnetic amplifier. Output of the magnetic amplifier will depend on both the phase and amplitude of the initial signal. When very-low-level direct-current signals have to be used, a mechanical vibrator or diode chopper or transistor chopper† may be employed to convert the direct into alternating current. The resulting $E_{c,ac}$ is passed through a transistor stage to drive the magnetic amplifier. † A. P. Kruper, "Switching Transistors Used as a Substitute for Mechanical low-Level Choppers," Communication and Electronics, no. 17, pp. 141–144; March, 1955. Fig. 13—Push-pull fransistors coupled to direct-current-controlled magnetic amplifier. The blas circuit is not shown. #### Feedback Control curves of standard magnetic amplifiers as shown in Fig. 3 are generally not linear. If a linear relationship between signal current and load current or voltage is desired, negative feedback must be used. Fig. 14 shows typical feedback circuits. It is desirable to use an inductor in series with the feedback winding as indicated. Note that the direction of I_c has been reversed; since the feedback has a polarity such that it tends to reduce the output. To illustrate the design of a feedback circuit, assume that the control curve of an amplifier without feedback is shown by the solid curve of Fig. 3A and that 1 ampere-turn of control current is needed for full output. Further, assume that the maximum departure of this control curve from a straight line is 0.5 ampere-turn while the desired linearity should be better than 10 percent. The intrinsic nonlinearity cannot be changed since it is dependent principally A. Current feedback. Fig. 14—Circuits employing negative feedback for improving linearity of control curve. on the core material. However, if control ampere-turns can be increased to 5 while keeping the nonlinearity at 0.5 ampere-turn, the desired result will be achieved. The feedback winding in this case would be designed to produce 5 ampere-turns in the negative direction when the amplifier gives full output. Since these negative ampere-turns must be counteracted by ### Feedback continued the control current, a signal of approximately 5 ampere-turns is now required for full output. #### Volts per turn Voltage/turn of winding is a function of B_{max} and the cross-sectional area of the core. It may be expressed as follows for toroidal cores: Millivolts/turn = $$(D_o - D_i) H K_1 K_2$$ = $2 A_i K_1 K_2$ = $0.4 A_c K_1 K_2$ where $A_c = \text{cross-sectional area}^*$ of core in centimeters² $A_i = \text{cross-sectional area of core in inches}^2$ * In the equations there is an apparent discrepancy between oreas in square inches and square centimeters. Cross-sectional areas in square inches are $[(D_o - D_i)/2] \times H$. The housing is excluded but the space occupied by insulating coatings between turns of the iron tape is included in square-inch areas. Cross-sectional oreas in square centimeters are actual net iron areas and include a stacking factor of approximately 80 percent. This different method of computing square inches and square centimeters is followed in most commercial catalogs of cores. Fig. 15—Approximate induced voltage/winding-turn for toroidal cores. ### Volts per turn continued D_i = inside diameter in inches of core having a rectangular section D_o = outside diameter in inches of core having a rectangular section H =height in inches of core having a rectangular section $K_1 = 136$ for group-A core materials (Fig. 4) = 111 for group-B core materials (Fig. 4) = 50 for group-C core materials (Fig. 4) = 40 for group-D core materials (Fig. 4) $K_2 = 1.0$ for 60 cycles/second = 6.7 for 400 cycles/second The relationships are plotted in Fig. 15. #### Design procedure The following pertains to a single-stage full-wave self-saturating magnetic amplifier using toroidal cores in circuits similar to Fig. 1C for alternating-current output or to Fig. 5A for direct-current output. The same procedures can be used to design each part of more-complex circuits. **a.** Choose a supply voltage approximately 1.2 $E_{l,ac}$ or from 1.4 to 1.6 $E_{l,dc}$ see "Direct-current loads" above. If there is any choice of frequency, choose the highest available powersupply frequency. **b.** Make a preliminary selection of core material. If P_c is the power available from the signal source, materials
listed in Fig. 4 may be chosen for toroidal cores as follows: For $P_c > 100$ milliwatts, use group-A materials For 100 milliwatts $> P_c > 1$ milliwatt, use group-B materials For 1 milliwatt $> P_c > 0.01$ milliwatt, use group-C materials For 0.01 milliwatt $> P_c$ use group-D materials The choice will depend to some extent on the required response time. For # Design procedure continued equal gains and outputs, the response time becomes progressively shorter from group-A to group-D materials. **c.** Determine the P_l that the load will absorb and the power range over which the load will have to be controlled. Use these data to make a preliminary choice of core size. The following empirical relationship is an aid to choice. $$D_i^2 \times A_i \approx \frac{0.5 \times P_l \times 10^5}{B_{max} \times f}$$ where D_i = inside diameter of toroidal core in inches $A_i = \text{cross-sectional area of core in inches}^2$ $P_1 = load in watts$ B_{max} = saturation flux density in gausses (Fig. 4) f = supply frequency in cycles/second Another aid is the fact that a core with $D_i=2$ inches, $D_o=2.5$ inches, and H=0.5 inch, of group-B material, is good for 8-watts output at 60 cycles/second. Output is approximately proportional to volume of the core, to frequency, and to B_{max} . These relationships are rough guides only and final selection may be a core differing by a factor of as much as 2 or 3 from these rules. If the designer has experience with amplifiers somewhat similar to the one to be designed, it is preferable to rely on the experience rather than on these empirical rules in selecting core sizes. - **d.** Toroidal cores for magnetic amplifiers are a commercial product. If ready-made cores are to be used, consult manufacturers catalogs and choose a core with parameters close to those estimated in (b) and (c). Most commercial cores have molded housings. Note the inside diameter and clear inside area of the housing. - **e.** From the table on p. 51 select a wire size for the output winding on the basis of 1 circular mil/milliampere. In full-wave circuits, take the root-mean-square current in the output winding of each reactor as $0.707 \times \text{(average } I_l)$. ### Design procedure continued - **f.** Determine millivolts/turn from Fig. 15 and calculate the number of output turns. Increase the calculated turns by 10 percent for safety. - g. From the tables on p. 114 and p. 278, calculate cross-sectional area of output winding. Increase this area by 75 percent to provide for control and bias windings, insulation, winding clearances, etc. To the estimated area of all windings, add the clearance hole for the shuttle of the winding machine. (Shuttle rings vary in thickness from 1/4 inch for small cores with small wire to 1 inch for the larger core and wire sizes.) The total required area obtained in this way should be checked against the clear inside area of the core. If there is not sufficient space, select another core. - **h.** Select rectifiers on the basis of load current, forward voltage drop, reverse leakage, and mechanical mounting arrangements. - **i.** Rectifier reverse leakage current in percent of I_t may be estimated as follows: - 0.25 to 1.0 percent for selenium rectifiers operating at their full rated inverse voltage (26 to 36 volts/plate, depending on type of plate). - 0.10 to 0.25 percent for selenium rectifiers with extra plates or at reduced voltage so that inverse voltage does not exceed 10 to 15 volts/plate. - 0.1 to 0.5 percent for germanium diodes, depending on type and inverse voltage. - 0.01 to 0.10 percent for silicon diodes. - **i.** Calculate leakage ampere—turns due to the output winding by multiplying the leakage current of (i) by the turns of (f). From Fig. 4, obtain the control ampere—turns AB required on the assumption of perfect rectifiers. Add the two figures to obtain total control ampere—turns required (AB in Fig. 3). - **k.** Knowing the $I_{c,dc}$ that the signal source is capable of supplying, calculate the turns on the control winding and select the wire size. - 1. Calculate the resistance of the control winding and check that the signal source can produce the required control current through both reactors in series. If not, select a core requiring less control ampere—turns or secure rectifiers of lower leakage. - **m.** Design the bias winding. It should be capable of at least the OB ampereturns shown in Fig. 4. Number of turns will depend on the current that the bias source is capable of delivering. # Design procedure continued - n. Calculate the voltages induced in the control and bias windings by multiplying the number of turns of the respective windings by the volts/turn of Fig. 15. - **o.** Calculate the maximum alternating-current component to be permitted in the control and bias circuits as 30 percent of the respective direct currents. - **p.** On the assumption that control and bias sources and windings offer negligible impedance to the induced voltage, compute the inductance of chokes to be used in series with the signal and bias windings to limit the current to the value of (a) above when an assumed voltage of one coil per (n) above is applied at twice the supply frequency. # Sample design An $E_{l,dc}$ is to be controlled from zero to 18 volts with an $I_{l,dc}$ between 0 and 30 milliamperes. The available $E_{c,dc}$ varies from zero to 0.25 volt at zero to 400 microamperes. Power supply of 60 cycles/second is available. A circuit similar to Fig. 5A is chosen and E_p of $1.4 \times 18 = 25$ volts is assumed. Maximum available P_c is 0.1 milliwatt and group-C core material is selected. Cores with $D_i = 1$, $D_o = 1\frac{3}{8}$, and $H = \frac{1}{4}$ (inch) are selected from a manufacturers catalog. Iron cross-sectional area of each core is 0.047 inch. From Fig. 15, induced voltage is approximately 4.7 millivolts/turn. The catalog shows the inside diameter of the housing of these cores as 0.93 inch, which provides a winding space of 0.67 inch². Effective load current in each reactor is $0.707 \times 30 = 21$ milliamperes. A suitable wire size for the output winding is 37 AWG with a copper cross-section of 19.8 circular mils. The output windings require 25/0.0047 = 5300 turns. Peak inverse voltage across the rectifiers is $1.4 \times 25 = 35$ and forward current is 21 milliamperes/rectifier. Germanium diodes type 1N54 are specified for the rectifiers. Reverse leakage current is estimated at approximately (0.1 percent) \times (21 milliamperes) \approx 20 microamperes. Leakage ampere-turns = $20 \times 10^{-6} \times 5300 \approx 100$ milliampere-turns. Fig. 4 indicates that the reactor can be controlled with about 140 milliampere-turns. Control windings of 100 + 140 = 240 milliampere-turns are therefore required. Since 400 microamperes are available from the source, 600 turns are needed on each control winding. # Sample design continued Estimating $1\frac{1}{2}$ inches of wire/turn, total length of each control winding is 75 feet. Permissible resistance of the control winding on each reactor is $(0.5) \times (0.25/400) \times 10^{-6} = 310$ ohms. Since 75 feet of 37 AWG wire has a resistance of only 39 ohms, this size may be used for both control and output windings. The leakage of 100 milliampere—turns is about the same as the value OB for group-C cores shown in Fig. 4. Therefore, a bias winding will be omitted. (If a bias winding were used, 150 turns with a current of 1 milliampere would be sufficient.) Using 37 AWG wire for both windings, we have 5900 turns on each core. Double-formvar-insulated 37 AWG wire has a diameter 0.0054 inch and a space factor of 0.87 as shown on p. 278. Inside diameter 0.93 inch of the core housing will permit approximately $\pi \times 0.93 \times (0.87/0.0054) = 500$ close-wound turns on the first layer and less on the remaining layers. There will be at least 12 layers of winding having a total thickness of about $12 \times (0.0054/0.87)$, say, 0.10 inch. Area remaining for the shuttle of the winding machine is $(\pi/4)$ $(0.93-2\times0.10)^2=0.42$ inch² which is sufficient. The induced voltage in each control winding will be (600 turns) \times (4.7 millivolts) = 2.8 volts. This voltage at 120 cycles/second will be applied across the inductor in series with the control supply. Permissible alternating current in the control circuit is $0.3 \times 400 = 120$ microamperes. Impedance required in the inductor is $2.8/(120 \times 10^{-6} = 23,500$ ohms. At 120 cycles/second, the inductor should have a reactance of 31 henries. # Calculation of response time Speed of response τ is defined as the time necessary for a magnetic amplifier to reach 63 percent of ultimate output upon application of a step signal voltage in the control circuit. It includes the time required to change the flux in the control-circuit inductor. Response is fairly independent of the number of turns on the output windings. It depends only upon the number of turns N_c of the control winding, the type and cross-section of the core, and the voltage E_c available from the signal source. Response time in cycles can be approximated from the following empirical formula. It yields results which may be in error by ± 50 percent. $$\tau \approx \frac{N_c \times \text{(volts/turn)}}{2E_c}$$ Volts/turn may be obtained from Fig. 15. # Calculation of response time continued For example, the response time of the amplifier in the above sample design would be: $$\tau \approx \frac{600 \times 4.7 \times 10^{-3}}{2 \times 0.25} = 6 \text{ cycles}$$ With 60-cycle/second supply, this would be 0.10 second. #### **Practical considerations** In amplifiers using two or more cores and rectifiers, the components should be carefully matched. If this is not done, I_c requirements may be 50-percent higher than estimated. For high-sensitivity amplifiers with moderate output, toroidal cores should not be larger than $D_o=2$ to 3 inches. If selenium rectifiers
are used, the number of turns on the output winding should be held to a maximum of 3500 and the rectifiers should have enough plates so that inverse voltage/plate will not exceed 10 to 15 volts. If germanium diodes with high leakage resistance such as types 1N54, 1N67, or 1N81 are used, the number of output turns may be increased to 7000. For highest sensitivity, amplifiers should be equipped with cores of group-C or group-D materials listed in Fig. 4. Silicon-diode rectifiers having a reverse leakage of a few microamperes and relatively high inverse-voltage ratings should be used with such cores. The number of turns on the output winding should not exceed 10,000 in this case for 60-cycle operation or 2500 for 400-cycle operation because of intrawinding capacitance effects. E_l/I_c of high-sensitivity amplifiers may change by from 2 to 10 percent during their lifetime. This should be anticipated in the design. For alternating-current-controlled amplifiers, optimum design usually consists in employing as thin and narrow a core as possible because the smaller the core cross-section, the lower the required signal. # **Triggering** This phenomena occurs quite often in high-performance amplifiers having very-low-leakage rectifiers. Referring to the control curve in Fig. 16A, the action is as follows: when I_c increases in the negative direction, the amplifier cuts off at point A_i ; then when I_c decreases, the amplifier remains at cutoff up to point R, where the output suddenly shoots up to point S. The amplifier can be cut off again along the line SA. The area enclosed by SAR is the triggering region. # Practical considerations continued Triggering may be used to advantage in certain bistable switching circuits, but it is usually undesirable. The simplest way to minimize the phenomena is to use rectifiers with more leakage or to shunt a resistor across the Fig. 16—The effect of triggering on magnetic amplifier output. Capacitor C across the rectifiers prevents triggering. rectifiers, but both these cures reduce the gain of the amplifier. Triggering can be eliminated without diminishing amplifier gain by placing a capacitor C across RE_1 and RE_2 as shown in Fig. 16B. In general, the size of C cannot be predetermined. Minimum C is desirable for least response time and the value can be determined experimentally by starting with about 1 microfarad and substituting smaller values until triggering starts. # **■** Feedback control systems # Introduction* A feedback control system (Fig. 1) is one in which the difference between a reference input and some function of the controlled variable is used to supply an actuating error signal to the control elements and the controlled system. The amplified actuating error signal is applied in a manner tending to reduce this difference to zero. A supplemental source of power is available in such systems to provide amplification at one or more points. The two most common types of feedback control systems are regulators and servomechanisms. Fundamentally, the systems are similar, the difference in names arising from the different natures of the types of reference inputs, the disturbances to which the control is subjected, and the number of integrating elements in the control. Thus, regulators are designed primarily to maintain the controlled variable or system output very nearly equal to a desired value in the presence of output disturbances. Generally, a regulator does not contain any integrating elements. A servomechanism is a feedback control system in which the controlled variable is a position (or velocity). Ordinarily in a servomechanism, the reference input is the input signal of primary importance; load disturbances, while they may be present, are of secondary importance. Generally, one or more integrating elements are contained in the forward transfer function of a servomechanism. # Types of systems The various types of feedback control systems can be described most effectively in terms of the simple closed-loop direct feedback system. Fig. 2 shows such a system. R(s), C(s), and E(s) are the Laplace transforms of the reference input, controlled variable, and error signal, respectively. **Note:** The complex variable s instead of p will be employed in this chapter to conform with the general practice in the literature on feedback control systems. ^{*} H. Chestnut and R. W. Mayer, "Servomechanisms and Regulating System Design," John-Wiley & Sons, Inc., New York, N. Y.; 1951 and 1955: vols. 1 and 2. Also, W. R. Evans, "Control System Dynamics," McGraw-Hill Book Company, Inc., New York, N. Y.; 1954. Also, J. G. Truxal, "Automatic Feedback Control System Synthesis," McGraw-Hill Book Company, Inc., New York, N. Y.; 1955. Also, H. S. Tsien, "Engineering Cybernetics," McGraw-Hill Book Company, Inc., New York, N. Y.; 1954. For a typical linear system, G(s) might appear as $$\frac{C(s)}{E(s)} = G(s) = \frac{K(T_{1}s + 1) (T_{3}s + 1)}{s^{n}(T_{2}s + 1) (T_{4}s + 1)}$$ The value of the exponent n, an integer, designates the type of the system. This in turn reveals the nature of the steadystate performance of the system as outlined below. indirectly controlled quantity Fig. 2—Single-loop system. S= 0+ /w transfer function G(s) compa-rator R(s) # Types of systems continued Type-0 system: A constant value of the controlled variable requires a constant error signal under steady-state conditions. A feedback control system of this type is generally referred to as a regulator system. Type-1 system: A constant rate of change of the controlled variable requires a constant error signal under steady-state conditions. A type-1 feedback control system is generally referred to as a servomechanism system. For reference inputs that change with time at a constant rate, a constant error is required to produce the same steady-state rate of the controlled variable. When applied to position control, type-1 systems may also be referred to as a "zero-displacement-error" system. Under steady-state conditions, it is possible for the reference signal to have any desired constant position or displacement and the feedback signal or controlled variable to have the same displacement. Type-2 system: A constant acceleration of the controlled variable requires a constant error under steady-state conditions for a type-2 system. Since these systems can maintain a constant value of controlled variable and a constant controlled variable speed with no actuating error, they are sometimes referred to as "zero-velocity-error" systems. # Stability of systems A linear control system is unstable when its response to any aperiodic, bounded signal increases without bound. Mathematically, instability may be investigated by analysis of the closed-loop response of the system shown in Fig. 2. $$\frac{C}{R}(s) = \frac{G(s)}{1 + G(s)}$$ $$s = \sigma + j\omega$$ The stability of the system depends upon the location of the poles of C(s)/R(s) or the zeros of [1+G(s)] in the complex s plane. Several methods of stability determination can be employed. #### Routh's criterion A method due to Routh is constructed as follows. Let D= numerator polynomial of 1+G(s). Then form $$D = \sum_{i=0}^{n} a_i s^i$$ where $a_n > 0$. **a.** Construct the table shown below, with the first two rows formed directly from the coefficients and succeeding rows found as indicated. $$a_n \quad a_{n-2} \quad a_{n-4} \quad a_{n-6} \quad . \qquad .$$ $$a_{n-1}$$ a_{n-3} a_{n-5} a_{n-7} . . . $$b_1 \quad b_2 \quad b_3 \quad b_4 \quad . \qquad .$$ $$c_1$$ c_2 c_3 c_4 . . . $$d_1 \quad d_2 \quad d_3 \quad . \quad . \quad .$$ $$\mathsf{e}_1 \quad \mathsf{e}_2 \quad . \quad . \quad .$$ $$f_1$$, where $$b_1 = \frac{a_{n-1} a_{n-2} - a_{n-3} a_n}{a_{n-1}}$$ $$b_2 = \frac{a_{n-1} a_{n-4} - a_{n-5} a_n}{a_{n-1}}$$ $$b_3 = \frac{a_{n-1} a_{n-6} - a_{n-7} a_n}{a_{n-1}}$$ $$c_1 = \frac{b_1 \, a_{n-3} \, - \, b_2 \, a_{n-1}}{b_1}$$ $$c_2 = \frac{b_1 \, a_{n-5} - b_3 \, a_{n-1}}{b_1}$$ $$c_3 = \frac{b_1 \, a_{n-7} - b_4 \, a_{n-1}}{b_1}$$ $$d_1 = \frac{c_1 \, b_2 \, - \, b_1 \, c_2}{c_1}$$ $$d_2 = \frac{c_1 b_3 - b_1 c_3}{c_1}$$ $$d_3 = \frac{c_1 b_4 - b_1 c_4}{c_1}$$ The table will consist of n rows. **b.** The system is stable; i.e., the polynomial has no right-half-plane zeros if every entry in the first column of the table is positive. If any complete row is zero, the rest of the table cannot be formed. In such a case the polynomial always has zeros in the right-half-plane or on the imaginary axis. # Nyquist stability criterion A second method for determining stability is known as Nyquist stability criterion. This method consists in obtaining the locus of the transfer function G(s) in the complex G plane for values of $s=j\omega$ for ω from $-\omega$ to $+\omega$. For single-loop systems, if the locus thus described encloses the point -1+j0, the system is unstable; otherwise it is stable. Since the locus is always symmetrical about the real axis, it is sufficient to draw the locus for positive values of ω only. Fig. 3 shows loci for several simple systems. Curves A and C represent stable systems and are typical of the type-1 system; curve B is an unstable system. Curve D is conditionally stable; that is, for a particular range of values of gain K it is unstable. The system is stable both for larger and smaller values of gain. Note: it is unstable as shown. Phase margin θ_p and gain margin g are also illustrated in Fig. 3A. The former is the angle between the negative real axis and G $(j\omega)$ at the point where the locus intersects the unit-gain circle. It is positive when measured as shown. Gain margin g is the negative db value of $G(j\omega)$ corresponding to the frequency at which the phase angle is 180 degrees (i.e., where $G(j\omega)$ intersects the negative real axis). The gain margin is often expressed in decibels, Fig. 3—Typical Nyquist loci. so that $g=-20\log_{10} G(j\omega)$. Typical satisfactory
values are -10 db for ${\bf g}$ and an angle of 30° for θ_p . These values are selected on the basis of a good compromise between speed of response and reasonable overshoot. Note that for conditionally stable systems, the terms gain margin and phase margin are without their usual significance. # Logarithmic plots The transfer function of a feedback control system can be described by separate plots of attenuation and phase versus frequency. This provides a very simple method for constructing a Nyquist diagram from a given transfer function. Use of logarithmic frequency scale permits simple straight-line (asymptotic) approximations for each curve. Fig. 4 illustrates the method for a transfer function with a single time constant. A comparison between approximate and actual values is included. Fig. 4—Transfer-function plot. $G(j\omega) = 1/(1 + j\omega I)$ Transfer functions of the form $G=(1+j\omega T)$ have similar approximations except that the attenuation curve slope is inverted upward (+ 20 db/decade) and the values of phase shift are positive. The transfer function of feedback control systems can often be expressed as a fraction with the numerator and denominator each composed of linear factors of the form (Ts+1). Certain types of control systems such as hydraulic motors where compressibility of the oil in the pipes is appreciable or some steering problems where the viscous damping is small give rise to transfer functions in which quadratic factors occur in addition to the linear factors. The process of taking logarithms (as in making a db plot) facilitates computation because only the addition of product terms is involved. The associated phase angles are directly additive. For example $$G(j\omega) = \frac{K(1 + j\omega T_2)}{[T^2(j\omega)^2 + 2\zeta T(j\omega) + 1](1 + j\omega T_1)(1 + j\omega T_3)}$$ where $s=j\omega$. The exact magnitude of G in decibels is $$20 \log_{10} |G| = 20 \log_{10} K + 20 \log_{10} |1 + j\omega T_2| - 20 \log_{10} |1 + j\omega T_1| - 20 \log_{10} |1 + j\omega T_3| - 20 \log_{10} |T^2 (j\omega)^2 + 2 \zeta T (j\omega) + 1|$$ # Stability of systems continued Plots of attenuation and phase for quadratic factors as a function of the relative damping ratio ζ are given in Fig. 5. The low-frequency asymptote is 0 db, but the high-frequency asymptote has a slope of \pm 40 db/decade (the positive slope applies to zero quadratic factors), twice the slope of the simple pole or zero case. The two asymptotes intersect at $$\omega = 1/T$$ The difference between the asymptotic plot and the actual curves depends on the value of ζ with a variety of shapes realizable for the actual curve. Regardless of the value of ζ , the actual curve approaches the asymptotes at both low and high frequencies. In addition, the error between the asymptotic plot and the actual curve is geometrically symmetrical about the break frequency $\omega=1/T$. As a result of this symmetry, the curves of Fig. 5A Fig. 5B—Phase characteristic. By permission from "Theory of Servomechanisms," by H. M. James, N. B. Nichols, and R. S. Phillips. Copyright 1947. McGraw-Hill Book Company, Inc. ### Stability of systems are plotted only for $\omega T \leq 1$. The error for $\omega = \alpha/T$ is identical with the error at $\omega = 1/\alpha T$. #### Log plots applied to transfer functions continued Nyquist's method, although yielding satisfactory results, has undesirable limitations when applied to system synthesis because the quantitative effect of parameter changes is not readily apparent. The use of attenuation—phase plots yields a more direct approach to the problem. The method* is based upon the relation between phase and the rate of change of gain with frequency of networks. As a first approximation, which is valid for simple systems, a gain rate of change of 20 db/decade corresponds to a phase shift of 90°. Since the stability of a system can be determined from its phase margin at unity gain (0 db), simple criteria for the slope of the attenuation curve can be established. Thus it is obvious that to avoid instability, the slope * A theorem due to Bode shows that the phase angle of a network at any desired frequency is dependent on the rate of change of gain with frequency, where the rate of change of gain at the desired frequency has the major influence on the value of the phase angle at that frequency. Fig. 6—Attenuation and phase shift for a stable system. of the attenuation curve at unity gain must be appreciably less than -40 db/decade (commonly about -33 db/decade). The design procedure is to construct asymptotic attenuation—phase curves as a first approximation. From this it can be determined whether the stability requirements are met. Refinements can be made by using the actual instead of asymptotic values for the curve as outlined in Fig. 4. Figs. 6 and 7 are examples of transfer functions plotted in this manner. In Fig. 6 a positive phase margin exists and the system is stable. Associated with the first-order pole at the origin is a uniform (low-frequency) slope of -20 db/decade and -90° phase shift. This may be considered characteristic of the integrating action of a type-1 control system. Fig. 7 is an unstable system. It has a negative phase margin (as a result of the steep slope of the attenuation curve). The former is stable, the latter is unstable. #### Root-locus method Root-locus is a method of design due to Evans, based upon the relation between the poles and zeros of the closed-loop system function and those of the open-loop transfer function. The rapidity and ease with which the $$G = \frac{C}{E} = \frac{100}{j\omega (1 + j0.25\omega) (1 + j0.0625\omega)}$$ $$\frac{R(s)}{j\omega (1 + j0.25\omega) (1 + j0.0625\omega)}$$ Fig. 7—Attenuation and phase shift for an unstable system. 355 # Stability of systems continued loci can be constructed form the basis for the success of root-locus design methods, in much the same way that the simplicity of the gain and phase plots (Bode diagrams) makes design in the frequency domain so attractive. The root-locus plots can be used to adjust system gain, guide the design of compensation networks, or study the effects of changes in system parameters. In the usual feedback control system, G(s) is a rational algebraic function, the ratio of two polynomials in s; thus, $$G(s) = m(s)/n(s)$$ From Fig. 2 $$\frac{C}{R}(s) = \frac{G(s)}{1 + G(s)} = \frac{m(s)/n(s)}{1 + [m(s)/n(s)]} = \frac{m(s)}{m(s) + n(s)}$$ The zeros of the closed-loop system are identical with those of the open-loop system function. The closed-loop poles are the values of s at which m(s)/n(s) = -1. The root-locus method is a graphical technique for determination of the zeros of m(s) + n(s) from the zeros of m(s) and n(s). Root loci are plots in the complex s plane of the variations of the poles of the closed-loop-system function with changes in the open-loop gain. For the single-loop system of Fig. 2, the root loci constitute all s-plane points at which Fig. 8—Graphical interpretation of G(s). $$G(s) = K(AB/CDEF)$$ $$= \frac{A + \frac{B}{C} - \frac{C}{C} - \frac{D}{C} - \frac{E}{C} - \frac{E}{C}$$ where n is any integer including zero. For a type-1 feedback control system $$G(s) = \frac{K (s + z_1) (s + z_2)}{s (s + p_1) (s + p_2) (s + p_3)}$$ A graphical interpretation is given in Fig. 8. Examples are given in Figs. 9 and 10. Fig. 9—Root loci for G(s) = K/[s(s+1)] Values of K as indicated by fractions. Gain K1, Fig. 10, produces the case of critical dampina. An increase in agin somewhat beyond this value causes a damped oscillation to appear. The latter increases in frequency (and decreases in damping) with further increase in gain. At gain K₃ a sustained oscillation will result. Instability exists for gain greater than K₃, as at K₄. This corresponds to poles in the right half of the s plane for the closed-loop transfer function. Fig. 10—Root loci for $G(s) = K/[s(T_1s + 1)(T_2s + 1)]$. #### Aids in sketching root-locus plots **a.** The simplest portions of the plot to establish are the intervals along the negative real $(-\sigma)$ axis, because then all angles are either 0° or 180° . Complex pairs of zeros or poles contribute no net angle for points along the real axis. Along the real axis, the locus will exist for intervals that have an odd number of zeros and poles to the right of the interval (Fig. 11). Fig. 11—Root-locus intervals along the real axis **b.** For very large values of s, all angles are essentially equal. The locus will thus finally approach asymptotes at the angles (Fig. 12), given by $$180^{\circ} + n \ 360^{\circ}$$ (number of poles) - (number of zeros) These asymptotes meet at a point s1 (on the negative real axis) given by $$s_1 = \frac{\Sigma(\text{poles}) - \Sigma(\text{zeros})}{\text{(number of finite poles)} - \text{(number of finite zeros)}}$$ Fig. 12—Final asymptotes for root loci. Left, 60° asymptotes for system having 3 poles. Right, 45° asymptotes for system having an excess of 4 poles over zeros. - **c.** Breakaway points from the real axis occur where the net change in angle caused by a small vertical displacement is zero. In Fig. 13 the point ρ satisfies this condition at $1/x_0 = (1/x_1) + (1/x_2)$. - **d.** Intersections with $j\omega$ axis. Routh's test applied to the polynomial m(s) + n(s) frequently permits rapid determination of the points at which the loci cross the $j\omega$ axis and the value of gain at these intersections. Fig. 13—Breakaway points. **e.** Angles of departure and arrival. The angles at which the loci leave the poles and arrive at the zeros are readily evaluated from the following equation Σ /vectors from zeros to s - Σ /vectors from poles to s = $180^{\circ} + n360^{\circ}$. For example, consider Fig. 14. The angle of departure of the locus from the pole at (-1 + j1) is desired. If a test point is assumed only slightly displaced from the pole, the angles contributed
by all critical frequencies (except the pole in question) are determined approximately by the vectors from these poles and zeros to (-1 + j1). The angle contributed by the pole at (-1 + j1) is then just sufficient to make the total angle 180°. In the example shown in the figure the departure angle is found from the relation: $$+45^{\circ} - (135^{\circ} + 90^{\circ} + 26.6^{\circ} + \theta_{1} = 180^{\circ} + n 360^{\circ}$$ $+1+j$ Hence $\theta = -26.6^{\circ}$, the angle at which the locus leaves (-1 + j1). # Methods of stabilization Methods of stabilization for improving feedback-control-system response fall into the following basic categories: - Series (cascade) compensation. - **b.** Feedback (parallel) compensation. - c. Load compensation. In many cases any one of the above methods may be used to advantage and it is largely a question of practical considerations as to which is selected. Fig. 15 illustrates the three methods. #### Networks for series stabilization Common networks for stabilization are shown in Fig. 16 with the transfer functions. The bridged-T network can be used for stabilization of ac systems although it has the disadvantage of requiring close control of the carrier frequency. Asymptotic attenuation and phase curves for the first # Methods of stabilization continued Fig. 15—Simple schemes for compensation. Fig. 16—Networks for series stabilization. Continued on next page. # Methods of stabilization continued Fig. 16—Networks for series compensation. Continued three networks are shown in Figs. 17 and 18. The positive values of phase angle are to be associated with the phase-lead network whereas the negative values are to be applied to the phase-lag network. Fig. 19 is a plot of the maximum phase shift for lag and lead networks as a function of the time-constant ratio. Fig. 17—Phase and attenuation for phase-lead and phase-lag networks. $T_1 = 10T_2$. # Methods of stabilization continued Fig. 18—Phase and attenuation for lead-lag network. $$G_1 = (T_1 + T_2)/(T_1 + T_2 + T_{12}).$$ $$T_2 = T_1 / 4$$ and $T_{12} = 11.25T_1$. Fig. 19—Maximum phase shift for phase-lead (use positive angles) and phase-lag (negative angles) networks. Instead of direct feedback, the feedback connection may contain frequencysensitive elements. Typical of such frequency-sensitive elements are tachometers or other rate- or acceleration-sensitive devices that may be fed back directly or through suitable stabilizing means. #### Load stabilization The commonest form of load stabilization involves the addition of an oscillation damper (tuned or untuned) to change the apparent characteristics of the load. Oscillation dampers can be used to obtain the equivalent of tachometric feedback. The primary advantages of load stabilization are the simplicity of instrumentation and the fact that the compensating action is independent of drift of the carrier frequency in ac systems. #### **Error coefficients** Of major importance in feedback control systems, along with stability, is system accuracy. Static accuracy refers to the accuracy of a system after the steady state is reached and is ordinarily measured with the system input constant or slowly varying. Dynamic accuracy refers to the ability of the # Methods of stabilization continued system to follow rapid changes of the input. The following refers to a system such as Fig. 2. #### Static-error coefficients Position error constant: $$K_p = \lim_{s \to 0} \frac{C(s)}{E(s)} = \lim_{s \to 0} G(s) = \frac{\text{(controlled variable)}}{\text{(actuating error)}}$$ for a constant value of controlled variable. Velocity error constant: $$K_{\nu} = \lim_{s \to 0} \frac{sC(s)}{E(s)} = \lim_{s \to 0} sG(s) = \frac{\text{(velocity of controlled variable)}}{\text{(actuating error)}}$$ for a constant velocity of controlled variable. Acceleration error constant: $$K_a = \lim_{s \to 0} \frac{s^2 C(s)}{E(s)} = \lim_{s \to 0} s^2 G(s) = \frac{(acceleration of controlled variable)}{(actuating error)}$$ for constant acceleration of the controlled variable. # Multiple inputs and load disturbances Frequently systems are subjected to unwanted signals entering the system at points other than the input. Examples are load-torque disturbances, noise generated at a point within the system, etc. These may be represented as additional inputs to the system. Fig. 20 is a block diagram of such a condition. For linear operation, **a.** $$\frac{C}{R} = \frac{G_1G_2}{1 + HG_1G_2}$$ **b.** $$\frac{C}{U} = \frac{G_2}{1 + HG_1G_2}$$ Combining (a) and (b), $$\frac{C}{U} = \frac{1}{G_1} \left(\frac{C}{R} \right)$$ Fig. 20-Multiple-input control system. # Multiple inputs and load disturbances continued If it is desired that the sum of R and U be reproduced in the output (controlled variable), then G_1 should be equal to unity. If U is a disturbance to be minimized, then G_1 should be as large as possible. An example of such a disturbance is the torque produced on a radar antenna by wind forces. # Practical application An example of a common application is the positioning-type servomechanism shown in Fig. 21. Such a system ordinarily includes the following components: a comparator to measure the error, an amplifier, a second comparator or mixer to measure $(E_1 - B)$, a motor, and a tachometer. For this system, $$\frac{C(s)}{E(s)} = \frac{G_1(s) G_2(s)}{1 + H(s) G_2(s)}$$ $$\frac{C(s)}{R(s)} = \frac{G_1(s) G_2(s)}{1 + H(s) G_2(s) + G_1(s) G_2(s)}$$ Fig. 21—Positioning-type servo. # Control-system components # Error-measuring systems: potentiometers, synchros Commonly used error-measuring systems or comparators are shown in Fig. 22. For synchros whose primary excitation is 115 volts, the error sensitivity is approximately 1 volt/degree for a load resistance of 10,000 ohms across the control-transformer rotor. # Control-system components continued Fig. 22-Error-measuring systems. The static error of a synchro transmitter and control transformer combination is of the order of 18 minutes maximum and is a function of the rotor position. In some precision units, this error may be reduced to a few minutes of arc. In synchro-control transformers, a very undesirable characteristic is the presence of residual voltages at the null position. In well-designed units this voltage will be less than 30 millivolts. Synchro errors can be materially reduced by the utilization of double-speed systems. Such systems consist of a dual set of synchro units whose shafts are geared in such a manner as to provide a "fine" and a "coarse" control. The synchro error can be effectively reduced by the factor of the gear ratio employed. Synchronizing networks are employed to provide for proper switching between the two sets of synchros. #### Linear motor and load characteristics In the following, subscript m refers to motor, l refers to load, and 0 refers to combined motor and load. # Control-system components continued θ = angular position in radians $r = \text{angular velocity in radians/sec} = d\theta/dt$ $T_m = motor-developed torque in pound-feet$ $J_m = \text{motor moment of inertia in slug-feet}^2$ $E_m = impressed volts$ $k_t = \text{motor stalled-torque constant in pound-feet/volt}$ $= \left[\Delta T_m / \Delta E_m\right]_{r_m}$ $f_m = \text{motor internal-damping characteristic in pound-feet-seconds/radian}$ $= - [\Delta T_m/\Delta_{rm}]_{E_m}$ r_m = motor torque-inertia constant in 1/second $= T_m/J_m$ $J_l = load inertia in slug-feet^2$ f_{l} = load viscous-friction coefficient in pound-feet-seconds/radian F_{l} = load coulomb friction in pound-feet N = motor-to-load gear ratio $= \theta_m/\theta_l$ $f_0 =$ over-all viscous-friction coefficient referred to load shaft $= f_l + N^2 f_m$ J_0 = over-all inertia referred to load shaft $= J_l + N^2 J_m$ T_0 = over-all time constant in seconds $= J_0/f_0$ The ideal motor characteristics of Fig. 23 are quite representative of dc shunt motors. For alternating-current two-phase servomotors, one phase of Fig. 23-Ideal motor curves. which is excited from a constant-voltage source (the reference winding), the curves are approximately valid up to about 40-percent of synchronous speed. The speed and load-transfer characteristics are given by # Control-system components continued $$\theta_0(s) = \frac{k_t N E_m(s) - F_l(s)}{J_0 s^2 + f_0 s}$$ When the coulomb friction F_{l} can be neglected, G(s) = $$\frac{\theta_0(s)}{E_m(s)} = \frac{k_t N}{f_{0s} (T_{0s} + 1)}$$ ### Rate generators A rate generator (or tachometer generator) is a precision electromechanical component resembling a small motor and having an output voltage proportional to its shaft rotational speed. Rate generators have extensive applications both as computing instruments and as stabilizing components of feedback control systems. An example of the latter is illustrated in Fig. 21. The use of the rate generator produces an effective viscous damping and also tends to linearize the servomechanism by inserting damping of a linear nature and of such magnitude that it swamps out the rather large nonlinear damping of the motor. To eliminate the backlash between rate generators and servomotors, they are often constructed as integral units having a common shaft. These units are available for dc or ac (either 400- or 60-cycle) operation. # Linearity considerations The preceding material applies strictly to linear systems. Actually all systems are nonlinear to some extent. This nonlinearity may cause serious deterioration in performance. Common sources of nonlinearity are: - a. Nonlinear motor characteristics. - b. Overloading of amplifiers by noise. - c. Static friction. - **d.** Backlash in gears, potentiometers, etc. For good performance it is recommended that the total backlash should not exceed 20 percent of the expected static error. - e. Low-efficiency gear or worm drives that cause locking action. ### Electron tubes ## General data* #### Cathode emission The cathode of an electron tube is the primary source of the
electron stream. Available emission from the cathode must be at least equal to the sum of the instantaneous peak currents drawn by all of the electrodes. Maximum current of which a cathode is capable at the operating temperature is known as the saturation current and is normally taken as the value at which the current first fails to increase as the three-halves power of the voltage causing the current to flow. Thoriated-tungsten filaments for continuous-wave operation are usually assigned an available emission of approximately one-half the saturation value; oxide-coated emitters do not have a well-defined saturation point and are designed empirically. In Fig. 1, the values refer to the saturation current. Fig. 1—Cammonly used cathode materials. | type | efficiency in
milliamperes/
watt | specific emission I_s in ${ m amp/cm^2}$ | emissivity
in watts/cm² | operating
temp in
deg K | ratio
hot/cold
resistance | |--------------------------------|--|--|----------------------------|-------------------------------|---------------------------------| | Bright
tungsten (W) | <i>5</i> –10 | 0.25-0.7 | 70–84 | 2500–2600 | 14/1 | | Thoriated tung-
sten (Th-W) | 40-100 | 0. 5–3 .0 | 26-28 | 1950–2000 | 10/1 | | Tantalum (Ta) | 10–20 | 0.5-1.2 | 4860 | 2380-2480 | 6/1 | | Oxide coated
(Ba-Ca-Sr) | 50-150 | 0. 5 –2.5 | 5 —10 | 1100-1250 | 2.5 to 5.5/1 | Operation of cathodes: Thoriated-tungsten and oxide-coated emitters should be operated close to specified temperature. A customary allowable heating-voltage deviation is ± 5 percent. Bright-tungsten emitters may be operated at the minimum temperature that will supply required emission as determined by power-output and distortion measurements. Life of a bright-tungsten emitter is lengthened by lowering the operating temperature. Fig. 2 shows a typical relationship between filament voltage and temperature, life, and emission. Mechanical stresses in filaments due to the magnetic field of the heating current are proportional to I_f^2 . Current flow through a cold filament should be limited to 150 percent of the normal operating value for large tubes, and ^{*} J. Millman, and S. Seely, "Electronics," 1st ed., McGraw-Hill Book Company, New York', 1941. K. R. Spangenberg, "Vacuum Tubes," 1st ed., McGraw-Hill Book Company, New York, New York; 1948. A. H. W. Beck, "Thermionic Valves, Their Theory and Design," Cambridge University Press, London, England; 1953. "Standards on Electron Tubes: Definitions of Terms, 1950," Institute of Radio Engineers, New York, New York. # General data continued 250 percent for medium types. Excessive starting current may easily warp or break a filament. Thoriated-tungsten filaments may sometimes be restored to useful activity by applying filament voltage (only) in accordance with one of the following schedules: - a. Normal filament voltage for several hours or overnight. - **b.** If the emission fails to respond; at 30 percent above normal for 10 minutes, then at normal for 20 to 30 minutes. - **c.** In extreme cases, when a and b have failed to give results, and at the risk of burning out the filament; at 75 percent above normal for 3 minutes followed by schedule b. Fig. 2—Effect of change in filament voltage on the temperature, life, and emission of a bright-tungsten filament (based on 2575-degree-Kelvin normal temperature). ## General data continued ## Electrode dissipation In computing cooling-medium flow, a minimum velocity sufficient to insure turbulent flow at the dissipating surface must be maintained. The figures for specific dissipation (Fig. 3) apply to clean cooling surfaces and may be reduced to a small fraction of the values shown by heat-insulating coatings such as scale or dust. Fig. 3—Typical operating data for common types of cooling. | type | average cooling-
surface temperature
in degrees centigrade | specific dissipation
in watts/centimeter ²
of cooling surface | cooling-
medium
supply | |------------|--|--|--------------------------------------| | Radiation | 400-1000 | 4–10 | | | Water | 30–150 | 30–110 | 0.25—0.5 gallons/minute/
kilowatt | | Forced-air | 150-200 | 0.5–1 | 50-150 feet³/minute/
kilowatt | Operation temperature of a radiation-cooled surface for a given dissipation is determined by the relative total emissivity of the anode material. Temperature and dissipation are related by the expression, $$P = \epsilon_t \ \sigma (T^4 - T_0^4)$$ where $P = \text{radiated power in watts/centimeter}^2$ $\epsilon_t =$ total thermal emissivity of the surface $\sigma =$ Stefan-Boltzmann constant = 5.67×10^{-12} watt-centimeters⁻² \times degrees Kelvin⁻⁴ T= temperature of radiating surface in degrees Kelvin T_0 = temperature of surroundings in degrees Kelvin Total thermal emissivity varies with the degree of roughness of the surface of the material, and the temperature. Values for typical surfaces are in Fig. 4. Fig. 4—Total thermal emissivity ϵ_t of electron-tube materials. | material | temp.
in deg.
Kelvin | thermal
emis-
sivity | | temp.
in deg.
Kelvin | thermal
emis-
sivity | |----------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Aluminum | 450 | 0.1 | Molybdenum, quartz-blasted | 1300 | 0.5 | | Anode graphite | 1000 | 0.9 | Nickel | 600 | 0.09 | | Copper | 300 | 0.07 | Tantalum | 1400 | 0.18 | | Molybdenum | 1300 | 0.13 | Tungsten | 2600 | 0.30 | Except where noted, the surface of the metals is as normally produced. # General data continued # Dissipation and temperature rise for water cooling $$P = 264 Q_W (T_2 - T_1)$$ where P = power in watts $Q_{W} = flow in gallons/minute$ T_2 , T_1 = outlet and inlet water temperatures in degrees Kelvin, respectively # Dissipation and temperature rise for forced-air cooling $$P = 169 \, Q_A \left(\frac{T_2}{T_1} - 1 \right)$$ where $Q_A = \operatorname{air}$ flow in feet³/minute, other quantities as above. Fig. 5 shows the method of measuring air flow and temperature rise in forced-air-cooled systems. A water manometer is used to determine the static pressure against which the blower must deliver the required air flow. Air velocity and outlet air temperature must be weighted over the cross-section of the air stream. Fig. 5—Measurement of air flow and temperature rise in a forced-air-cooled system is shown at the right. Grid temperature: Operation of grids at excessive temperatures will result in one or more harmful effects: liberation of gas, high primary (thermal) emission, contamination of the other electrodes by deposition of grid material, and melting of the grid may occur. Grid-current ratings should not be exceeded, even for short periods. ## **Nomenclature** Application of the standard nomenclature* to a typical electron-tube circuit is shown in Fig. 6. A typical oscillogram is given in Fig. 7 to illustrate the designation of the various components of a current. By logical extension of these principles, any tube, circuit, or electrical quantity may be covered. e_c = instantaneous total grid voltage e_b = instantaneous total plate voltage i_c = instantaneous total grid current $E_c =$ instantaneous total grid current $E_c =$ average or quiescent value of grid voltage $E_b = \text{average or quiescent value of}$ E_b = average or quiescent value of plate voltage e_g = instantaneous value of varying component of grid voltage e_p = instantaneous value of varying component of plate voltage ^{* &}quot;Standards on Abbreviations, Graphical Symbols, Letter Symbols, and Mathematical Signs," The Institute of Radio Engineers; 1948. Fig. 7-Nomenclature of the various components of a current. Fig. 6 —Typical electron-tube circuit. # Nomenclature continued i_a = instantaneous value of varying component of grid current $E_{q}=% \frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}{2}\right) +\frac{1}{2}\left(+\frac$ E_p = effective or maximum value of varying component of plate voltage $I_{q}=$ effective or maximum value of varying component of grid current $I_f = filament or heater current$ I_s = total electron emission from cathode $C_{qp} = \text{grid-plate direct capacitance}$ C_{ak} = grid-cathode direct capacitance C_{pk} = plate-cathode direct capacitance θ_p = plate-current conduction angle r_l = external plate load resistance r_p = variational (ac) plate resistance # Noise in tubes* There are several sources of noise in electron tubes, some associated with the nature of electron emission and some caused by other effects in the tube. #### Shot effect The electric current emitted from a cathode consists of a large number of electrons and consequently exhibits fluctuations that produce tube noise and set a limitation to the minimum signal voltage that can be amplified. Shot effect in temperature-limited case: The root-mean-square value I_n of the fluctuating (noise) component of the plate current is given in amperes by $$I_{n^2} = 2\epsilon I \cdot \Delta f$$ where I =plate direct current in amperes $\epsilon =$ electronic charge = 1.6 imes 10⁻¹⁹ coulombs $\Delta f = \text{bandwidth in cycles/second}$ * B. J. Thompson, D. O. North, and W. A. Harris, "Fluctuations in Space-Charge-Limited Currents at Moderately High Frequencies," RCA Review: Part I—January, 1940; Part II—July, 1940; Part III—October, 1940; Part IV—January, 1941; Part V—April, 1941. J. L. Lawson and G. E. Uhlenbeck, "Threshold Signals," McGraw-Hill Book Company, Inc., New York, 1950: see Chapter 4. H. Goldberg, "Some Notes on Noise Figures," Proceedings of the IRE, vol. 36, pp. 1025–1214; October, 1948: also, vol. 37, p. 40; January, 1949. #
Noise in tubes continued Shot effect in space-charge-controlled region: The space charge tends to eliminate a certain amount of the fluctuations in the plate current. The following equations are generally found to give good approximations of the plate-current root-mean-square noise component in amperes. For diodes: $$I_n^2 = 4 k \times 0.64 T_0 g \cdot \Delta f$$ For negative-grid triodes: $$I_{n^2} = 4 k \times \frac{0.64}{\sigma} T_{cg_m} \cdot \Delta f$$ where $k = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \text{ joules/degree Kelvin}$ T_c = cathode temperature in degrees Kelvin g = diode plate conductance g_m = triode transconductance σ = tube parameter varying between 0.5 and 1.0 $\Delta f = \text{bandwidth in cycles/second}$ #### **Partition** noise Excess noise appears in multicollector tubes due to fluctuations in the division of the current between the different electrodes. Let a pentode be considered, for instance, and let e_{σ} be the root-mean-square noise voltage that, if applied on the grid, would produce the same noise component in the plate current. Let e_t be the same quantity when the tube is operated as a triode. North has given $$e_{g}^{2} = \left(1 + 8.7 \sigma \frac{I_{c2}}{g_{m}} \frac{1000}{T_{c}}\right) e_{t}^{2}$$ where $I_{c2} = \text{screen current in amperes}$ $g_m = pentode transconductance$ σ , $T_c = as above$ # Noise in tubes continued # Evaluation of tube performance **Equivalent noise input-resistance values:** A common way of expressing the properties of electron tubes with respect to noise is to determine the equivalent noise input resistance; that is to say, the value of a resistance that, if considered as a source of thermal noise applied to the driving grid, would produce the same noise component in the anode circuit. The information below has been given by Harris,* and is found to give practical approximations. For triode amplifiers: $$R_{eq} = 2.5/g_m$$ For pentode amplifiers: $$R_{eg} = \frac{I_b}{I_b + I_{c2}} \left(\frac{2.5}{g_m} + \frac{20 I_{c2}}{g_{m^2}^2} \right)$$ For triode mixers: $$R_{eq} = 4/g_c$$ For pentode mixers: $$R_{eg} = \frac{I_b}{I_b + I_{c2}} \left(\frac{4}{g_c} + \frac{20 I_{c2}}{g_c^2} \right)$$ For multigrid converters and mixers: $$R_{eg} = \frac{19 \, I_b (I_a - I_b)}{g_c^2 \, I_a}$$ where $R_{eg} =$ equivalent grid noise resistance in ohms $g_m = transconductance in mhos$ I_b = average plate current in amperes I_{c2} = average screen-grid current in amperes * W. A. Harris, "Fluctuations in Space-Charge-Limited Currents at Moderately High Frequencies, Part V—Fluctuations in Vacuum-Tube Amplifiers and Input Systems," RCA Review vol. 5, pp. 505–524; April, 1941: and vol. 6, pp. 114–124, July, 1941. ## Noise in tubes continued ge = conversion conductance in mhos $I_a = \text{sum of currents from cathode to all other electrodes in amperes}$ The cathode temperature is assumed to be 1000 degrees Kelvin in the foregoing formulas, and the equivalent-noise-resistance temperature is assumed to be 293 degrees Kelvin. Low-noise triode amplifiers have noise resistances of the order of 200 ohms; low-noise pentode amplifiers, 700 ohms; pentode mixers, 3000 ohms. Frequency converters have much higher noise resistances, of the order of 200,000 ohms. Noise factor or noise figure: Another common way of expressing the properties of electron tubes with respect to noise is by means of noise factor. This quantity is defined as the ratio of the available signal-to-noise ratio at the signal-generator (input) terminals to the available signal-to-noise ratio at the output terminals. #### Other sources of electron-tube noise Flicker effect due to variations in the activity of the cathode, is most common in oxide-coated emitters. It varies as f^{-1} and is thus important only at low frequencies. Collision ionization causes noise when ionized gas atoms or molecules liberate bursts of electrons on striking the cathode. Induced noise: At ultra-high frequencies it is not necessary for electrons to reach an electrode for induced current to flow in the electrode leads. Noise due to fluctuations in this induced current is called induced noise. Miscellaneous noises due to microphonics, hum, leakage, charges on insulators, and poor contacts. # Low- and medium-frequency tubes This section applies particularly to triodes and multigrid tubes operated at frequencies where electron-inertia effects are negligible. The construction illustrated in Fig. 8 is typical of that used in small transmitting tubes at these frequencies. # Low- and medium-frequency tubes continued ### Coefficients Amplification factor, μ : Ratio of incremental plate voltage to controlelectrode voltage change at a fixed plate current with constant voltage on other electrodes $$\mu = \left[\frac{\delta e_b}{\delta e_{c1}}\right]_{\substack{I_b \\ F_{c2} \dots F_{cn} \\ r_1 = 0}} constant$$ **Transconductance,** s_m : Ratio of incremental plate current to control-electrode voltage change at constant voltage on other electrodes $$s_m = \left[\frac{\delta i_b}{\delta e_{c1}}\right]_{E_b, E_{c2} \dots E_{cn} \text{ constant}}$$ Fig. 8—Electrode arrangement of a small external-anode triode. Overall length is $4\frac{1}{16}$ inches. A-filament, B-filament central-support rod, C-grid wires, D-anode, E-grid-support sleeve, F-filament-leg support rods, G-metal-to-glass seal, H-glass envelope, I-filament and grid terminals, J-exhaust tubulation. # Low- and medium-frequency tubes continued When electrodes are plate and control grid, the ratio is the mutual conductance, g_m $$g_m = \frac{\mu}{r_p}$$ Variational (ac) plate resistance, r_p : Ratio of incremental plate voltage to current change at constant voltage on other electrodes $$r_p = \left[\frac{\delta e_b}{\delta i_b}\right]_{\substack{E_{c1} \dots E_{cn} \text{ constant} \\ r_1 = 0}}$$ **Total (dc) plate resistance,** R_p : Ratio of total plate voltage to current for constant voltage on other electrodes $$R_p = \left[\frac{E_b}{I_b}\right]_{\substack{E_{c1} \dots E_{en} \text{ constant} \\ I_1 = 0}}$$ Amplification factor $$\mu=\frac{e_{b2}-e_{b1}}{e_{c2}-e_{c1}}$$ Mutual conductance $g_m=\frac{i_{b2}-i_{b1}}{e_{c2}-e_{c1}}$ Total plate resistance $R_p=\frac{e_{b2}}{i_{b2}}$ Variational plate resistance $r_p=\frac{e_{b2}-e_{b1}}{i_{b2}-i_{b1}}$ e_b in volts Fig. 9—Graphical method of determining coefficients. A useful approximation of these coefficients may be obtained from a family of anode characteristics, Fig. 9. Relationships between the actual geometry of a tube and its coefficients are roughly illustrated by Fig. 10. # Low- and medium-frequency tubes continued Fig. 10—Tube characteristics for unipotential cathode and negligible saturation of cathode emission. | function | parallel-plane cathode
and anode | cylindrical cathode
and anode | |-----------------------------------|--|--| | Diode anode current (amperes) | G ₁ e _b ^{3/2} | G ₁ e _b ^{3/2} | | Triode anode current (amperes) | $G_2\left(\frac{e_b + \mu e_c}{1 + \mu}\right)^{\frac{3}{2}}$ | $G_2\left(\frac{e_b + \mu e_c}{1 + \mu}\right)^{\frac{3}{2}}$ | | Diode perveance G ₁ | $2.3\times10^{-6}\frac{A_b}{d_b{}^2}$ | $2.3\times10^{-6}\frac{A_b}{\beta^2r_b{}^2}$ | | Triode perveance G ₂ | $2.3\times10^{-6}\frac{A_b}{d_bd_c}$ | $2.3\times10^{-6}\frac{A_b}{\beta^2 r_b r_c}$ | | Amplification factor μ | $\frac{2.7 d_c \left(\frac{d_b}{d_c} - 1\right)}{\rho \log \frac{\rho}{2\pi r_g}}$ | $\frac{2\pi d_c}{\rho} \frac{\log \frac{d_b}{d_c}}{\log \frac{\rho}{2\pi r_\theta}}$ | | Mutual conductance g _m | $1.5G_2 \frac{\mu}{\mu+1} \sqrt{\overline{E'_g}}$ | $1.5G_2 \frac{\mu}{\mu + 1} \sqrt{E'_g}$ | | | $E'_{o} = \frac{E_{b} + \mu E_{c}}{1 + \mu}$ | $E'_{o} = \frac{E_{b} + \mu E_{c}}{1 + \mu}$ | #### where A_b = effective anode area in square centimeters d_b = anode-cathode distance in centimeters $d_c = grid$ -cathode distance in centimeters β = geometrical constant, a function of ratio of anode-to-cathode radius; $\beta^2 \approx 1$ for $r_b/r_k > 10$ (see curve, Fig. 11) ρ = pitch of grid wires in centimeters $r_q = \text{grid-wire radius in centimeters}$ $r_b =$ anode radius in centimeters $r_k =$ cathode radius in centimeters $r_c = grid radius in centimeters$ Note: These formulas are based on theoretical considerations and do not provide accurate results for practical structures; however, they give a fair idea of the relationship between the tube geometry and the constants of the tube. #### Low- and medium-frequency tubes continued Fig. 11—Values of β^2 for values of $r_b/r_k < 10$. When the operating frequency is increased, the operation of triodes and multigrid tubes is affected by electron-inertia effects. The design features that distinguish the highfrequency tube shown in Fig. 12 from the lower-frequency tube (Fig. 8) are, reduced cathode-to-grid and grid-to-anode spacings, high emission density, high power density, * D. R. Hamilton, J. K. Knipp, and J. B. Kuper. "Klystrons and Microwave Triodes," 1st ed., McGraw-Hill Book Company, New York, New York; 1948. Fig. 12-Electrode arrangement of external-anode ultra-high-frequency triode. Overall length is 4% inches. A-filament, B-filament central-support rod, C-grid wires, D-anode, E-grid-support cone, F-grid terminal flange, G-flament-leg support rods, H-glass envelope, I-filament terminals. # High-frequency triodes and multigrid tubes continued small active and inactive capacitances, heavy terminals, short support leads, and adaptability to a cavity circuit. ## Factors affecting ultra-high-frequency operation **Electron inertia:** The theory of electron-inertia effects in small-signal tubes has been formulated;* no comparable complete theory is now available for large-signal tubes. When the transit time of
the electrons from cathode to anode is an appreciable fraction of one radio-frequency cycle: - **a.** Input conductance due to reaction of electrons with the varying field from the grid becomes appreciable. This conductance, which increases as the square of the frequency, results in lowered gain, an increase in driving-power requirement, and loading of the input circuit. - **b.** Grid-anode transit time introduces a phase lag between grid voltage and anode current. In oscillators, the problem of compensating for the phase lag by design and adjustment of a feedback circuit becomes difficult. Efficiency is reduced in both oscillators and amplifiers. - **c.** Distortion of the current pulse in the grid-anode space increases the anode-current conduction angle and lowers the efficiency. Electrode admittances: In amplifiers, the effect of cathode-lead inductance is to introduce a conductance component in the grid circuit. This effect is serious in small-signal amplifiers because the loading of the input circuit by the conductance current limits the gain of the stage. Cathode-grid and grid-anode capacitive reactances are of small magnitude at ultra-high frequencies. Heavy currents flow as a result of these reactances and tubes must be designed to carry the currents without serious loss. Coaxial cavities are often used in the circuits to resonate with the tube reactances and to minimize resistive and radiation losses. Two circuit difficulties arise as operating frequencies increase: - **a.** The cavities become physically impossible as they tend to take the dimensions of the tube itself. - **b.** Cavity Q varies inversely as the square root of the frequency, which makes the attainment of an optimum Q a limiting factor. ^{*} A. G. Clavier, "Effect of Electron Transit-Time in Valves," L'Onde Electrique, v. 16, pp. 145–149; March, 1937: also, A. G. Clavier, "The Influence of Time of Transit of Electrons in Thermionic Valves," Bulletin de la Societe Française des Electriciens, v. 19, pp. 79–91; January, 1939. F. B. Ljewellyn, "Electron-Inertia Effects," 1st ed., Cambridge University Press. London: 1941. # High-frequency triodes and multigrid tubes continued Scaling factors: For a family of similar tubes, the dimensionless magnitudes such as efficiency are constant when the parameter $$\phi = fd/V^{\frac{1}{2}}$$ is constant, where f = frequency in megacycles d = cathode-to-anode distance in centimeters V = anode voltage in volts Based upon this relationship and similar considerations, it is possible to derive a series of factors that determine how operating conditions will vary as the operating frequency or the physical dimensions are varied (see table, Fig. 13). If the tube is to be scaled exactly, all dimensions will be reduced inversely as the frequency is increased, and operating conditions will be as given in the "size-frequency scaling" column. If the dimensions of the tube are to be changed, but the operating frequency is to be maintained, operation will be as in the "size scaling" column. If the dimensions are to be maintained, but the operating frequency changed, operating conditions will be as in the "frequency scaling" column. These factors apply in general to all types of tubes. Fig. 13—Scaling factors for ultra-high-frequency tubes. | quantity | ratio | size-
frequency
scaling | size
scating | frequency
scaling | |-----------------------|-----------|-------------------------------|-----------------|----------------------| | Voltage | V_2/V_1 | 1 | d² | f² | | Field | E_2/E_1 | j j | q | f ² | | Current | I_2/I_1 | 1 | q ₃ | f3 | | Current density | J_2/J_1 | f² | ď | f³ | | Power | P_2/P_1 | 1 | ďs | f ⁵ | | Power density | h_2/h_1 | f2 | d ³ | f5 | | Conductance | G_2/G_1 | 1 | ď | f | | Magnetic-flux density | B_2/B_1 | f | 1 | f | d = ratio of scaled to original dimensions f = ratio of original to scaled frequency With present knowledge and techniques, it has been possible to reach certain values of power with conventional tubes in the ultra- and superhigh-frequency regions. The approximate maximum values that have been obtained are plotted in Fig. 14. # High-frequency triodes and multigrid tubes continued Fig. 14—Maximum ultra-high-frequency continuous-wave power obtainable from a single triode or tetrode. These data are based on 1956 knowledge and techniques. # Microwave tubes The reduced performance of triodes and multigrid tubes in the microwave region has fostered the development of other types of tubes for use as oscillators and amplifiers at microwave frequencies. The three principal varieties are the magnetron, the klystron, and the traveling-wave amplifier. # **Terminology** **Anode strap:** Metallic connector between selected anode segments of a multicavity magnetron. # Microwave tubes continued Beam-coupling coefficient: Ratio of the amplitude of the velocity modulation produced by a gap, expressed in volts, to the radio-frequency gap voltage. **Bunching:** Any process that introduces a radio-frequency conduction-current component into a velocity-modulated electron stream as a direct result of the variation in electron transit time that the velocity modulation produces. Cavity impedance: The impedance of the cavity that appears across the gap. Cavity resonator: Any region bounded by conducting walls within which resonant electromagnetic fields may be excited. Circuit efficiency: The ratio of (a) the power of the desired frequency delivered to the output terminals of the circuit of an oscillator or amplifier to (b) the power of the desired frequency delivered by the electron stream to the circuit. Coherent-pulse operation: Method of pulse operation in which the phase of the radio-frequency wave is maintained through successive pulses. Conduction-current modulation: Periodic variation in the conduction current passing any one point, or the process of producing such a variation. **Drift space:** In an electron tube, a region substantially free of externally applied alternating fields in which a relative repositioning of the electrons is determined by their velocity distributions and the space-charge forces. Duty: The product of the pulse duration and the pulse-repetition rate. **Electronic efficiency:** The ratio of (a) the power of the desired frequency delivered by the electron stream to the circuit in an oscillator or amplifier to (b) the direct power supplied to the stream. **End shields** limit the interaction space in the direction of the magnetic field. **End spaces:** In a multicavity magnetron, the two cavities at either end of the anode block terminating all of the anode-block cavity resonators. External Q: The reciprocal of the difference between the reciprocals of the loaded and unloaded Q's. For a magnetron it is equal to $Q_{external} = (total stored energy) / (output energy)$ Frequency pulling: Of an oscillator, is the change in the generated frequency caused by a change of the load impedance. **Frequency pushing:** Of an oscillator, is the change in frequency due to change in anode current (or in anode voltage). **Input gap:** Gap in which the initial velocity modulation of the electron stream is produced. This gap is also known as the buncher gap. **Interaction gap:** Region between electrodes in which the electron stream interacts with a radio-frequency field. Interaction space: Region between anode and cathode. **Loaded Q:** Of a specific mode of resonance of a system, is the Q when there is external coupling to that mode. Note: When the system is connected to the load by means of a transmission line, the loaded Q is customarily determined when the line is terminated in its characteristic impedance. For a magnetron it is equal to $Q_{loaded} = (total stored energy)/(output + cavity-dissipation energies)$ Magnet gap: Space between the pole faces of a magnet. **Mode:** One of the components of a general configuration of a vibrating system. A mode is characterized by a particular geometrical pattern and a resonant frequency (or propagation constant). Mode number (klystron): Number of whole cycles that a mean-speed electron remains in the drift space of a reflex klystron. Mode number n (magnetron): The number of radians of phase shift in going once around the anode, divided by 2π . Thus, n can have integral values 1, $2, 3 \ldots N/2$, where N is the number of anode segments. **Output** gap: Gap in which variations in the conduction current of the electron stream are subjected to opposing electric fields in such a manner as to extract usable radio-frequency power from the electron beam. This gap is also known as the catcher gap. π mode: Of a multicavity magnetron, is the mode of resonance for which the phase difference between any two adjacent anode segments is π radians. For an N-cavity magnetron, the π mode has the mode number N/2. ## Microwave tubes continued **Pulling figure:** Of an oscillator, is the difference in megacycles/second between the maximum and minimum frequencies of oscillation obtained when the phase angle of the load-impedance reflection coefficient varies through 360 degrees, while the absolute value of this coefficient is constant and is normally equal to 0.20. **Pulse:** Momentary flow of energy of such short time duration that it may be considered as an isolated phenomenon. **Pulse operation:** Method of operation in which the energy is delivered in pulses. **Pushing figure:** Of an oscillator, is the rate of frequency pushing in megacycles/second/ampere (or megacycles/second/volt). Q: Of a specific mode of resonance of a system, is 2π times the ratio of the stored electromagnetic energy to the energy dissipated per cycle when the system is excited in this mode. **RF pulse duration:** Time interval between the points at which the amplitude of the envelope of the radio-frequency pulse is 70.7 percent of the maximum amplitude of the envelope. **Reflector:** Electrode whose primary function is to reverse the
direction of an electron stream. It is also called a repeller. Reflex bunching: Type of bunching that occurs when the velocity-modulated electron stream is made to reverse its direction by means of an opposing direct-current field. **Space-charge debunching:** Any process in which the mutual interactions between electrons in the stream disperses the bunched electrons. **Transit angle:** The product of angular frequency and time taken for an electron to traverse the region under consideration. This time is known as the transit time. **Unloaded Q:** Of a specific mode of resonance of a system, is the Q of the mode when there is no external coupling to it. For a magnetron it is equal to $Q_{unloaded} = (total stored energy)/(cavity-dissipation energy)$ **Velocity modulation:** Process whereby a periodic time variation in velocity is impressed on an electron stream; also, the condition existing in the stream subsequent to such a process. Fig. 15—Basic anode structures of typical multicavity microwave magnetrons. Fig. 15-Continued. # Magnetrons* A magnetron is a high-vacuum tube containing a cathode and an anode, the latter usually divided into two or more segments, in which tube a constant magnetic field modifies the space-charge distribution and the current-voltage relations. In modern usage, the term "magnetron" refers to the magnetron oscillator in which the interaction of the electronic space charge with the resonant system converts direct-current power into alternating-current power, usually of microwave frequencies. Many forms of magnetrons have been made in the past and several kinds of operation have been employed. The type of tube that is now almost universally employed is the multicavity magnetron generating traveling-wave oscillations. It possesses the advantages of good efficiency at high frequencies, capability of high outputs either in pulsed or continuous-wave operation, moderate magnetic-field requirements, and good stability of operation. A section through the basic anode structure of a typical magnetron is shown in Fig. 15A. ^{*} G. B. Collins, "Microwave Magnetrons," vol. 6, Radiation Laboratory Series, 1st ed., McGraw-Hill Book Company, New York, New York; 1948. J. B. Fisk, H. D. Hagstrum, ond P. L. Hartman, "The Magnetron as a Generator of Centimeter Waves," Bell System Technical Journal, v. 25, pp. 167–348; April, 1946. In magnetrons, the operating frequency is determined by the resonant frequency of the separate cavities arranged around the central cylindrical cathode and parallel to it. A high direct-current potential is placed between the cathode and the cavities and radio-frequency output is brought out through a suitable transmission line or waveguide usually coupled to one of the resonator cavities. Under the action of the radio-frequency voltages across these resonators and the axial magnetic field, the electrons from the cathode form a bunched space-charge cloud that rotates around the tube axis, exciting the cavities and maintaining their radio-frequency voltages. Most efficient operation occurs in the π mode; that is, in such a fashion that the phase difference between the voltages across each adjacent resonator is 180 degrees. Since other modes of operation are possible, it is often desirable to provide means for suppressing them. A common method is to strap alternating anode segments together conductively so that large circulating currents flow in the unwanted modes of operation, thus damping them. This is illustrated in Figs. 15A and B. Fig. 15C shows another example of a resonant multicavity system that is known as a rising-sun type. It should be noted that the anode segments are not strapped and mode suppression is accomplished by maintaining the proper size ratio between the large and small cavities. One definite advantage of this type of resonant system is its application for very-high microwave frequency operation where the physical size of the cavity is small and its fabrication becomes increasingly difficult. # Magnetron performance data The performance data for a magnetron is usually given in terms of two diagrams, the performance chart and the Rieke diagram. Performance chart: Is a plot of anode current along the abscissa and anode voltage along the ordinate of rectangular-coordinate paper. For a fixed typical tube load, pulse duration, pulse-repetition rate, and setting of the tuner of tunable tubes, lines of constant magnetic field, power output, efficiency, and frequency, may be plotted over the complete operating range of the tube. Regions of unsatisfactory operation are indicated by cross hatching. For tunable tubes, it is customary to show performance Fig. 16—Performance chart for pulsed magnetron. typical operating point charts for more than one setting of the tuner. In the case of magnetrons with attached magnets, curves showing the variation of anode voltage, efficiency, frequency, and power output with change in anode current are given. A typical chart for a magnetron having eight resonators is given in Fig. 16. Rieke diagram: Shows the variation of power output, anode voltage, efficiency, and frequency with changes in the voltage standing-wave ratio and phase angle of the load for fixed typical operating conditions such as magnetic field, anode current, pulse duration, pulse-repetition rate, and the setting of the tuner for tunable tubes. The Rieke diagram is plotted on polar coordinates, the radial coordinate being the reflection coefficient measured in the line joining the tube to the load and the angular coordinate being the angular distance of the voltage standing-wave minimum from a suitable reference plane on the output terminal. On the Rieke diagram, lines of constant frequency, anode voltage, efficiency, and output may be drawn (Fig. 17). constant frequency Fig. 17—Rieke diagram. # Magnetron design data The design of a new magnetron is usually begun by scaling from an existing magnetron having similar characteristics. Normalized operating parameters have been defined in such a way that a family of magnetrons scaled from the same parent have the same electronic efficiency for like values of I/\mathfrak{J} , V/\mathfrak{D} , and B/\mathfrak{B} , where the normalized parameters g, v, and g for the π mode are $$g = \frac{2\pi\alpha_1}{(1-\sigma^2)^2 (1/\sigma+1)} \frac{m}{e} \left(\frac{4\pi c}{N\lambda}\right)^3 r_a^2 \epsilon_0 h$$ $$= \frac{8440\alpha_1}{(1-\sigma^2) (1/\sigma+1)} \left(\frac{4\pi r_a}{N\lambda}\right)^3 \frac{h}{r_a} \text{ amperes}$$ $$\mathcal{U} = \frac{1}{2} \frac{m}{e} \left(\frac{4\pi c}{N\lambda}\right)^2 r_a^2 = 253,000 \left(\frac{4\pi r_a}{N\lambda}\right)^2 \text{ volts}$$ where $a_1 = a$ slowly varying function of r_a/r_a approximately equal to one in the range of interest r_a = radius of anode in meters $r_c = radius$ of cathode in meters h = anode height in meters N = number of resonators n = mode number λ = wavelength in meters m = mass of an electron in kilograms e = charge on an electron in coulombs c = velocity of light in free space in meters/second ϵ_0 = permittivity of free space and *I*, *V*, and *B* are the operating conditions. Scaling may be done in any direction or in several directions at the same time. For reasonable performance it has been found empirically that $$\frac{V}{v} \geqslant 6$$, $\frac{B}{B} \geqslant 4$, and $\frac{1}{3} < \frac{I}{4} < 3$ The minimum voltage required for oscillation has been named the "Hartree" voltage and is given by $$V_H = v \left(2 \frac{B}{c} - 1 \right)$$ Slater's rule gives the relation between cathode and anode radius as $$\sigma = \frac{r_c}{r_a} \approx \frac{N-4}{N+4}$$ Magnetrons for pulsed operation have been built to deliver peak powers varying from 3 megawatts at 3000 megacycles to 100 kilowatts at 30,000 megacycles. Continuous-wave magnetrons having outputs ranging from one kilowatt at 3000 megacycles to a few watts at 30,000 megacycles have been produced. Operation efficiencies up to 60 percent at 3000 megacycles are obtained, falling to 30 percent at 30,000 megacycles. ## Klystrons* A klystron is an electron tube in which the following processes may be distinguished. - **a.** Periodic variations of the longitudinal velocities of the electrons forming the beam in a region confining a radio-frequency field. - **b.** Conversion of the velocity variation into conduction-current modulation by motion in a region free from radio-frequency fields. - **c.** Extraction of the radio-frequency energy from the beam in another confined radio-frequency field. The transit angles in the confined fields are made short ($\delta = \pi/2$) so that there is no appreciable conduction-current variation while traversing them. Several variations of the basic klystron exist. Of these, the simplest is the two-cavity amplifier or oscillator. The most important is the reflex klystron that is used as a low-power oscillator. The multicavity high-power amplifier is now also becoming important. # Two-cavity klystron amplifiers An electron beam is formed in an electron gun and passed through the gaps associated with the two cavities (Fig. 18). After emerging from the second gap, the electrons pass to a collector designed to dissipate the remaining beam power without the production of secondary electrons. In the first gap, the electron beam is alternately accelerated and decelerated in succeeding half-periods of the radio-frequency cycle, the magnitude of the change in speed depending upon the magnitude of the alternating voltage impressed upon the cavity. The electrons then move in a drift space where there are no radio-frequency fields. Here, the electrons that were accelerated in the input gap catch up with those that were decelerated in the preceding half-cycle and a local increase of current density occurs in the beam. Analysis shows that the maximum of the current-density wave occurs at the position, in time and space, of those electrons that
passed the center of the input gap as the field changed from negative to positive. There is therefore a phase difference of $\pi/2$ between the current wave and the voltage wave that produced it. Thus at the end of the drift space, ^{*} D. R. Hamilton, J. K. Knipp, and J. B. H. Kuper, "Klystrons and Microwave Triodes," McGraw-Hill Book Company, New York, New York; 1948. A. H. W. Beck, "Velocity-Modulated Themionic Valves," Cambridge University Press, London, England; 1948. A. H. W. Beck, "Thermionic Valves, Their Theory and Design," Cambridge University Press, London, England; 1953. the initially uniform electron beam has been altered into a beam showing periodic density variations. This beam now traverses the output gap and the variations in density induce an amplified voltage wave in the output circuit, phased so that the negative maximum corresponds with the phase of the bunch center. The increased radio-frequency energy has been gained by conversion from the direct-current beam energy. Fig. 18-Diagram of a 2-cavity klystron. Fig. 19-Diagram of a reflex klystron. The two-cavity amplifier can be made to oscillate by providing a feedback loop from the output to the input cavity, but a much simpler structure results if the electron beam direction is reversed by a negative electrode, termed the reflector. # Reflex klystrons* A representative reflex klystron is shown schematically in Fig. 19. The velocity-modulation process takes place as before, but analysis shows that in the retarding field used to reverse the direction of electron motion, the phase of the current wave is exactly opposite to that in the two-cavity klystron. When the bunched beam returns to the cavity gap, a positive field extracts maximum energy from the beam, since the direction of electron motion has now been reversed. Consideration of the phase conditions shows that for a fixed cavity potential, the reflex klystron will oscillate only near certain discrete values of reflector voltage for which the transit time measured from the gap center to the reflection point and back is given by $$\omega\tau=2\pi(N+3/4)$$ where N is an integer called the mode number. By varying the reflector voltage around the value corresponding with the mode center, it is possible to vary the oscillation frequency by a small percentage and this fact is made use of in providing automatic frequency control or in frequency-modulation transmission. ## Reflex klystron performance data The performance data for a reflex klystron are usually given in the form of a reflector-characteristic chart. This chart displays power output and frequency deviation as a function of reflector voltage. Several modes are often displayed on the same chart. A typical chart is shown in Fig. 20. There are two rather distinct classes of reflex klystron in current large-scale manufacture (Fig. 21). - **a.** Tubes for local oscillators in radar systems. These have power outputs designed to operate crystal mixers with the necessary degree of isolation, i.e., 10-100 milliwatts. The electronic tuning range required is about 50 megacycles independent of center frequency, but the linearity of the Δf versus ΔV_r characteristic is relatively unimportant. - **b.** Tubes as frequency modulators in microwave links. These usually require considerably greater power, up to about 10 watts, and the linearity of Δf Courtesy of Sperry Gyroscope Co. * J. R. Pierce and W. G. Shepherd, "Reflex Oscillators" Bell System Technical Journal, vol. 26, pp. 460–681; July, 1947. Fig. 20—Klystron reflector-characteristic chart. versus ΔVr characteristic over a limited (e.g., 10-megacycle) excursion is of primary importance as this parameter determines the harmonic margins in the system. Second-harmonic margins of -96 decibels for deviations of 125 kilocycles have been observed; the third-harmonic margins are about -120 decibels. | Fig. 21—Ty | pical reflex | klystrons. | |------------|--------------|------------| |------------|--------------|------------| | power output
in milliwatts | useful mode width
Δf _{3db}
in megacycles | operating
voltage | |-------------------------------|---|--| | local oscillators | | | | 150 | 1 40 | 300 | | 40 | 40 | 350 | | 35 | 120 | 750 | | >15 | 50 | 2000 | | 10-20 | 60-140 | 600 | | frequency-modulati | on transmitters | | | 1000 | 40 1 | 1100 | | 1000 | 37 | 750 | | 600 | 60 | 500 | | | in milliwatts local oscillators 150 40 35 > 15 10-20 frequency-modulati 1000 1000 | Docal oscillators Afgalb in megacycles | ## **Multicavity klystrons** More recently, multicavity klystrons have been perfected for use in two rather different fields of application: applications requiring extremely high pulse powers* and continuous-wave systems in which moderate powers† (tens of kilowatts) are required. An example of the first application is a power source for nuclear-particle acceleration, while ultra-high-frequency television is an example of the latter. A multicavity klystron amplifier is shown schematically in Fig. 22. The example shown has three cavities all coupled to the same beam. The radio-frequency input modulates the beam as before. The bunched beam induces an [†] D. H. Priest, C. E. Murdock, and J. J. Woerner, "High-Power Klystrons at U.H.F." Proceedings of the IRE, vol. 41, pp. 20–25; January, 1953. Fig. 22-Three-cavity klystron. ^{*} M. Chodorow, E. L. Ginzton, I. R. Neilson and S. Sonkin, "Design and Performance of a High-Power Pulsed Klystron." Proceedings of the IRE, vol. 41, pp. 1584–1602; November, 1953. continued amplified voltage across the second cavity, which is tuned to the operating frequency. This amplified voltage remodulates the beam with a certain phase-shift and the now more-strongly bunched beam excites a highly amplified wave in the output circuit. It is found that the optimum power output is obtained when the second cavity is slightly detuned. Moreover, when increased bandwidth is required, the second cavity may be loaded with a resultant lowering in overall gain. Modern multicavity klystrons use magnetically focused, high-perveance beams and under these conditions, high gains, large power outputs, and reasonable values of efficiency are readily obtained. Continuous-wave multicavity klystrons are available with outputs of around 10 kilowatts at frequencies up to 2400 megacycles. The efficiencies are of the order of 30 percent and the gains vary between 20 and 40 decibels, according to the number of cavities, bandwidth, etc. Pulsed tubes have been designed for outputs of 30 megawatts and with efficiencies of over 40 percent at frequencies near 3000 megacycles. ### Traveling-wave tubes* The traveling-wave tube is a relatively new type of microwave tube in which a longitudinal electron beam interacts continuously with the field of a wave traveling along a wave-propagating structure. In its most common form it is an amplifier, although there are related types of tubes that are basically oscillators. * J. R. Pierce, "Traveling-Wave Tubes," D. Van Nostrand Co., Inc., New York, New York; 1950. R. Kompfner, "Reports on Progress in Physics," vol. 15, pp. 275–327, The Physical Society, London, England; 1952. R. G. E. Hutter, "Traveling-Wave Tubes," Advances in Electronics and Electron Physics, vol. 6, Academic Press, Inc., New York, New York; 1954. A bibliography is given in a survey paper by J. R. Pierce, "Some Recent Advances in Microwave Tubes," Proceedings of the IRE, vol. 42, pp. 1735–1747; December, 1954. Fig. 23—Basic helical traveling-wave tube. The magnetic beam-focusing system between input and output cavities is not shown here. The principle of operation may be understood by reference to the schematic diagram representing a typical tube, Fig. 23. An electron stream is produced by an electron gun, travels along the axis of the tube, and is finally collected by a suitable electrode. Spaced closely around the beam is a circuit, in this case a helix, capable of propagating a slow wave. The circuit is proportioned so that the phase velocity of the wave is small with respect to the velocity of light. In typical low-power tubes, a value of the order of one-tenth of the velocity of light is used; for higher-power tubes the phase velocity may be two or three times higher. Suitable means are provided to couple an external radio-frequency circuit to the slow-wave structure at the input and output. The velocity of the electron stream is adjusted to be approximately the same as the phase velocity of the wave on the circuit. When a wave is launched on the circuit, the longitudinal component of its field interacts with the electrons traveling along in approximate synchronism with it. Some electrons will be accelerated and some decelerated, resulting in a progressive rearrangement in phase of the electrons with respect to the wave. The electron stream, thus modulated, in turn induces additional waves on the helix. This process of mutual interaction continues along the length of the tube with the net result that direct-current energy is given up by the electron stream to the circuit as radio-frequency energy, and the wave is thus amplified. By virtue of the continuous interaction between a wave traveling on a broadband circuit and an electron stream, traveling-wave tubes do not suffer the gain—bandwidth limitation of ordinary types of electron tubes. By proper circuit design, such tubes are made to have bandwidths of an octave in frequency, and even more in special cases. The helix* is an extremely useful form of slow-wave circuit because the impedance that it presents to the wave is relatively high and because when properly proportioned, its phase velocity is almost independent of frequency over a wide range. An essential feature of this type of tube is the approximate synchronism between the electron stream and the wave. For
this reason, the traveling-wave tube will operate correctly only over a limited range in voltage. Practical considerations require that the operating voltages be kept as low as is consistent with obtaining the necessary beam input power; the voltage, in turn, dictates the phase velocity of the circuit. The electron velocity v in ^{*} S. Sensiper, "Electromagnetic Wave Propagation on Helical Structures," Proceedings of the IRE, vol. 43, pp. 149–161; February, 1955. centimeters/second is determined by the accelerating voltage \boldsymbol{V} in accordance with the relationship $$v = 5.93 \times 10^7 V^{\frac{1}{2}}$$ Fig. 24 shows a typical relationship between gain and beam voltage. The gain of a traveling-wave tube is given approximately by $$G = A + BCN$$ in decibels where A = the initial loss due to the establishment of the modes on the helix and lies in the range from -6 to -9 decibels. B = a gain coefficient that accounts for the effect of circuit attenuation and space charge. C = a gain parameter that depends upon the impedances of the circuit and the electron stream $$= \left\lceil \frac{E^2}{(\omega/v)^2 P} \times \frac{I_0}{8V_0} \right\rceil^{\frac{1}{6}}$$ $I_0 = \text{beam current}$ V_0 = beam voltage N = number of active wavelengths in tube $$= (I/\lambda_0) (c/v)$$ l= axial length of the helix λ_0 = free-space wavelength v = phase velocity of wave along tube c = velocity of light The term $E^2/(\omega/v)^2P$ is a normalized wave impedance that may be defined in a number of ways. In practice, the attenuation of the circuit will vary along the tube and the gain per unit length will consequently not be constant. The total gain will be a summation of the gains of various sections of the tube. Commonly, C is of the order of 0.02 to 0.2 in helix traveling-wave tubes. The gain of low- and medium-power tubes varies from 20 to 50 decibels with 30 decibels being a common value. The gain in a tube designed to produce appreciable power will vary somewhat with signal level when the beam voltage is adjusted for optimum operation. Fig. 25 shows a typical characteristic. Fig. 25—Gain of traveling-wave tube as a function of input level and beam voltage. $E_{b1} < E_{b2} < E_{b3}$. To restrain the physical size of the electron stream as it travels along the tube, it is necessary to provide a longitudinal magnetic field of a strength appropriate to overcome the space-charge forces that would otherwise cause the beam to spread. In most cases, an electromagnet is used to provide the field, but permanent-magnet structures have been used experimentally. Other types of slow-wave circuit in addition to the helix are possible, including a number of periodic structures. In general, such designs are capable of operation at higher power levels but at the expense of bandwidth. # Traveling-wave-tube performance data Traveling-wave tubes are designed to emphasize particular inherent characteristics for specific applications. Three general classes are distinguished. Low-noise amplifiers: Tubes of this class are intended for the first stage of ### continued a receiver and are proportioned to have the best possible noise figure. This requires that the random variations in the electron stream be minimized and that steps be taken also to minimize partition noise. Tubes have been made with noise figures of around 7 decibels in the frequency range from 3000 to 11,000 megacycles. Gains of the order of 20 to 25 decibels are customary. The maximum output power will be of the order of a few milliwatts. Intermediate power amplifiers: These tubes are intended to provide power gain under conditions where neither noise nor large values of power output are of importance. Gains of 30 or more decibels are customary and the maximum output power is usually in the range from 100 milliwatts to 1 watt. Power amplifiers: For this class of tubes, the application is usually the output stage of a transmitter; the power output, either continuous-wave or pulsed, is of primary importance. Much active development continues in this area and the values of power that can be obtained are expected to change. At this writing, continuous-wave powers range from a few kilowatts in the ultra-high-frequency region to approximately 10 watts at 9000 megacycles. Tubes especially designed for pulsed operation provide considerably higher powers. Efficiencies in excess of 30 percent have been obtained, with 20 percent being a usual value. Power gains of 30 or more decibels are usual. ### Backward-wave oscillators* Although the traveling-wave tube can be made to oscillate by the provision of a suitable feedback circuit from output to input, a new type of tube that is designed for this purpose gives improved performance for many applications. The backward-wave oscillator resembles closely the traveling-wave tube except for the fundamental difference that the electron stream interacts with a wave whose phase and group velocities are in opposite directions. The backward-wave oscillator has a number of useful properties: it may be tuned electronically over a wide range of frequencies, an octave or more; its frequency is relatively unaffected by the load; and it is stable. In the first two respects, it is superior to the reflex klystron. ^{*} R. Kompfner and N. T. Williams, "Backward-Wave Tubes," Proceedings of the IRE, vol. 41, pp. 1602–1611; November, 1953. H. R. Johnson, "Backward-Wave Oscillators," Proceedings of the IRE, vol. 43, pp. 684–697; June, 1955. R. R. Warnecke, P. Guénard, O. Doehler, and B. Epsztein, "The 'M'-type Carcinotron Tube," Proceedings of the IRE, vol. 43, pp. 413–424; April, 1955. Backward-wave oscillator tubes are of two general types: low-power types suitable for local-oscillator or signal-generator use, having a wide tuning range and a power output of from one to tens of milliwatts; and high-power types, generally of the transverse-magnetic-field type, having power outputs of a hundred watts or more. # **Photometry** ### Photometric units Light flux is the quantity of light transmitted through a given area/unit time. It is expressed in lumens. **Light intensity** $I=\phi/\omega$, or better, $I=d\phi/d\omega=$ light flux emitted into unit solid angle. It is expressed in candles. Experimentally, the candle is defined (since 1948) by specifying the brightness of a black body at the temperature of freezing platinum (2042 degrees kelvin) as 60 stilb. In German literature, the Hefner-candle (HK) is used; 1 (HK) = 0.92 candle. **Illumination** $E = \text{light flux incident/unit projected area, expressed in lumens/foot², or lux = lumens/meter², or phots = lumens/centimeter². These are commonly called foot-candles, meter-candles, etc., but the word candle must here be regarded as a misnomer.$ **Brightness** B= light intensity/unit projected area, equivalent to light flux/unit projected area/steradian. Expressed in (a) candles/foot² or stilbs = candles/centimeter². Also expressed in (b) 1 lambert = $(1/\pi)$ stilb, or 1 foot-lambert = $(1/\pi)$ candle/foot², or 1 apostilb = 10^{-4} lambert, etc. Various derived units as 1 candle/meter², or 1 milli- or microlambert (= 10^{-3} or 10^{-6} lambert) occur in the literature. The units under (b) are so chosen that they assume the value 1 for a diffuse emitting surface radiating 1 lumen/unit area. ### Photometric relations **Illumination:** A point light source of intensity 1 candle illuminating perpendicularly a screen at a distance of r feet causes an illumination of I/r^2 foot-candles on it. **Lambert's law:** (Not always valid.) A diffusely radiating plane surface radiates into a direction forming an angle θ with its normal, a flux proportional to $\cos \theta$. A surface obeying Lambert's law has the same brightness when viewed from any direction. # Photometry continued Brightness of illuminated surfaces: If a diffusely reflecting area of A feet² is illuminated from any direction with E foot-candles, it reradiates REA lumens into a hemisphere: R is the reflection factor; R=1 for an ideal white area. Its brightness then is RE/π candles/foot² or RE foot-lamberts. **Optical imaging:** In an optical system of light-gathering diameter D and focal length f, the ratio $f/D = n_f$ is called the f-number. If a surface of brightness B candles/foot² is imaged by the system with a linear magnification m, the image is illuminated by $$E = \frac{\pi}{4} \frac{B}{nr^2 (m+1)^2}$$ foot-candles, disregarding lens losses. For an object at infinity, the same formula applies with m=0. Thus, while the amount of flux intercepted by the system depends on D, the illumination and brightness depend only on n_f . The brightness of an image can never exceed that of the object; it becomes equal to it if the system has no losses and is sharply focussed. This applies to the case where object and image lie in the same optical medium; otherwise, if n_0 and n_1 are the refractive indices of the object and image space, $$n_i B_i \leq n_o B_o$$ ### General data Spectral response of the eye: The relative visibility of different wavelengths as experienced by the eye in bright light (cone vision) is given in Fig. 26. Mechanical equivalent of light: A light source having a spectral distribution as given by Fig. 26 and emitting 1 lumen, radiates 0.00147 watts. ### Illumination at Earth's surface: Sun at zenith = 10,000 foot-candles Full moon = 0.03 foot-candles Fig. 26—Spectral response of human eye. # Photometry continued # Approximate brightness values: | Highlights, 35-millimeter movie | 0.004 | lamberts | |---|---------|-----------------| | Page brightness for reading fine print | 0.011 | lamberts | | November football field | 0.054 | lamberts | | Surface of moon seen from Earth | 1.6 | lamberts | | Summer baseball field | 3 | lamberts | | Surface of 40-watt vacuum bulb, frosted | 8 | <i>lamberts</i> | | Crater of carbon arc | 45,000 | lamberts | | Sun seen from Earth |
520,000 | lamberts | Colorimetry: This subject is treated with special emphasis on color-television requirements in the literature. Two books and three papers are of particular interest.* # Cathode-ray tubes† A cathode-ray tube is a vacuum tube in which an electron beam, deflected by applied electric and/or magnetic fields, indicates by a trace on a fluorescent screen the instantaneous value of the actuating voltages Fig. 27—Electrode arrangement of typical electrostatic focus and deflection cathoderay tube. A-heater, B-cathode, C-control electrode, D-screen grid or pre-accelerator, E-focusing electrode, F-accelerating electrode, G-deflection-plate pair, H-deflectionplate pair, J-conductive coating connected to accelerating electrode, K-intensifierelectrode terminal, L-intensifier electrode (conductive coating on glass), M-fluorescent screen. ^{*} D. G. Fink, "Television Engineering," 2nd edition, McGraw-Hill Book Company, Inc., New York, 1952. M. S. Kiver, "Color Television Fundamentals," McGraw-Hill Book Company, Inc., New York, New York; 1955. F. J. Bingley, "Colorimetry in Television," Praceedings of the IRE, vol. 41, pp. 838–851; July, 1953: vol. 42, pp. 48–51 and 51–57; January, 1954. [†] K. R. Spangenberg, "Vacuum Tubes," 1st ed., McGraw-Hill Book Company, Inc., New York, New York: 1948. ### Cathode-ray tubes continued and/or currents. A typical high-intensity cathode-ray tube with postdeflection acceleration is shown in Fig. 27. ### Formulas for deflection Electric-field deflection: Is proportional to the deflection voltage, inversely proportional to the accelerating voltage, and deflection is in the direction of the applied field (Fig. 28). For structures using straight and parallel deflection plates, it is given by $$D = \frac{E_d LI}{2E_o A}$$ ### where D = deflection in centimeters $E_a =$ accelerating voltage E_d = deflection voltage A = separation of plates Fig. 28-Electrostatic deflection. Magnetic-field deflection: Is proportional to the flux or the current in the coil, inversely proportional to the square root of the accelerating voltage, and de- flection is at right angles to the direction of the applied field (Fig. 29). Deflection is given by $$D = \frac{0.3LIH}{\sqrt{E_a}}$$ where H = flux density in gausses Fig. 29-Magnetic deflection. Deflection sensitivity: Is linear up to frequency where the phase of the deflecting voltage begins to reverse before an electron has reached the end of the deflecting field. Beyond this frequency, sensitivity drops off, reaching I = length of deflecting field in centimeters # Cathode-ray tubes continued zero and then passing through a series of maxima and minima as $n=1,2,3,\ldots$ Each succeeding maximum is of smaller magnitude. $$D_{zero} = n\lambda v/c$$ $$D_{\text{max}} = (2n - 1) \frac{\lambda}{2} \frac{v}{c}$$ where D = deflection in centimeters v = electron velocity in centimeters/second $c = \text{speed of light } (3 \times 10^{10} \text{ centimeters/second})$ λ = free-space wavelength in centimeters Magnetic focusing: There is more than one value of current that will focus. Best focus is at minimum value. For an average coil $$IN = 220 (V_0 d/f)^{1/2}$$ IN = ampere turns $V_0 =$ accelerating voltage in kilovolts d = mean diameter of coil f = focal length d and f are in the same units. A well-designed, shielded coil will require fewer ampere turns. Example of good shield design (Fig. 30): Fig. 30-Magnetic focusing. $$X = d_1/20$$ # Cathode-ray tubes continued # Cathode-ray tube phosphors* | | co | or | spectral range
between 10% | spectral peak | persistance
(opproximate | | |----------------------|-----------------------------|---------------------------------------|-------------------------------|---------------------------------|--|--| | designation | fluorescent | phosphorescent | points in
angstrom units | in angstron
units | time to decay
to 10% of peak) | | | PI | Green | Green | 4900-5800 5250 2 | | 20 milliseconds | | | P2 | Blue-green | Green | 4500-6400 | 5430 | Long | | | P3 | Yellow | Yellow | 5040-7000 | 6020 | 13 milliseconds | | | P4 | White | White | 3900-6630 | 2 components:
5650, 4400 | | | | P4, silicate | White | Blue | 3260-7040 | 2 components:
5400, 4100 | Not over 7% of
peak in 33 mil-
liseconds | | | P4, silicate—sulfide | White | Yellow | 3300-6990 | 2 components:
5400, 4350 | ilseconds | | | P5 | Blue | Blue | 3480-5750 | 4300 | 18 microseconds | | | P6 | White | White | 4160-6950 | 2 components:
5630, 4600 | 800 microseconds | | | P7 | Blue-white | Yellow | 3900-6500 | 2 components:
5580, 4400 | One long, one short | | | PIO | | depends on ab-
cteristics, type of | 4000-5500 | _ | Very long | | | PII | Blue | Blue | 4000-5500 | 4600 | 2 milliseconds | | | P12 | Orange | Orange | 5450-6800 | 5900 | Medium long | | | P14 | Purple | Orange | 3900-7100 | 2 components:
6010, 4400 | One short, one medium long | | | P15 | Blue-green | Blue-green | 3700-6050 | 2 components:
5040, 3910 | 3 microseconds | | | PIO | Violet and near ultraviolet | Violet and near
ultraviolet | 3350-4370 | 3700 | 5 microseconds | | | P17 | Greenish-yellow | Yellow | 3800-6350 | 2 components:
4500, 5540 | One long, one extremely short | | | P18 | White | Blue | 3260-7040 | 2 components:
5400, 4100 | 13 milliseconds | | | PIQ | Orange | Orange | 5450-6650 | 5950 | Very long | | | P20 | Yellow-green | Yellow-green | 4600-6490 | 5550 | 2 milliseconds | | | P21 | Yellow | Yellow | 5540-6500 | 6060 | Very long | | | P22 | Tricolor | _ | 3900-6800 | 3 components:
6430,5260,4500 | One short, two medium | | | P23 | White | White | 4000-7200 | 2 components:
5750, 4600 | Short | | | P24 | Blue-green | Blue-green | 4260-6400 | 5070 | 1.5 microseconds | | | P25 | Orange | Orange | 5300-7100 | 6100 | Very long | | ^{*} Source: Joint Electron Tube Engineering Council, Committee 6 on Cathode-Ray Tubes. # Photosensitive tubes* ### **Photoemission** If monochromatic light impinges on a cathode, electrons are emitted. Such electrons are known as photoelectrons. Their number is proportional to the incoming light flux, while their energy is independent of it. The energy expressed in volts V depends on the wavelength λ according to Einstein's law: $$e(V + \phi) = hc/\lambda$$ where e = electronic charge $= 1.6 \times 10^{-19}$ coulomb ϕ = work function in volts h = Planck's constant = 6.6×10^{-34} joule-seconds c = velocity of light $= 3 \times 10^{10}$ centimeters/second If a threshold wavelength λ_0 is defined by $$e\phi = hc/\lambda_0$$ V is seen to be zero (except for thermal velocities) at the wavelength λ_0 ; for $\lambda > \lambda_0$, there is no electron emission. The photosurfaces most in use are S1 (silver-cesium): $\lambda_0 = 12,000$ angstrom units yield = 20 microamperes/lumen S4 (antimony-cesium): $\lambda_0 = 6,000$ angstrom units yield = 50 microamperes/lumen where the yield data give the representative response to white light (2870-degree-Kelvin tungsten filament). Another way of specifying the yield, applicable only for monochromatic light, is the quantum equivalent Q_i i.e., the number of electrons emitted/incoming photon (hc/λ). For the S1 surface, Q_i is approximately 1.5 percent at 4000 angstrom units and ^{*} Only photoemissive electron tubes are considered here. Photoconductive and photovoltaic devices are usually not built in the form of tubes. continued 0.8 percent at 8000 angstrom units. S4 layers have a peak response near 4500 angstrom units, with Q=16 percent. The quantum equivalent decreases, in all surfaces, to very low values at the threshold wavelength. Pure metals are photoemissive in the ultraviolet and all substances will emit electrons under X-ray irradiation. # Vacuum phototubes The cathode is a solid metal plate or a translucent layer on the glass wall. The anode may be a plate, rod, or wire screen. Except for very-strong light or unfavorable circuit conditions, a few volts suffice to saturate the photocurrent. The battery E, Fig. 31, has to provide, besides this accelerating potential, the voltage drop across resistor $R_{\rm L}$. The familiar graphical load-line method applies in this case. Fig. 31-Phototube circuit. The saturation current is proportional to the incoming light flux. Exceptions may occur at the very-lowest light levels (dark current from thermionic emission at room temperature, important only in \$1 surfaces) and at the highest ones, where space charge may prevent saturation or, in translucent cathodes, the conductivity of the cathode may not suffice to provide the full photocurrent. The most important noise source (other than light fluctuations or background illumination) is the shot effect accompanying the photocurrent. # Gas phototubes In tubes not containing a high vacuum, ionization by collision of electrons with neutral molecules may occur so that more than one electron reaches the anode for each originally emitted photoelectron. This "gas amplification factor" has a value of between 3 and 5; a higher factor causes instabilities. Gas tubes operation is restricted to frequencies below 10,000 cycles/second. # Secondary electron emission from metals If a metal is bombarded with electrons of V volts velocity, it reemits electrons that can be detected if the field near the surface is such as to accelerate these electrons away from the metal. This is the process of secondary emission and the electrons are termed secondary electrons. The returning electrons form two groups: one with velocities equal or almost equal to that of the primaries (reflected electrons) and one with a velocity of 2–10 volts for 20 < V < 1000 volts (true secondaries). The two groups cannot be distinguished at V < 20 volts. The secondary-emission factor K is defined as the ratio (true secondaries)/ (primaries). Factor K has a maximum at $V = V_m$ (400–1000 volts, depending on
the material). This maximum may range from < 1 (for carbon) to < 2 for most pure metals, but in some alloys, K rises to as much as 12. At higher values of V, factor K decreases and goes below 1 at a few thousand volts. At $V < V_m$, there is a decrease again and K reaches the value 1 at about 25–50 volts for good secondary-emitting alloys. Where high secondary emission is desired, one of the following alloys is commonly used: silver-cesium, antimony-cesium, silver-magnesium, beryllium-copper. These show at 100 volts, values of K from 2.5 to 4. # Multiplier phototubes Secondary-emission multiplication is used to provide amplification of weak currents in multiplier phototubes. A typical structure is shown in Fig. 32. Photoelectrons from the photocathode are focussed electrostatically onto the first secondary-emitting dynode, 1. The resulting secondary electrons are then focussed on dynode 2, and so on. With each successive dynode, the current is amplified by the secondary emission factor, K, or a total of K^n times for n stages. The current is finally collected on an output electrode, usually called the collector. Multiplier circuits: The voltage steps from stage to stage are usually made equal. Occasionally, the first or last step (cathode to 1st dynode or last dynode to collector) is made larger; the former has the effect of increasing the first-stage gain which reduces the noise, while the latter is done to relieve space-charge limitations at the output. The electrons hitting stage j (Fig. 33) constitute a current I_j leaving stage j, while $I_{j+1} = KI_j$ flows into stage j. It is seen from the figure that these Fig. 32-Six-stage multiplier phototube. currents are completed through the divider. It is common practice to make the divider current at least 10 times the output signal, or in an *n*-stage multiplier, $$R_d < E/10 (n + 1) i_c$$ The load resistor R_l is determined by bandwidth considerations. It is parallelled by the output capacitance of the multiplier (3–5 micromicrofarads) and the input capacitance of the following stage. Fig. 33-Circuit of multiplier phototube. Multiplier signal and noise: The upper frequency limit of a multiplier (usually about 30 megacycles) is determined by the transit-time spread, i.e., the differences in transit times between the individual electrons. If the photocathode receives L lumens and emits S amperes/lumen, then LS amperes flow into the first stage and the output current at the collector is LSK^n . Even if the light flux is free of fluctuations, the cathode current LS will carry shot-effect noise, with a root-mean-square value of $$I_{cn} = (2 \text{ LS eF})^{\frac{1}{2}}$$ where e = electronic charge F = bandwidth in cycles/second The output noise current is then $$I_n = kK^n I_{cn}$$ where the factor k arises from the fact that secondary emission is itself a random process. Approximately, $$k = [K/(K - 1)]^{\frac{1}{2}}$$ This assumes that no other noise sources are present, such as leakage, positive ions, or a ripple in the applied voltage. In the neighborhood of $V_s = 100 \text{ V/stage}$, factor K is proportional to V_s^{α} , where α lies between 0.5 and 0.7; hence p-percent ripple on the applied voltage E would give $n\alpha p$ -percent ripple in the collector current. ### Image dissector The image dissector is a television camera tube having a continuous photocathode on which is formed a photoelectric emission pattern that is scanned by moving its electron-optical image over an aperture. **Principle of dissector operation:** From the optical image focused on the photocathode (Fig. 34), an electro-optical image is derived that is focused in the plane containing the aperture. Two sets of scanning coils sweep this image over the aperture. At any instant, only the electrons entering the electron multiplier through the aperture are utilized. The output signal is taken from the multiplier collector. Fig. 34-Image dissector. No storage means are used, and therefore, the dissector is not suitable at very-low light levels. But the output signal is proportional to the light, free from shading, and, within reasonable limits, independent of temperature. With a long focus coil (as in Fig. 34), the electron-optical magnification from cathode to aperture is unity. With a short focus coil it is possible to obtain a magnification m with $\frac{1}{3} < m < 3$. If a is the aperture area, a picture element on the cathode has a size a/m^2 ; this determines the resolution. S1 or S4 photocathodes may be used. Dissector focusing and scanning fields: If the aperture is distant from the cathode by d centimeters and has a voltage of V volts above cathode potential, a focusing field of $$H_0 = c V^{\frac{1}{2}}/d$$ oersteds is needed; c = 15 (approximately) for first focus. To bring into the aperture electrons that originate at a point on the cathode r centimeters from center, the instantaneous transverse scanning field has to be $$H_t = H_0 r/d$$ # Dissector signal and noise: Let S = sensitivity of cathode in amperes/lumen E = illumination on cathode in foot-candles e = electronic charge $= 1.6 \times 10^{-19}$ coulomb F = bandwidth in cycles/second k = noise contribution of multiplier (see "Multiplier phototubes", p. 409) = 1.25 (approximately) G = multiplier gain $a = aperture area in feet^2$ m = magnification Then, signal output current $$I_s = SE (a/m^2) G$$ and the noise output current $$I_n = k[2 \text{ SEe (a/m²) } F]^{\frac{1}{2}} G$$ To take account of the dark noise, E should be replaced by $E + E_0$ in the noise formula, where E_0 is about 0.01 footcandles for an S1 photocathode and about 5×10^{-6} footcandles for S4. For a frame of area A_f and a frame time T_f , containing N picture elements, $$a = A_f m^2 / N$$ $$F = N/2T_f$$ # Photosensitive tubes continued # Image orthicon The image orthicon is a television camera tube having a sensitivity and spectral response approaching that of the eye. Commercially acceptable pictures can be obtained with incident illumination levels ≥ 10 foot-candles. As shown in Fig. 35, the tube comprises three sections: an image section, a scanning section, and a multiplier section. Fig. 35-Image orthicon. By Permission of RCA, copyright proprietor. **Principle of orthicon operation:** From the light image focused on the photocathode, an electron image is derived that is accelerated to and magnetically focused in the plane of the target. These primary electrons striking the glass target (thickness of the order of a ten-thousandth of an inch and a lateral electrical resistivity of between 3×10^{11} and 10^{12} ohm-centimeter) cause the emission of secondary electrons that are collected by an adjacent mesh screen held at a small positive potential with respect to target-voltage cutoff. The photocathode side of the target thus has a pattern of positive charges that corresponds to the light pattern from the scene being televised; since the glass target is very thin, the charges set up a similar potential pattern on the opposite or scanned side of the glass. In the scanning section, the target is scanned by a low-velocity electron beam produced by an electron gun. The beam is focused at the target by means of the axial magnetic field of the external focusing coiland the electrostatic field of grid 4. The decelerating field between grids 4 and 5 is shaped such that the electron beam always approaches normal to the plane of the target and is at a low velocity. If the elemental area on the target is positive, then electrons from the scanning beam deposit until the charge is neutralized; if the elemental area is at cathode potential (i.e., corresponding to a black picture areal, no electrons are deposited. In both cases the excess beam electrons are turned back and focused into a 5-stage signal multiplier. The charges existing on either side of the target glass will by conductivity neutralize each other in less than one frame time. Electrons turned back at the target form a return beam that has been amplitude-modulated in accordance with the charge pattern of the target. Alignment of the electron beam is accomplished by the transverse magnetic field of the external alignment coil. Deflection of the beam is produced by the transverse magnetic fields of the external horizontal and vertical deflecting coils. In the multiplier section, the return beam is directed to the first stage of the electrostatically focused, 5-stage multiplier where secondary electrons are emitted in quantities greater than the striking primary electrons. Grid 3 facilitates a more complete collection by dynode 2 of the secondary electrons from dynode 1. The gain of the multiplier is high enough that the limiting noise in the use of the tube is the random noise of the electron beam rather than the input noise of the video amplifier. For highlights in the scene, the grid of the first video-amplifier stage will swing positive. Orthicon operating considerations: The temperature of the entire bulb should be held between 45 and 60 degrees centigrade since low target temperatures are characterized by a rapidly disappearing "sticking picture" of opposite polarity from the original when the picture is moved; high temperatures will cause loss of resolution and damage to the tube. An over-all potential of 1750 volts is necessary to operate the tube (+1250 volts at 1 milliampere, -500 volts at 1 milliampere, and <math>+330 volts at 90 milliamperes for the voltage divider and typical focusing and alignment coils). The video amplifier should be designed to accept a range of alternating-current signal voltages corresponding to signal-output currents of 1 to 30 microamperes (depending on the tube type) in the load resistor. Resolution of 300 lines at 70-percent modulation and 600 lines at 15 percent can be produced when the photocathode highlight illumination from a Radio-Electronics-Television Manufacturers Association Standard Test Chart is
above the knee of the output-current versus photocathode-illumination curve. The maximum band pass of the amplifier can be determined* as follows: ^{*} D. G. Fink, "Television Engineering," 2nd edition, McGraw-Hill Book Company, Inc., New York, New York; 1952. $f_{\text{max}} = \frac{1}{2} \text{ kmn}^2 f (w/h) (k_v/k_h)$ where $f_{\text{max}} = \text{amplifier band pass in cycles/second}$ k = vertical resolution factor, representing the effect of random positioning of the picture elements with respect to the transmitter scanning lines, usually 70.7 percent m = horizontal resolution divided by the vertical resolution n = number of lines in the picture f = number of picture frames/second w/h = aspect ratio = (picture width)/(picture height) k_z = fraction of total field time devoted to scanning picture elements $k_h=$ fraction of line-scanning time during which the scanning lines are active Full-size scanning of the target should always be used during operation. The blanking signal, a series of negative-voltage pulses, should be supplied to the target to prevent the electron beam from striking the target during retrace. In the event of scanning failure, the beam must not reach the target. Fig. 36—Basic light-transfer characteristic for types 5820 and 5826 image orthicons. The curves are for small-area highlights illuminated by tungsten light, white fluorescent light, or daylight. By Permission of RCA, copyright proprietor. ### continued It is necessary to add a shading-correction signal, of sawtooth shape and of horizontal-scan frequency, to the video signal after it has been clamped to obtain a uniformly shaded picture. The illumination on the photocathode is related to the scene illumination by the formula for optical imaging given on p. 401. **Orthicon signal and noise:** Typical signal output current for the types 5820 and 5826 are shown in Fig. 36. The tubes should be operated so that the highlights on the photocathode bring the signal output slightly over the knee of the signal-output curve. The spectral response of the types 5820 and 5826 is shown in Fig. 37. It will be noted that when a Wratten 6 filter is used with the tube, a spectral curve closely approximating that of the human eye is obtained. From the standpoint of noise, the total television system can be represented as shown in Fig. 38 where the following definitions hold: F = bandwidth in cycles/ second $I_s = \text{signal current}$ I_n = total image-orthicon noise current e = electronic charge $= 1.6 \times 10^{-19} \text{ coulombs}$ I = image-orthicon beam current E_{nt} = thermal noise in R_1 E_{ns} = shot noise in the input amplifier tube By Permission of RCA, copyright proprietor. Fig. 37—Spectral sensitivity of image orthicon. $R_1 = input load$ C_1 = total input shunt capacitance R_t = shot-noise equivalent resistance of the input amplifier = $2.5/g_m$ for triode or cascode input $$= \frac{I_b}{I_b + I_c} \left(\frac{2.5}{g_m} + \frac{20I_{c2}}{g_m^2} \right)$$ for pentode input g_m = transconductance of input tube or cascode combination Fig. 38—Equivalent circuit for noise in orthicon and first amplifier stage. I_b = amplifier direct plate current $I_c =$ amplifier direct screen-grid current ΔN = electron-multiplier noise factor referred to multiplier input m = multiplier gain k_m = electron-multiplier noise factor, referred to multiplier output $= m\Delta N$ $\sigma =$ stage gain in the multiplier k = Boltzmann's constant = 1.38×10^{-23} joules/degree Kelvin T = absolute temperature in degrees Kelvin The noise added per stage is $$\Delta n = [\sigma/(\sigma - 1)]^{\frac{1}{2}}$$ For a total multiplier noise figure to be directly usable, it must be referred to the first-dynode current, therefore, for 5 multiplier stages, $$\overline{\Delta N} = \Delta n^2 + \frac{\Delta n^2}{\sigma^2} + \frac{\Delta n^2}{\sigma^4} + \frac{\Delta n^2}{\sigma^5} + \frac{\Delta n^2}{\sigma^8}$$ After combining all noise sources, $$\frac{S}{N} = \frac{I_s}{\left\{ F \left[2eIK_m^2 + 4KT \left(\frac{1}{R_1} + \frac{R_t}{R_1} + \frac{\omega^2 C_1^2 R_t}{3} \right) \right] \right\}^{\frac{1}{2}}}$$ The signal current is an alternating-current signal superimposed on a larger direct beam current. This can be thought of as a modulation of the beam current. Properly adjusted tubes obtain as much as 30-percent modulation. $$I_{\bullet} = mMI$$ where M is the percentage modulation. If S/N is now rewritten, $$\frac{S}{N} = \frac{I_s}{\left[4kTF\left(\frac{2eI_sm\Delta N^2}{4KTM} + \frac{1}{R_1} + \frac{R_t}{R_1^2} + \frac{\omega^2C_1^2R_t}{3}\right)\right]^{\frac{1}{2}}}$$ In typical television operation, the thermal noise of the load resistor and the shot noise of the first amplifier can be neglected. Orthicon focusing and scanning fields: The electron optics of the scanning section of the tube are quite complicated and space does not permit the Fig. 39—Deflection in image orthicon. inclusion of the complete formulas. A simple relationship between the strength of the magnetic focusing field and the magnetic deflection field is given below. It should be noted that the electron beam does not reach first focus at the target but rather considerably before it reaches the target; thus the beam is working at a higher-order focus. This means that the radii of the focus helixes are kept small and all of the electrons in the beam approach the target perpendicular to its surface, thereby avoiding shading in the output video signal. Working at a higher-order focus not only demands more focus current but also more deflection current. Note the deflection path in Fig. 39. Let H = horizontal dimension of scanned area or target L = effective length of horizontal deflection field H_d = horizontal deflection field (peak-to-peak value) $H_{t} = focusing field$ then $H_d = H_f H/L$ For the image orthicon, $H \approx 1.25$ inches $L \approx 4$ inches $H_1 \approx 75$ gausses then $H_d \approx 23$ gausses ### Vidicon The vidicon is a small television camera tube that is used primarily in industrial television and studio film pickup because of its 600-line resolution, small size, simplicity, and spectral response approaching that of the human Fig. 40-Vidicon construction. By Permission of RCA, copyright proprietor. eye. As shown in Fig. 40, the tube consists of a signal electrode composed of a transparent conducting film on the inner surface of the faceplate; a thin layer (a few microns) of photoconductive material deposited on the signal electrode; a fine mesh screen, grid 4, located adjacent to the photoconductive layer; a focusing electrode, grid 3, connected to grid 4; and an electron gun. Principle of vidicon operation: Each elemental area of the photoconductor can be likened to a leaky capacitor with one plate electrically connected to the signal electrode that is at some positive voltage (usually about 20 volts) with respect to the thermionic cathode of the electron gun and the other plate floating except when commutated by the electron beam. Initially, the gun side of the photoconductive surface is charged to cathode potential by the electron gun, thus leaving a charge on each elemental capacitor. During the frame time, these capacitors discharge in accordance with the value of their leakage resistance, which is determined by the amount of light falling on that elemental area. Hence, there appears on the gun side of the photoconductive surface a positive-potential pattern corresponding to the pattern of light from the scene imaged on the opposite surface of the layer. Even those areas that are dark discharge slightly, since the dark resistivity of the material is not infinite. The electron beam is focused at the surface of the photoconductive layer by the combined action of the uniform magnetic field and the electrostatic field of grid 3. Grid 4 serves to provide a uniform decelerating field between itself and the photoconductive layer such that the electron beam always approaches the surface normally and at a low velocity. When the beam scans the surface, it deposits electrons where the potential of the elemental area is more positive than that of the electron-gun cathode and at this moment the electrical circuit is completed through the signal-electrode circuit to ground. The amount of signal current flowing at this moment depends upon the amount of discharge in the elemental capacitor, which in turn depends upon the amount of light falling on this area. The signal polarity is such that highlights in the scene swing the first video-amplifier-tube grid negative. Alignment of the beam is accomplished by a transverse magnetic field produced by external coils located at the base end of the focusing coil. Deflection of the beam is accomplished by the transverse magnetic fields produced by external deflecting coils. Vidicon operating considerations: The temperature of the faceplate of the tube should never exceed 60 degrees centigrade in either operation or storage. As the temperature increases, both the signal output current and the dark current (current that flows when the photoconductive surface receives no light) increase; however, the dark current increases faster and shading (unequalness of dark current at different points on the surface) in the output signal current becomes a serious problem. Further, as the signal-electrode voltage is increased, the signal output-current-to-dark-current ratio decreases, thus increasing the shading problem. Shielding of both the signal electrode and signal lead from external fields is highly important. A blanking signal should be furnished to grid 1 or to the cathode to prevent the electron beam from striking the photoconductive surface during retrace of the horizontal and vertical sweeps. Failure of scanning for a few minutes may permanently damage the photoconductive surface. Full-size scanning of the surface should always be used. The video amplifier should be capable of handling input signals of
from 0.02 to 0.4 microampere through the signal-electrode load resistor. Typical signal output current versus illumination on the tube face is shown in Fig. 41. Fig. 41—Typical vidicon signal output for 2870-degree-Kelvin light uniformly distributed over photoconductive layer. Scanned area was 1/2 by 3/2 inches. By Permission of RCA, copyright proprietor. It will be noted from the curve that the gamma of the tube is less than one. The illumination falling on the tube face can be computed from the formula for optical imaging given on p. 401. Vidicon signal and noise: Since the vidicon acts as a constant-current generator as far as signal current is concerned, the value of the load resistor is determined by band-pass and noise considerations in the input circuit of the video amplifier. The band pass is determined the same as for the image orthicon on p. 413. Where the signal current is less than 1 microampere and the band pass is relatively wide, the principal noise in the system is contributed by the input circuit and first tube of the video amplifier. To minimize the thermal noise of the load resistor, its resistance is made much higher than the flat-band-pass considerations would indicate, since the signal voltage increases directly and the noise voltage increases as the square root. To correct for the attenuation of the signal with increasing frequency, the amplitude response of the video amplifier must have the following form: $$G = G_0 \frac{(1 + 4\pi^2 F^2 C_1^2 R_1^2)^{\frac{1}{2}}}{R_1}$$ where G_0 = unequalized amplifier gain, Fig. 42. Fig. 42-Input circuit for first-stage amplifier in vidicon circuit. The signal-to-noise ratio is $$\frac{S}{N} = \frac{I_t}{\left[4kTF\left(\frac{1}{R_1} + \frac{R_t}{R_1^2} + \frac{4\pi^2C_1^2F^2R_t}{3} + 20I_{\bullet+d}\right)\right]^{1/2}}$$ where $I_s = \text{vidicon signal current}$ I_d = vidicon dark current E_{nt} = thermal noise in input resistor $E_{ns} = \text{shot noise of input amplifier tube}$ $R_1 = input load$ C_1 = total input shunt capacitance R_t = shot-noise equivalent resistance of input amplifier For triode or cascode input, $$R_t = 2.5/g_m$$ # Photosensitive tubes continued and for pentode input, $$R_t = \frac{I_b}{I_b + I_{c2}} \left(\frac{2.5}{g_m} + \frac{20I_{c2}}{g_{m^2}} \right)$$ where $g_m = transconductance$ $I_b = \text{direct plate current}$ $I_{c2} = \text{direct screen current}$ e = electronic charge $= 1.6 \times 10^{-19}$ coulombs It will be noted from the signal-tonoise equation that the shot noise of the first amplifier tube is amplified in a frequency-selective manner, whereas the thermal noise of the load resistor has a flat frequency distribution. For a given bandwidth, as the load resistor is increased in value, the frequency at which equalization starts becomes lower and thus the shot-noise power increases in proportion to the thermal-noise power. Finally, a point is By Permission of RCA, copyright proprietor. Fig. 43—Vidicon resolution, showing uncompensated and compensated horizontal responses and equivalent amplitude response. Highlight signal-electrode microamperes = 0.35; test pattern = transparent square-wave resolution wedge; 80 television lines = 1-megacycle bandwidth. reached where the required equalization ratio is physically difficult to achieve (about 50-to-1 is maximum for a typical industrial television applications). The resolution of a typical tube is shown in Fig. 43. The equivalent amplitude response, which is shown, is expressed by the equation, (Equivalent amplitude response) = $(R_n R_k)^{\frac{1}{2}}$ where R_{τ} and R_{\hbar} = vertical and horizontal amplitude responses, respectively. The vidicon has such a high inherent signal-to-noise ratio that aperture equalization for the scanning beam can be used when high incident illumination is available. An expression of the form: $$\gamma = 1/(1 + k_1\omega^2 + k_2\omega^4 + ...)$$ # Photosensitive tubes continued Fig. 44—Vidicon persistence characteristic. Scanned area of photoconductive layer = 1/2 by 3/2 inch; initial output = 0.2 microampere. By Permission of RCA, copyright proprietor. may be used to approximate the equivalent admittance of the tube. Since the scanning beam is symmetrical $(1 + \cos x)$, no phase distortion accompanies the reduction in amplitude of the higher-frequency components of the signal. In practice, the function is very nearly $$\gamma = 1/(1 + k_1\omega^2)$$ and the correction circuit must then have the inverse response = $1 + k_1\omega^2$. If the curve in Fig. 43 is fitted with asymptotes, one of which has a zero slope and the other a 12-decibels-per-octave slope, then k_1 is found to be 0.0064×10^{-12} . Aperture equalization amplifies high-frequency noise; the equation is $$\frac{S}{N} = \frac{R_1^3 I_s^3}{(4kT\lambda)^{\frac{1}{2}}}$$ where Fig. 45—Vidicon spectral response. Response with 2870-degree-Kelvin tungsten light compares to eye response. Scanned area of ½ by 3/2 inch gives 0.02-microampere output. By Permission of RCA, copyright proprietor. $$\lambda = (R_1 + R_t) F + (F^3/3) (8\pi^2C_2^2R_1^3 + 8\pi^2C_2^2R_1^2R_t + 4\pi^2C_1^2R_1^2R_t)$$ $$+ (F^5/5) (16\pi^4C_2^4R_1^5 + 16\pi^4C_2^4R_1^4R_t + 32\pi^4C_1^2C_2^2R_1^4R_t)$$ $$+ (F^7/7) (64\pi^6C_1^2C_2^4R_1^6R_t)$$ $$R_1C_2 = k_1^{\frac{1}{2}}$$ Persistence or lag of the photoconductive surface is shown in Fig. 44. More incident illumination and less signal-electrode voltage are helpful in reducing this effect. Fig. 45 shows the spectral response of the vidicon. # Gas tubes* ### Ionization A gas tube is an electron tube in which the pressure of the contained gas is such as to affect substantially the electrical characteristics of the tube. Such effects are caused by collisions between moving electrons and gas atoms. These collisions, if of sufficient energy, may dislodge an electron from the atom, thereby leaving the atom as a positive ion. The electronic space charge is effectively neutralized by these positive ions and comparatively high free-electron densities are easily created. Fig. 46—lonization properties of gases. | gas | ionization
energy
in volts | collision
probability †
P _c | |----------------------------|----------------------------------|--| | Helium | 24.5 | 12.7 | | | | | | Neon | 21.5 | 17.5 | | Nitrogen | 16.7 | 37.0 | | Hydrogen (H ₂) | 15.9 | 20.0 | | Argon | 15.7 | 34.5 | | Carbon monoxide | 14.2 | 23.8 | | Oxygen | 13.5 | 34.5 | | Krypton | 13.3 | 45.4 | | Water vapor | 13.2 | 55.2 | | Xenon | 11.5 | 62.5 | | Mercury | 10.4 | 67.0 | ^{*} J. D. Cobine, "Gaseous Conductors" 1st edition, McGraw-Hill Book Company, Inc., New York, New York: 1941. [†] From, E. H. Kennard, "Kinetic Theory of Gases," McGraw-Hill Book Company, Inc., New York, New York; 1938; see p. 149. ### Gas tubes continued Fig. 46 gives the energy in electron-volts necessary to produce ionization. The column P_c is the kinetic-theory collision probability/centimeter of path length for an electron in a gas at 15 degrees centigrade at a pressure of 1 millimeter of mercury. The collision frequency is given by the expression Fig. 47—Effect of gas pressure and tube geometry on gap voltage required for breakdown. $$f_c = v P_c p$$ where $f_c = \text{collisions/second}$ $P_c = \text{collision probability in collisions/centimeter/millimeter pressure}$ p = gas pressure in millimeters of mercury Fig. 48—Voltage distribution between plane parallel electrodes showing effect of space-charge neutralization. # Characteristics of gas tubes The more-important parameters that determine the effect gas will have on tube operation are qualitatively described in Figs. 47–49. # Cathodes of gas tubes Cold-cathode gas tubes require several hundreds of volts tube drop and ### Gas tubes continued operate with currents of tens of milliamperes. The discharge reflects the entire characteristic of Fig. 49. The advantages are simplicity of construction and circuit, long life, and reliability. Fig. 49—Typical volt—ampere characteristic of gaseous discharge. **Hot-cathode gas tubes** require several tens of volts tube drop and conduct currents that depend primarily on the cathode emission capabilities. In general, the discharge does not exhibit the characteristic of region I of Fig. 49. The advantages are high tube currents with low power losses. Mercury-pool cathodes provide an electron supply from an arc spot on a pool of mercury. The discharge operates in region III of Fig. 49. The mercury vapor is ionized and can conduct hundreds of amperes at tube voltages of approximately 10 volts. Fig. 50—Gas-tube regulator circuit at right and regulator-tube characteristics below. | tube
type | regulation
level in volts | regulation current
limits in
milliamperes | |--------------|------------------------------|---| | OA2 | 150 | 5–30 | | OA3/VR75 | 75 | 5-30
5-40 | | OB2 | 105 | 5-30 | | OBZ | 100 | 3-30 | | OC3/VR105 | 105 | 5-40 | | OD3/VR150 | 150 | 5-40 | | 874 | 90 | 10-50 | | | | | | 991 | 60 | 0.4-2.0 | | 5651 | 87 | 1.5-3.5 | # Applications of gas tubes Relaxation oscillators, trigger tubes, and step switching tubes (see p. 476) ### Gas tubes continued all make use of the wide difference between the breakdown and maintaining voltages of a glow-discharge device. Voltage-regulator tubes take advantage of the tube-current independence of tube voltage in the glow-discharge region of a cold-cathode tube (Fig. 50). Low-impedance switching tubes are a new class under development. These tubes are glow-discharge devices that have static impedance levels of perhaps 10,000 ohms but have zero or even negative dynamic impedances. Thus the tube performs as a relay and transmits information with negligible loss as well. Power rectifier and control tubes: Mercury-vapor rectifiers, thyratrons (see p. 314), and ignitrons employ the very-high current-carrying capacity of gas discharge
tubes with low power losses for rectification and control in high-power equipment. The operation of mercury-vapor tubes is dependent on temperature insofar as tube voltage drop and peak inverse voltages are concerned (Fig. 51). Fluorescent lamps employ the high efficiency of gas discharges in conjunction with fluorescent coatings, to produce radiation in varying parts of the visible spectrum. Noise generators: These gas discharge tubes produce white noise throughout a large part of the microwave spectrum and are useful as standard noise sources for measurement purposes. TR tubes: Transit-receive tubes are gas discharge devices designed to isolate the receiver section of radar equipment from the transmitter during the period of high power output. A typical tr tube and its circuit are illustrated in Fig. 52. The cones in the waveguide form a transmission cavity tuned to the transmitter frequency and the tube conducts received Fig. 51—Tube drop and arcback voltages as a function of the condensed mercury temperature in a hat-cathode mercuryvapor tube. ### Gas tubes continued Fig. 52-Diagram of a tr tube and circuit. Microwave gas discharge circuit elements: A new class of gas discharge devices under current development are microwave circuit control elements. The plasmas of gas discharges are capable, because of the high free-electron density, of strong interaction with electromagnetic waves in the microwave region. In general, microwave phase shift and/or absorption results. If used in conjunction with a magnetic field, these effects can be increased and made nonreciprocal. Phase shift is a result of the change in dielectric constant caused by the plasma according to the following equation. $$\frac{\epsilon_p}{\epsilon_0} = 1 - \frac{0.8 \times 10^{-4} N_0}{f_s^2}$$ where ϵ_p = dielectric constant in plasma ϵ_0 = dielectric constant in free space $N_0 = \text{electron density in electrons/centimeter}^3$ $f_* = \text{signal frequency in measureles}$ Absorption of microwave energy results when electrons, having gained energy from the electric field of the signal, lose this energy in collisions with the tube envelope or neutral gas molecules. This absorption is a maximum when the frequency of collisions is equal to the signal frequency and the absolute magnitude is proportional to the free-electron density. # Armed Services list of standard electron tubes* | | | rectiflers | 61 | ‡SR4WGA
‡SY3WGTA | *= | | . | 1823
1826
1826
1827
1850
1858
1863A
5853 | fors | | |-----------|--------------|--------------------|---------------------------------|---------------------|---|---------------|--------------------|---|--------------------|---| | | -1 | ě | 1183GT
11Z2 | 158.
158. | 16X4W
115641 | oos switching | | 1853
1856
1857
5792
5793 | voltage regulators | 4 | | | | triodes | | | \$5687
\$080 | 100 | - to | 1835A
1836
1837A
1844
1851 | pollas | 10A2
10B2
15644
15651
15783WA | | | power output | pentodes | | 1 | 5686
‡‡5902
‡6005/6AQ5W | _ | clippers | 3829
4831
719A | phototubes | IP2I | | | | pen | 1384
374
115672
116088 | ' | 12E30
6AG7
6BG6
16L6WGB | | grid control | 1CIK
1884
15684/C31/A
15685/C6J
15696
15727/2D21W | - | | | | mixers | converiers | I | 1. | 15636
15725/6AS6W
15750/6BE6W
15784W | Partiflare | sos | 0244/1003 8578
38 8698
13828 1005
14826 1006
44832 5517
6C 6 | klystrons | 2K45
2K54
2K55
2K55
6Blo
726 A, B, C | | | | | | | | | _ | 024/
38
13828
14828
14832
0C
0C | | 2K25
2K25
2K26
2K26
2K29 | | | des | sharp | #1AD4
#1AH4 | | 10AH6
10AU0WA
15054/0AK5W
15054/0AK5W
15702WA
115840 | | EOODBA | 12X2A
13B24WA
13B24WA
131B
1516
1516
18020 | - | | | | pentodes | remote | 1 | 1 | 15800
115800 | - | magnetrons | 4178
5126
5586
5607
5657 | crystals | N 23
N 83
N 83
N 84
N 126 | | | | - 5 | | | | | 806 | 2/30-34
2/42
2/5/
2/5/4-62A
4/50
4/52
4/54-59 | | 1N238
1N238
1N25
1N26
1N31 | | | | twin | 1345 | | 112AT7WA
15670
15751
15814A
6021
16111 | _ | pulse | \$3C45
\$3D21A
\$3D21A
\$3E29
\$4C35
\$4C20
\$5C22
\$988 7554
\$949 7554 | | 7. | | | | friodes | 1 | | 12C40
16C4W
15703WA
15718
115719
15719 | - | fwin
tetrodes m |
18208
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A
1832A | | 14) 7MP7
10KP7
11A) 12SP7
A) | | | | diodes | ‡1A3 | | 2822
15726/6AL5W
5829WA
115896 | - | letrodes | 14021
14-65A
14X150A
15022
5933 | s cothode ray | NNNN | | Receiving | | Alament
voltage | | 5.0 | 6.3 | Transmitting | triodes | 12C39A
12C43
12C01H
12S01H
4S01L
811
880
5607 | Miscellaneous | 28P1
3JP (1, 7, 12)
3WP1
5CP (1A, 7A, 12) | | | | | | | | | | | | | * From Specification MIL-STD-2008, Armed Services Electro-Standards Agency; Fort Monmouth, New Jersey: 2 February, 1955. This standard is revised at intervals; the latest issue should always be constituted by the blants. Treaty Organization priority list of electronic tubes (valves). # Armed Services list of reliable eletcron tubes* | reliable type | lower-quality counterpart | description | comments on use | |--|--|--|--| | 042W4
082W4
64K5W4
16AU6WA
6SK7WA | 0A2, 6073
0B2, 6074
0A5, 6AK5W
6AU6,
6SK7, 6SK7W | Miniature voltage regulator
Miniature voltage regulator
Miniature sharp-curoff pentode
Miniature it sharp-curoff pentode
Octal ri remote-curoff pentode | | | 112A17WA
15636
15639
15641
15644 | 12A77 — — — — — — — — — — — — — — — — — — | Miniature high-mu twin triode Subminiature pentode mixer Subminiature video campiliter pentode Subminiature half-wave rectifier Subminiature voltage regulator | | | 5647
†5654/6AK5W
5654/6AK5W/6096
†5670
5670WA | OAKS, OAKSW, OAKSWA
OAKS, OAKSW, OAKSWA
2C51 | Subminjarure diode Minjarure sharp-curoff if pentode Minjarure sharp-curoff if pentode Minjarure medium-mu twin titode Minjarure medium-mu twin titode | Higher input capacitance Higher input capacitance Higher input capacitance 5670 derinas 1/6 more heater current than 2C51 5670WA draws 1/6 more heater current than 2C51 | | 55080
5702WA
5703WA
5718
5719 | 5702
5703 | Miniature of beam-power pentode Subminiature of starp-cutoff pentode Subminiature medium-mu triode Subminiature medium-mu triode Subminiature medium-mu triode Subminiature high-mu triode | 1111 | | †5725/6AS6W
5725/6AS6W/6187,
†5726/6AL5W
5726/6AL5W/6007
†5727/2D21W | oaso, oasow
oaso, oasow
oals, oalsw
oals, oalsw | Miniature dual-control rf pentode Miniature duale diode Miniature double diode Miniature double diode Miniature thyratron gas retrode | 5725/6A56W has 10% lower plate and screen dissipation than 6A56, 6A56W s725/6A56W/0187 has different transconductances and dissipation ratings than 6A56, 6A56W ———————————————————————————————————— | | +5744WA
+5749/68A6W
+5750/68E6W
+5751
5751WA | 5744
68A6
68E6
12AX7
12AX7 | Subminiature high-mu triode Miniature rf remote-cutoff pentode Miniature pentagrid converter Miniature high-mu vimi triode Miniature high-mu vimi triode | 5751 draws 1/6 more heater current and has lower mu than 12AX7 5751WA draws 1/6 more heater current and has lower mu than 12AX7 | | +5783WA
5784WA
5787WA
†5814A
5814WA | 5783
12AU7, 5814
12AU7, 5814 | Subminiature voltage-reference tube Subminiature dual-control ri pentode Subminiature voltage regulator Miniature medium-mu twin triode Miniature medium-mu twin triode | 5783WA has shorter bulb than 5783
5814A draws 1/6 more heater current than 12AU7
5814WA draws 1/6 more heater current than 12AU7 | | 15820WA
5839
15840 | 5829
26-volt-version 6X5GT, 6X5WGT | Subminiature double diode
Octal, full-wave rectifier
Subminiature if sharp-cutoff pentode | 5829WA has different interelectrode capacitance than 5829
5839 has 26.5-volt filament and has longer envelope than 6X5GT, 6X5WGT | | | | | | | | | | | ELE | CTRON 1 | rubes | |---|---|--|--|--|--|---|---|---|---|---|--| | 5852 draws twice the heater current of 0X5G7 and 0X5WG7 and has longer envelope | 11111 | | 5992 draws 1/3 more heater current than 6V6GT family and has higher trans-
conductance
5993 draws 1/3 more heater current and has different base and larger envelope | than 6X4, 6X4W — 602I is slightly shorter and has 14% higher transconductance than 6BF7, 6BF7W | 6072 draws 1/6 more heater current than 12AY7 6044 has a 4054, but base, larger envelope and draws 1/3 more heater current | 6000 has slightly higher transconductance than 616, 616W 6100/6C4WA envelope is 3/8-inch longer than 6C4W | 6101 (AJ6WA has a slightly higher transconductance than 616, 616W 6106 draws 5% less heater current than 573G7 family. 6106 is a heater-cathode | | 6135 draws 1/6 more heater current than 6C4, 6C4W and has 3/8-inch longer | envelope man OC4W — 6188/6SU7WGT envelope has larger maximum helght | 1 | | Octal, full-wave rectifier
Subminiature double diode | Subminiature semiremote-cutoff pentode Subminiature audio beam-power pentode Subminiature double diode Subminiature andium-mu triode Subminiature rf sharp-cutoff pentode | Subminiature of sharp-cutoff pentode Subminiature of semiremote-cutoff pentode Subminiature
pentode mixer Subminiature pentode mixer Subminiature pentode mixer Subminiature low-mu triode | Octal beam-power pentode
Miniature full-wave rectifier | Miniature beam-power amplifier
Miniature beam-power amplifier
Subminiature medium-mu twin triode | Miniature medium-mu low-noise twin triode
Miniature beam-power amplifier | Octal beam-power amplifier
Miniature medium-mu twin triode
Miniature medium-mu triode | Miniature medium-mu twin triode
Octal full-wave rectifier | Subminiature double diode
Subminiature medium-mu twin triode
Subminiature high-mu twin triode | Miniature medium-mu triode | Subminiature double diode
Miniature starp-cutoff pentode
Octal high-mu twin triode
Miniature medium-mu twin triode | Subminiature rf sharp-cutoff pentode
Subminiature semiremote-cutoff pentode | | 0X5GT, 0X5WGT | 1111 | 11111 | 6V6GT, 6V6GTY, 6V6Y
6X4, 6X4W | 6AO5, 6AQ5W
6AO5, 6AQ5W
6BF7, 6BF7W | 12AY7
6AQS, 6AQSW | 6AR6
6J6, 6J6W
6C4, 6C4W | 6J6, 6J6W
SY3GT, SY3WGTA | 111 | 6C4, 6C4W | 6AGS
6SU7GT, 6SU7GTY, 6SL7GT, 6SL7WGT
12AU7 | | | 5852
†5896 | 15899
15902
5903
5904
5905 | 5906
5907
5908
5916
5977 | 5992 | t6005/6AQ5W
6005/6AQ5W/6095
t6021 | 6072
6094 | 6098/6AR6WA
6090
6100/6C4WA | 6101/616WA
6106 | 6110
†6111
†6112 | 6135 | 6184
6186/6AG5WA
6188/6SU7WGT
6189/112AU7WA | 6205
6206 | ^{*} From Specification Mil.E.18, Armed Services Electro-Standards Agency; Fort Monmouth, New Jersey; 28 October 1954. This list is revised at intervals, the latest issue should always be consulted. Nate: In many instances, the reliabilized version differs somewhat physically and electrically, from its lower-quality counterpart. This list is not to be confused with an interchangeability list. Individual specification sheets should be referred to when substitution is contemplated. [†] These types are included in Mit-STD-200B. #### Electron-tube circuits #### Classification It is common practice to differentiate between types of vacuum-tube circuits, particularly amplifiers, on the basis of the operating regime of the tube. Class-A: Grid bias and alternating grid voltages such that plate current flows continuously throughout electrical cycle ($\theta_p = 360$ degrees). Class-AB: Grid bias and alternating grid voltages such that plate current flows appreciably more than half but less than entire electrical cycle $(360^{\circ} > \theta_{p} > 180^{\circ})$. Class-B: Grid bias close to cut-off such that plate current flows only during approximately half of electrical cycle ($\theta_p \approx 180^{\circ}$). Class-C: Grid bias appreciably greater than cut-off so that plate current flows for appreciably less than half of electrical cycle ($\theta_p < 180^{\circ}$). A further classification between circuits in which positive grid current is conducted during some portion of the cycle, and those in which it is not, is denoted by subscripts 2 and 1, respectively. Thus a class-AB₂ amplifier operates with a positive swing of the alternating grid voltage such that positive electronic current is conducted and accordingly in-phase power is required to drive the tube. #### General design For quickly estimating the performance of a tube from catalog data, or for predicting the characteristics needed for a given application, the ratios given below may be used. The table gives correlating data for typical operation of tubes in the various amplifier classifications. From the table, knowing the maximum ratings of a tube, the maximum power output, currents, voltages, and corresponding load Typical amplifier operating data. Maximum signal conditions—per tube. | function | class A | class B
a-f (p-p) | class B
r-f | class C
r-f | |--|---------|----------------------|----------------|----------------| | Plate efficiency η (percent) | 20-30 | 35–65 | 60–70 | 65–85 | | Peak instantaneous to d-c plate current ratio ${ m ^{M}}i_{b}/I_{b}$ | 1.5–2 | 3.1 | 3.1 | 3.1-4.5 | | RMS alternating to d-c plate current ratio $I_{m p}/I_{m b}$ | 0.5-0.7 | 1.1 | 1.1 | 1.1-1.2 | | RMS alternating to d-c plate voltage ratio E_p/E_b | 0.3-0.5 | 0.5-0.6 | 0.5-0.6 | 0.5-0.6 | | D-C to peak instantaneous grid current $I_{\rm c}/{\rm M}i_{\rm c}$ | | 0.25-0.1 | 0.25-0.1 | 0.15-0.1 | #### General design continued impedance may be estimated. Thus, taking for example, a type F-124-A water-cooled transmitting tube as a class-C radio-frequency power amplifier and oscillator—the constant-current characteristics of which are shown in Fig. 1—published maximum ratings are as follows: D-C plate voltage $E_b = 20,000$ volts D-C grid voltage $E_c = 3,000$ volts D-C plate current $I_b = 7$ amperes R-F grid current $I_{\varrho} = 50$ amperes Plate input $P_i = 135,000$ watts Plate dissipation $P_p = 40,000$ watts Maximum conditions may be estimated as follows: For $\eta = 75$ percent $P_i = 135,000$ watts $E_b = 20,000$ volts Power output $P_0 = \eta P_i = 100,000$ watts Average d-c plate current $I_b = P_i/E_b = 6.7$ amperes From tabulated typical ratio ${}^{\rm M}i_b/I_b=4$, instantaneous peak plate current ${}^{\rm M}i_b=4I_b=27$ amperes* The rms alternating plate-current component, taking ratio $I_p/I_b=1.2^{\prime}$ $I_p=1.2$ $I_b=8$ amperes The rms value of the alternating plate-voltage component from the ratio $E_p/E_b=0.6$ is $E_p=0.6$ $E_b=12,000$ volts. The approximate operating load resistance R_l is now found from $$R_{I} = E_{p}/I_{p} = 1500$$ ohms An estimate of the grid drive power required may be obtained by reference to the constant-current characteristics of the tube and determination of the peak instantaneous positive grid current ${}^{M}i_{c}$ and the corresponding instantaneous total grid voltage ${}^{M}e_{c}$. Taking the value of grid bias E_{c} for the given operating condition, the peak alternating grid drive voltage is $${}^{\mathrm{M}}E_{\varrho} = ({}^{\mathrm{M}}\mathrm{e}_{c} - E_{c})$$ from which the peak instantaneous grid drive power is $$^{\mathbf{M}}P_{c} = {}^{\mathbf{M}}E_{a} {}^{\mathbf{M}}i_{c}$$ ^{*} In this discussion, the superscript M indicates the use of the maximum or peak value of the varying component, i.e., $^{M}i_{b}$ = maximum or peak value of the alternating component of the plate current. #### General design continued An approximation to the average grid drive power P_{σ} , necessarily rough due to neglect of negative grid current, is obtained from the typical ratio $$\frac{I_c}{M_{i_c}} = 0.2$$ of d-c to peak value of grid current, giving $$P_{\sigma} = I_c E_{\sigma} = 0.2 \, ^{\mathrm{M}} i_c E_{\sigma}$$ watts Plate dissipation P_p may be checked with published values since $$P_p = P_i - P_0$$ Fig. 1—Constant-current characteristics with typical load lines AB—class C, CD lass B, EFG—class A, and HJK—class AB. #### General design continued It should be borne in mind that combinations of published maximum ratings as well as each individual maximum rating must be observed. Thus, for example in this case, the maximum d-c plate operating voltage of 20,000 volts does not permit operation at the maximum d-c plate current of 7 amperes since this exceeds the maximum plate input rating of 135,000 watts. Plate load resistance R_t may be connected directly in the tube plate circuit, as in the resistance-coupled amplifier, through impedance-matching elements as in audio-frequency transformer coupling, or effectively represented by a loaded parallel-resonant circuit as in most radio-frequency amplifiers. In any case, calculated values apply only to effectively resistive loads, such as are normally closely approximated in radio-frequency amplifiers. With appreciably reactive loads, operating currents and voltages will in general be quite different and their precise calculation is quite difficult. The physical load resistance present in any given set-up may be measured by audio-frequency or radio-frequency bridge methods. In many cases, the proper value of R_l is ascertained experimentally as in radio-frequency amplifiers that are tuned to the proper minimum d-c plate current. Conversely, if the circuit is to be matched to the tube, R_l is determined directly as in a resistance-coupled amplifier or as $$R_1 = N^2 R_s$$ in the case of a transformer-coupled stage, where N is the primary-to-secondary voltage transformation ratio. In a parallel-resonant circuit in which the output resistance R_s is connected directly in one of the reactance legs, $$R_l = \frac{X^2}{R_s} = \frac{L}{Cr_s} = QX$$ where X is the leg reactance at resonance (ohms), and L and C are leg inductance in henries and capacitance in farads, respectively; $$Q = \frac{X}{R_s}$$ ## Graphical design methods When accurate operating data are required, more precise methods must be used. Because of the nonlinear nature of tube characteristics, graphical methods usually are most convenient and rapid. Examples of such methods are given below. A comparison of the operating regimes of class A, AB, B, and C amplifiers is given in the constant-current characteristics graph of Fig. 1. The lines Fig. 2-Transfer characteristics is versus es with class A2—CKF and class B—OPL load lines. #### Graphical design methods continued corresponding to the different classes of operation are each the locus of instantaneous grid e_e and plate e_b voltages, corresponding to their respective load impedances. For radio-frequency amplifiers and oscillators having tuned circuits giving an effectively resistive load, plate and grid tube and load alternating voltages are sinusoidal and in phase (disregarding transit time), and the loci become straight lines. For amplifiers having nonresonant resistive loads, the loci are in general nonlinear except in the distortionless case of linear tube characteristics (constant r_p), for which they are again straight lines. Thus, for determination of
radio-frequency performance, the constant-current chart is convenient. For solution of audio-frequency problems, however, it is more convenient to use the $(i_b - e_c)$ transfer characteristics of Fig. 2 on which a dynamic load line may be constructed. Methods for calculation of the most important cases are given below. #### Class-C radio-frequency amplifier or oscillator Draw straight line from A to B (Fig. 1) corresponding to chosen d-c operating plate and grid voltages, and to desired peak alternating plate and grid voltage excursions. The projection of AB on the horizontal axis thus corresponds to ${}^{\rm M}E_p$. Using Chaffee's 11-point method of harmonic analysis, lay out on AB points: $$e_p' = {}^{M}E_p$$ $e_p'' = 0.866 {}^{M}E_p$ $e_p''' = 0.5 {}^{M}E_p$ to each of which correspond instantaneous plate currents i_b' , i_b'' and i_b''' and instantaneous grid currents i_c' , i_c'' and i_c''' . The operating currents are obtained from the following expressions: $$I_b = \frac{1}{12} \left[i_{b'} + 2 i_{b''} + 2 i_{b'''} \right] \qquad I_e = \frac{1}{12} \left[i_{e'} + 2 i_{e''} + 2 i_{e'''} \right]$$ $${}^{M}I_p = \frac{1}{6} \left[i_{b'} + 1.73 i_{b''} + i_{b'''} \right] \qquad {}^{M}I_q = \frac{1}{6} \left[i_{e'} + 1.73 i_{e''} + i_{e'''} \right]$$ Substitution of the above in the following give the desired operating data. Power output $$P_0 = \frac{{}^{\mathrm{M}}E_p{}^{\mathrm{M}}I_p}{2}$$ Power input $P_i = E_b I_b$ Average grid excitation power $= \frac{{}^{\mathrm{M}}E_g{}^{\mathrm{M}}I_g}{2}$ Peak grid excitation power = ${}^{M}E_{g}i'_{e}$ Plate load resistance $$R_l = \frac{^{\rm M}E_p}{^{\rm M}I_p}$$ Grid bias resistance $$R_c = \frac{E_c}{I_c}$$ Plate efficiency $$\eta = \frac{P_0}{P_i}$$ Plate dissipation $$P_p = P_i - P_0$$ The above procedure may also be applied to plate-modulated class-C amplifiers. Taking the above data as applying to carrier conditions, the analysis is repeated for $^{\text{crest}}E_b=2E_b$ and $^{\text{crest}}P_0=4P_0$ keeping R_l constant. After a cut-and-try method has given a peak solution, it will often be found that combination fixed and self grid biasing as well as grid modulation is indicated to obtain linear operation. To illustrate the preceding exposition, a typical amplifier calculation is given below: Operating requirements (carrier condition) $$E_b = 12,000 \text{ volts} \qquad P_0$$ $$P_0 = 25,000 \text{ watts}$$ $$\eta = 75$$ percent Preliminary calculation (refer to table below) Class-C r-f amplifier data for 100-percent plate modulation. | symbol | preliminary | detailed | | | |--------------------------------------|-------------|----------|------------------|--| | | carrier | carrier | crest | | | | | 11 | | | | Eb (volts) | 12,000 | 12,000 | 24,000 | | | ME _p (volts) | 10,000 | 10,000 | 20,000 | | | Ec (volts) | _ | -1,000 | -7 00 | | | MEa (volts) | | 1,740 | 1,740 | | | I_b (amp) | 2.9 | 2.8 | 6.4 | | | M_{I_p} (amp) | 4.9 | 5.1 | 10.2 | | | I_c (amp) | _ | 0.125 | 0.083 | | | $\mathbf{M}_{I_{\mathcal{O}}}$ (amp) | _ | 0.255 | 0.183 | | | P; (watts) | 35,000 | 33,600 | 154,000 | | | P_0 (watts) | 25,000 | 25,5:0 | 102,000 | | | P_a (watts) | _ | 220 | 160 | | | η (percent) | 75 | 76 | 66 | | | Rz (ohms) | 2,060 | 1,960 | 1,960 | | | R _c (ohms) | _ | 7,100 | 7,100 | | | E _∞ (volts) | - | -110 | -110 | | $$\begin{split} \frac{E_p}{E_b} &= 0.6 \\ E_p &= 0.6 \times 12,000 = 7200 \text{ volts} \\ ME_p &= 1.41 \times 7200 = 10,000 \text{ volts} \\ I_p &= \frac{P_o}{E_p} \\ I_p &= \frac{25,000}{7200} = 3.48 \text{ amperes} \\ MI_p &= 4.9 \text{ amperes} \\ \frac{I_p}{I_b} &= 1.2 \\ I_b &= 1.2 \\ I_b &= \frac{3.48}{1.2} = 2.9 \text{ amperes} \\ P_i &= 12,000 \times 2.9 = 35,000 \text{ watts} \\ \frac{M_{i_b}}{I_b} &= 4.5 \\ M_{i_b} &= 4.5 \times 2.9 = 13.0 \text{ amperes} \\ R_l &= \frac{E_p}{I_p} = \frac{7200}{3.48} = 2060 \text{ ohms} \end{split}$$ #### Complete calculation Lay out carrier operating line, AB on constant-current graph, Fig. 1, using values of E_b , $^{\mathbf{M}}E_p$, and $^{\mathbf{M}}i_b$ from preliminary calculated data. Operating carrier bias voltage, E_c , is chosen somewhat greater than twice cutoff value, 1000 volts, to locate point A. The following data are taken along AB: $$i_b{'}=13~{ m amp}$$ $i_c{'}=1.7~{ m amp}$ $E_c=-1000~{ m volts}$ $i_b{''}=10~{ m amp}$ $i_c{''}=-0.1~{ m amp}$ $e_c{'}=740~{ m volts}$ $i_b{'''}=0.3~{ m amp}$ $i_c{'''}=0~{ m amp}$ ${ m ME}_p=10,000~{ m volts}$ From the formulas, complete carrier data as follows are calculated: $$^{\mathbf{M}}I_{p} = \frac{1}{6} [13 + 1.73 \times 10 + 0.3] = 5.1 \text{ amp}$$ $P_{0} = \frac{10,000 \times 5.1}{2} = 25,500 \text{ watts}$ $I_{b} = \frac{1}{12} [13 + 2 \times 10 + 2 \times 0.3] = 2.8 \text{ amp}$ $P_{i} = 12,000 \times 2.8 = 33,600 \text{ watts}$ $$\eta = \frac{25,500}{33,600} \times 100 = 76 \text{ percent}$$ $R_{l} = \frac{10,000}{5.1} = 1960 \text{ ohms}$ $I_{e} = \frac{1}{12} [1.7 + 2 (-0.1)] = 0.125 \text{ amp}$ $M_{l_{g}} = \frac{1}{6} [1.7 + 1.7 (-0.1)] = 0.255 \text{ amp}$ $P_{g} = \frac{1740 \times 0.255}{2} = 220 \text{ watts}$ Operating data at 100-percent positive modulation crests are now calculated knowing that here $$E_h = 24.000 \text{ volts}$$ $$R_{\star} = 1960 \text{ ohms}$$ and for undistorted operation $$P_0 = 4 \times 25.500 = 102.000$$ watts $${}^{\rm M}E_n = 20,000 \text{ volts}$$ The crest operating line A'B' is now located by trial so as to satisfy the above conditions, using the same formulas and method as for the carrier condition. It is seen that in order to obtain full-crest power output, in addition to doubling the alternating plate voltage, the peak plate current must be increased. This is accomplished by reducing the crest bias voltage with resultant increase of current conduction period, but lower plate efficiency. The effect of grid secondary emission to lower the crest grid current is taken advantage of to obtain the reduced grid-resistance voltage drop required. By use of combination fixed and grid resistance bias proper variation of the total bias is obtained. The value of grid resistance required is given by $$R_c = \frac{-\left[E_c - \frac{\operatorname{crest}E_c}{I_c}\right]}{I_c - \frac{\operatorname{crest}I_c}{I_c}}$$ and the value of fixed bias by $$E_{cc} = E_c - (I_c R_c)$$ Calculations at carrier and positive crest together with the condition of zero output at negative crest give sufficiently complete data for most purposes. If accurate calculation of audio-frequency harmonic distortion is necessary, the above method may be applied to the additional points required. #### Class-B radio-frequency ampliflers A rapid approximate method is to determine by inspection from the tube $(i_b - e_b)$ characteristics the instantaneous current, i'_b and voltage e'_b corresponding to peak alternating voltage swing from operating voltage E_b . A-C plate current $${}^{\mathrm{M}}I_{p} = \frac{i'_{b}}{2}$$ D-C plate current $$I_b = \frac{i'_b}{\pi}$$ A-C plate voltage $${}^{\mathrm{M}}E_{p}=E_{b}-\mathrm{e'}_{b}$$ Power output $$P_0 = \frac{(E_b - e'_b) i'_b}{4}$$ Power input $$P_i = \frac{E_b i'_b}{\pi}$$ Plate efficiency $$\eta = \frac{\pi}{4} \left(1 - \frac{e'_b}{E_b} \right)$$ Thus $\eta \approx 0.6$ for the usual crest value of ${}^{\rm M}E_p \approx 0.8$ E_b . The same method of analysis used for the class-C amplifier may also be used in this case. The carrier and crest condition calculations, however, are now made from the same E_b , the carrier condition corresponding to an alternating-voltage amplitude of $^{\rm M}E_p/2$ such as to give the desired carrier power output. For greater accuracy than the simple check of carrier and crest conditions, the radio-frequency plate currents ${}^{\rm M}I_p{}''$, ${}^{\rm M}I_p{}'''$, ${}^{\rm M}I_p{}'''$, ${}^{\rm M}I_p{}^{o}{}''$, ${}^{\rm M}I_p{}^{o}{}''$, ${}^{\rm M}I_p{}^{o}{}''$, and $-{}^{\rm M}I_p{}''$ may be calculated for seven corresponding selected points of the audio-frequency modulation envelope $+{}^{\rm M}E_g$, + 0.707 ${}^{\rm M}E_g$, + 0.5 ${}^{\rm M}E_g$, 0, - 0.5 ${}^{\rm M}E_g$, - 0.707 ${}^{\rm M}E_g$, and $-{}^{\rm M}E_g$, where the negative signs denote values in the negative half of the modulation cycle. Designating $$S' = {}^{M}I'_{p} - (-{}^{M}I'_{p})$$ $$D' = {}^{M}I'_{p} + (-{}^{M}I'_{p}) - 2^{M}I_{p}^{0}$$ the fundamental and harmonic components of the output audio-frequency current are obtained as $${}^{\rm M}I_{\rm p1} = \frac{{\rm S}'}{4} + \frac{{\rm S}''}{2\sqrt{2}}$$ (fundamental) ${}^{\rm M}I_{\rm p2} = \frac{5\,{\rm D}'}{24} + \frac{{\rm D}''}{4} - \frac{{\rm D}'''}{3}$ $${}^{\mathrm{M}}I_{p3} = \frac{S'}{6} - \frac{S'''}{3}$$ $${}^{\mathrm{M}}I_{p4} = \frac{D'}{8} - \frac{D''}{4}$$ $${}^{\mathrm{M}}I_{p5} = \frac{S'}{12} - \frac{S''}{2\sqrt{2}} + \frac{S'''}{3}$$ $${}^{\mathrm{M}}I_{p6} = \frac{D'}{24} - \frac{D''}{4} + \frac{D'''}{3}$$ This detailed method of calculation of audio-frequency harmonic distortion may, of course, also be applied to calculation of the class-C modulated amplifier, as well as to the class-A modulated amplifier. ### Class-A and AB audio-frequency ampliflers Approximate formulas assuming linear tube characteristics: Maximum undistorted power output $${}^{M}P_{0} = \frac{{}^{M}E_{p}{}^{M}I_{p}}{2}$$ when plate load resistance $$R_i = r_p \left[\frac{E_c}{\frac{M}{\mu} E_p} - E_c \right]$$ and negative grid bias $$E_c = \frac{{}^{\rm M}E_p}{\mu} \left(\frac{R_l + r_p}{R_l + 2r_p} \right)$$ giving maximum plate efficiency $$\eta = \frac{{}^{\mathrm{M}}E_{p}{}^{\mathrm{M}}I_{p}}{8E_{b}I_{b}}$$ Maximum maximum undistorted power output $^{MM}P_0=\frac{^{M}E^2_{\ p}}{16\ r_p}$ when $$R_i = 2 r_p \qquad E_c = \frac{3}{4} \frac{{}^{M}E_p}{\mu}$$ An exact analysis may be obtained by use of a dynamic load line laid out on the transfer characteristics of the tube. Such a line is CKF of Fig. 2 which is constructed about operating point K for a given load resistance
r_i from the following relation: $$i_b^{\mathrm{S}} = \frac{\mathrm{e}_b^{\mathrm{R}} - \mathrm{e}_b^{\mathrm{S}}}{R_b} + i_b^{\mathrm{R}}$$ where R, S, etc., are successive conveniently spaced construction points. Using the seven-point method of harmonic analysis, plot instantaneous plate currents $i_b{}'$, $i_b{}''$, $i_b{}'''$, $i_b{}$, $i_b{}'''$, $i_b{}$, $i_b{}'''$, $i_b{}$ and $i_b{}$ corresponding to $i_b{}$, and $i_b{}$, and $i_b{}$, where 0 corresponds to the operating point K. In addition to the formulas given under class-B radio-frequency amplifiers: $$I_b$$ average = $I_b + \frac{D'}{8} + \frac{D''}{4}$ from which complete data may be calculated. #### Class-AB and B audio-frequency ampliflers Approximate formulas assuming linear tube characteristics give (referring to Fig. 1, line CD) for a class-B audio-frequency amplifier: $$MI_{p} = i_{b}'$$ $$P_{0} = \frac{ME_{p} MI_{p}}{2}$$ $$P_{i} = \frac{2}{\pi} E_{b} MI_{p}$$ $$\eta = \frac{\pi}{4} \frac{ME_{p}}{E_{b}}$$ $$R_{pp} = 4 \frac{ME_{p}}{i'_{b}} = 4R_{l}$$ Again an exact solution may be derived by use of the dynamic load line JKL on the $(i_b - e_c)$ characteristic of Fig. 2. This line is calculated about the operating point K for the given R_i (in the same way as for the class-A case). However, since two tubes operate in phase opposition in this case, an identical dynamic load line MNO represents the other half cycle, laid out about the operating bias abscissa point but in the opposite direction (see Fig. 2). Algebraic addition of instantaneous current values of the two tubes at each value of e_c gives the composite dynamic characteristic for the two tubes OPL lnasmuch as this curve is symmetrical about point P, it may be analyzed for harmonics along a single half-curve PL by the Mouromtseff 5-point method. A straight line is drawn from P to L and ordinate plate-current differences a, b, c, d, f between this line and curve, corresponding to $e_g^{\prime\prime}$, $e_g^{\prime\prime}$, $e_g^{\prime\prime}$, are measured. Ordinate distances measured upward from curve PL are taken positive. Fundamental and harmonic current amplitudes and power are found from the following formulas: $$\begin{split} ^{\mathbf{M}}I_{\mathbf{p}1} &= i'_{b} - ^{\mathbf{M}}I_{\mathbf{p}3} + ^{\mathbf{M}}I_{\mathbf{p}5} - ^{\mathbf{M}}I_{\mathbf{p}7} + ^{\mathbf{M}}I_{\mathbf{p}9} - ^{\mathbf{M}}I_{\mathbf{p}11} \\ ^{\mathbf{M}}I_{\mathbf{p}3} &= 0.4475 \text{ (b} + f) + \frac{d}{3} - 0.578 \text{ d} - \frac{1}{2} ^{\mathbf{M}}I_{\mathbf{p}5} \\ ^{\mathbf{M}}I_{\mathbf{p}5} &= 0.4 \text{ (a} - f) \\ ^{\mathbf{M}}I_{\mathbf{p}7} &= 0.4475 \text{ (b} + f) - ^{\mathbf{M}}I_{\mathbf{p}3} + 0.5 ^{\mathbf{M}}I_{\mathbf{p}5} \\ ^{\mathbf{M}}I_{\mathbf{p}9} &= ^{\mathbf{M}}I_{\mathbf{p}3} - \frac{2}{3} \text{ d} \\ ^{\mathbf{M}}I_{\mathbf{p}11} &= 0.707c - ^{\mathbf{M}}I_{\mathbf{p}3} + ^{\mathbf{M}}I_{\mathbf{p}5}. \end{split}$$ Even harmonics are not present due to dynamic characteristic symmetry. The direct-current and power-input values are found by the 7-point analysis from curve PL and doubled for two tubes. #### Classification of amplifier circuits The classification of amplifiers in classes A, B, and C is based on the operating conditions of the tube. Another classification can be used, based on the type of circuits associated with the tube. A tube can be considered as a four-terminal network with two input terminals and two output terminals. One of the input terminals and one of the output terminals are usually common; this common junction or point is usually called "ground". When the common point is connected to the filament or cathode of the tube, we can speak of a grounded-cathode circuit: the most-conventional type of vacuum-tube circuit. When the common point is the grid, we can speak of a grounded-grid circuit, and when the common point is the plate or anode, we can speak of the grounded-anode circuit. This last type of circuit is most commonly known by the name of cathodefollower. A fourth and most-general class of circuit is obtained when the common point or ground is not directly connected to any of the three electrodes of the tube. This is the condition encountered at uhf where the series impedances of the internal tube leads make it impossible to ground any of them. It is also encountered in such special types of circuits as the phase-splitter, in which the impedance from plate to ground and the impedance from cathode to ground are made equal in order to obtain an output between plate and cathode balanced with respect to ground. # Classification of amplifier circuits continued | | grounded-
cathode | grounded-
grid | grounded-plate
or
cathode-follower | |---|---|---|--| | Circuit
schematic | output E ₂ | input E.—output E.— | output E | | Equivalent circuit, alternating current component, class-A operation | | C _{pk} C _{pk} C _{pk} C _{pk} C _{gk} E ₁ C _{gk} E ₂ | | | Voltage gain, A for output load impedance = Z_2 $A = \frac{E_2}{E_1}$ | | $\mathbf{A} = (1+\mu) \ \frac{Z_2}{r_p + Z_2}$ | $\mathbf{A} = \frac{\mu Z_2}{r_p + (1 + \mu) Z_2}$ | | £1 | neglecting C_{gp}
(Z_2 includes C_{pk}) | neglecting C_{pk} $(Z_2 \text{ includes } C_{gp})$ | neglecting C_{gk}
(Z_2 includes C_{gk}) | | Input admittance $\mathbf{Y}_1 = \frac{\mathbf{I}_1}{\mathbf{E}_1}$ | $Y_1 = j\omega [C_{\sigma k} + (1 - \mathbf{A})C_{\sigma p}]$ | $Y_1 = j\omega[C_{\sigma k} + (1 - \mathbf{A})C_{p k}] + \frac{1 + \mu}{r_p + Z_2}$ | $Y_1 = j\omega[C_{\theta p} + (1 - A)C_{\theta k}]$ | | Equivalent generator seen by load at output terminals | < output | r _p output (1+μ)Ε ₁ neglecting C _{pk} | $ \begin{array}{c} r_{p} \\ \hline 1+\mu \\ \hline 0 \\ \hline 1+\mu \\ \end{array} $ autput | #### Classification of amplifier circuits continued Design information for the first three classifications is given in the table on page 445, where Z_2 = load impedance to which output terminals of amplifier are connected E_1 = phasor input voltage to amplifier E_2 = phasor output voltage across load impedance Z_2 \mathbf{A} = voltage gain of amplifier = $\mathbf{E}_2/\mathbf{E}_1$ Y_1 = input admittance to input terminals of amplifier $\omega = 2\pi \times \text{(frequency of excitation voltage } \textbf{E}_1\text{)}$ $i = (-1)^{\frac{1}{2}}$ and the remaining notation is in accordance with the nomenclature of pages 371 and 372. ## **Amplifier pairs** The basic amplifier classes are often used in pairs, or combination forms' for special characteristics. The availability of dual triodes makes these combined forms especially useful. ## Grounded-cathode-grounded-plate This pairing provides the gain and 180-degree phase reversal of a groundedplate stage with a low source impedance at the output terminals. It is especially useful in feedback circuits or for amplifiers driving a low or unknown load impedance. In tuned amplifiers, the possibility of oscillation must be considered (see note on cathode-followers with reactive source and load). Direct coupling is useful for pulse work, permitting large positive input and negative output excursions. ## Grounded-plate-grounded-grid (cathode-coupled) Direct coupling is usual, making a very simple structure. Several modified forms are possible with special characteristics. #### Amplifier pairs continued Cathode-coupled amplifier: As a simple amplifier, R_3 and input E'_1 are short- circuited. Output E_2 is in phase with input E_1 . Gain (with $R_1 \gg 1/g_m$) is given by $\mathbf{A} \approx g_m R_2/2$. Even-harmonic distortion is reduced by symmetry, as in a push-pull stage. Due to the inphase input and output relations, this circuit forms the basis for various R-C oscillators and the class of cathode-coupled multivibrators. **Symmetrical clipper:** With suitable bias adjustment, symmetrical clipping or limiting occurs between V_1 cutoff and V_2 cutoff, without drawing grid current. Differential amplifier: With input supplied to E_1 and E_1' , the output E_2 responds (approximately) to the difference $E_1 - E_1'$. Balance is improved by constant-current supply to the cathode (long-tailed pair) such as a high value of R_1 (preferably connected from a highly negative supply) or a constant-current pentode. The signal to E_1' should be slightly attenuated for precise adjustment of balance. **Phase inverter:** With R_3 and R_2 both used, approximately balanced (push-pull) outputs (E_2 and E_2') are obtained from either input E_1' or E_1 . As a phase inverter (paraphase), one input (E_1) is used, the other being grounded, and R_3 is made slightly less than R_2 to provide exact balance. ## Grounded-cathode-grounded-grid (cascode) This circuit has characteristics somewhat resembling the pentode, with the advantage that no screen current is required. V_2 serves to isolate V_1 from the output load R_L , giving voltage gain equation $$A = \frac{\mu_1 R_l}{r_{p1} + \frac{r_{p2} + R_l}{\mu_2 + 1}}$$ For $R_l \ll \mu r_p$, $A \approx g_{m1}R_l$ For $R_l \gg \mu r_p$, $A \approx \mu_1 \mu_2$ # Amplifler pairs continued As an rf amplifier, the grounded-grid stage V_2 drastically reduces capacitive feedback from output to input, without introducing partition noise (as produced by the screen current of a pentode). Shot noise contributed by V_2 is negligible due to the highly degenerative effect of r_{p1} in series with the cathode. The noise figure thus approaches the theoretical noise of V_1 used as a triode, without the undesirable effects of triode plate—grid capacitance. Because of the 180° phase relation of
input and output, this circuit is also valuable in audio feedback circuits, replacing a single stage with considerable increase in gain (for high values of R_l). The grid of V_2 provides a second input connection E_1' useful for feedback or for gating. The voltage gain from E_1' to the output is considerably reduced, being given by $$A = \frac{R_l \mu}{R_l + \mu r_p}$$ For $$R_l \ll \mu r_p$$, $A_2 \approx R_l/r_{p1}$ For $$R_1 \gg \mu r_n$$, $A_2 \approx \mu$ ## Cathode-follower data #### General characteristics - a. High-impedance input, low-impedance output. - **b.** Input and output have one side grounded. - c. Good wide-band frequency and phase response. - d. Output is in phase with input. - e. Voltage gain or transfer is always less than one. - f. A power gain can be obtained. - g. Input capacitance is reduced. #### General case Transfer = $$\frac{E_{out}}{E_{in}} = \frac{g_m R_l}{g_m R_l + 1 + R_l/r_p}$$ ## Cathode-follower data continued R_{out} = output resistance = $\frac{r_p}{\mu + 1}$ or approximately $\frac{1}{g_m}$ g_m = transconductance in mhos (1000 micromhos = 0.001 mhos) R_l = total load resistance Input capacitance = $C_{gp} + \frac{C_{gk}}{1 + a_m R_l}$ #### Specific cases **a.** To match the characteristic impedance of the transmission line, R_{out} must equal Z_0 . **b.** If R_{out} is less than Z_0 , add resistor R_c' in series so that $R_c' = Z_0 - R_{out}$. **c.** If R_{out} is greater than Z_0 , add resistor R_o in parallel so that $$R_c = \frac{Z_0 R_{out}}{R_{out} - Z_0}$$ Note 1: Normal operating bias must be provided. For coupling a high imped- #### Cathode-follower data continued ance into a low-impedance transmission line, for maximum transfer choose a tube with a high g_m . **Note 2:** Oscillation may occur in a cathode-follower if the source becomes inductive and load capacitive at high frequencies. The general expression for voltage gain of a cathode-follower (including C_{ak}) is given (see p. 445) by $$\mathbf{A} = \frac{\mu Z_2 + Z_2 \mathbf{r}_p / Z_{gk}}{r_p + Z_2 (1 + \mu) + Z_2 \mathbf{r}_p / Z_{gk}}$$ The input admittance $$Y_1 = j\omega[C_{gp} + (1 - \mathbf{A})C_{gk}]$$ may contain negative-resistance terms causing oscillation at the frequency where an inductive grid circuit resonates the capacitive Y_1 component. The use of a simple triode (or pentode) grounded-cathode circuit with a load resistor equal to Z_0 provides an equally good match with slightly higher gain $(g_m R_l)$, but will overload at a lower maximum voltage. The anodefollower (see "Special applications of feedback") provides output approximating the cathode-follower without the risk of oscillation. ## Resistance-coupled audio-amplifler design #### Stage gain A* Medium frequencies = $$A_m = \frac{\mu R}{R + R_p}$$ High frequencies = $$A_h = \frac{A_m}{\sqrt{1 + \omega^2 C_1^2 r^2}}$$ low frequencies* $$= A_i = \frac{A_m}{\sqrt{1 + \frac{1}{\omega^2 C_o^2 \rho^2}}}$$ ^{*} The low-frequency stage gain also is affected by the values of the cathoda bypass capacitor and the screen bypass capacitor. ground or #### Resistance-coupled audio-amplifler design continued where $$R = \frac{R_1 R_2}{R_1 + R_2}$$ $$r = \frac{Rr_p}{R + r_p}$$ $$\rho = R_2 + \frac{R_1 r_p}{R_1 + r_p}$$ $\mu =$ amplification factor of tube $\omega = 2\pi \times \text{frequency}$ R_{I} = plate-load resistance in ohms $R_2 = \text{grid-leak resistance in ohms}$ $r_p = a$ -c plate resistance in ohms C_1 = total shunt capacitance in farads C_2 = coupling capacitance in farads Given C_1 , C_2 , R_2 , and X = fractional response required. At highest frequency $$r = \frac{\sqrt{1 - X^2}}{\omega C_1 X} \qquad R = \frac{r r_p}{r_p - r} \qquad R_l = \frac{R R_2}{R_2 - R}$$ $$R = \frac{r r_p}{r_p}$$ $$R_l = \frac{R R_2}{R_0 - R_2}$$ At lowest frequency $$C_2 = \frac{\chi}{\omega_0 \sqrt{1 - \chi^2}}$$ #### Cascaded stages The 3-decibel-down frequencies for n cascaded identical R-C-amplifier stages $$F = f/f_2 = f_1/f = (2^{1/n} - 1)^{1/2}$$ where n = number of identical stages f = 3-db-down frequency for n stages $f_1 = \text{ower } 3\text{-db-down frequency of one stage}$ f_2 = upper 3-db-down frequency of one stage #### Resistance-coupled audio-amplifier design continued | n | F | 1/F | |---|-------|-------| | 1 | 1 | 1 | | 2 | 0.643 | 1.555 | | 3 | 0.51 | 1.96 | **Example:** n = 3, $f_1 = 51$ cycles, $f_2 = 100$ kilocycles: Lower $$f = (1/F)f_1 = 1.96 \times (51) = 200$$ cycles Upper $$f = Ff_2 = 0.51 \times (100 \text{kc}) = 51 \text{ kilocycles}$$ Phase shift in the vicinity of f_0 as a function of the ratio of the upper 3-decibel frequency f_2 to the lower 3-decibel frequency f_1 . #### Negative feedback The following quantities are functions of frequency with respect to magnitude and phase: E, N, D = signal, noise, and distortion output voltage with feedback e, n, d = signal, noise, and distortion output voltage without feedback A = voltage amplification magnitude of amplifier at a given frequency $\mathbf{A} = \text{amplification including phase angle (complex quantity)}$ $\beta=$ fraction of output voltage fed back (complex quantity); for usual negative feedback, β is negative $\phi=$ phase shift of amplifier and feedback circuit at a given frequency continued #### Reduction in gain caused by feedback Fig. 3—In negative-feedback amplifier considerations β , expressed as a percentage, has a negative value. A line across the β and A scales intersects the center scale to indicate change in gain. It also indicates the amount, in decibels, the input must be increased to maintain original output. The total output voltage with feedback is $$E + N + D = e + \frac{n}{1 - \mathbf{A}\beta} + \frac{d}{1 - \mathbf{A}\beta}$$ (1) It is assumed that the input signal to the amplifier is increased when negative feedback is applied, keeping $E=\mathrm{e.}$ $(1-\mathbf{A}\hat{\beta})$ is a measure of the amount of feedback. By definition, the amount of feedback expressed in decibels is $$20\log_{10}|1-\overrightarrow{A\beta}| \tag{2}$$ Voltage gain with feedback = $$A \longrightarrow A \cap B$$ (3) and change of gain $$= \frac{1}{1 - \mathbf{A} \beta}$$ (4) If the amount of feedback is large, i.e., $-\overrightarrow{\mathbf{A}\beta}\gg \mathbf{1}$, voltage gain becomes $$-1/\beta$$ and so is independent of **A**. (5) In the general case when ϕ is not restricted to 0 or π the voltage gain = $$\frac{\mathbf{A}}{\sqrt{1 + |\mathbf{A}\boldsymbol{\beta}|^2 - 2|\mathbf{A}\boldsymbol{\beta}|\cos\phi}}$$ (6) and change of gain = $$\frac{1}{\sqrt{1 + |\mathbf{A}\boldsymbol{\beta}|^2 - 2|\mathbf{A}\boldsymbol{\beta}|\cos\phi}}$$ (7) Hence if $|\overrightarrow{A}\beta| \gg 1$, the expression is substantially independent of ϕ . On the polar diagram relating (\mathbf{A} β) and ϕ (Nyquist diagram), the system is unstable if the point (1, 0) is enclosed by the curve. Examples of Nyquist diagrams for feedback amplifiers will be found in the chapter on "Feedback control systems". #### Feedback amplifier with single beam-power tube The use of the foregoing negative feedback formulas is illustrated by the amplifier circuit shown in Fig. 4. The amplifier consists of an output stage using a 6V6-G beam-power tetrode with feedback, driven by a resistance-coupled stage using a 6J7-G in a pentode connection. Except for resistors R_1 and R_2 which supply the feedback voltage, the circuit constants and tube characteristics are taken from published data. The fraction of the output voltage to be fed back is determined by specifying that the total harmonic distortion is not to exceed 4 percent. The plate supply voltage is taken as 250 volts. At this voltage, the 6V6-G has 8-percent Fig. 4—Feedback amplifier with single beam-power tube. total harmonic distortion. From equation (1), it is seen that the distortion output voltage with feedback is $$D = \frac{d}{1 - \mathbf{A}\beta}$$ This may be written as $$1 - \overrightarrow{A\beta} = \frac{d}{D}$$ where $$\frac{d}{D} = \frac{8}{4} = 2 \qquad 1 - \overrightarrow{A}\overrightarrow{\beta} = 2 \qquad \overrightarrow{\beta} = -\frac{1}{\overrightarrow{A}}$$ and where $\mathbf{A} =$ the voltage amplification of the amplifier without feedback. The peak a-f voltage output of the 6V6-G under the assumed conditions is $$E_o = \sqrt{4.5 \times 5000 \times 2} = 212 \text{ volts}$$ This voltage is obtained with a peak a-f grid voltage of 12.5 volts so that the voltage gain of this stage without feedback is $$A = \frac{212}{12.5} = 17$$ Hence $$\overrightarrow{\beta} = -\frac{1}{\mathbf{A}} = -\frac{1}{17} = -0.0589$$ or 5.9 percent, approximately. The voltage gain of the output stage with feedback is computed from equation (3) as follows $$\mathbf{A}' = \frac{\mathbf{A}}{1 - \mathbf{A}\beta} = \frac{17}{2} = 8.5$$ and the change of gain due to feedback by equation (4) is thus $$\frac{1}{1 - \mathbf{A}\beta} = 0.5$$ The required amount of feedback voltage is obtained by choosing suitable values for R_1 and R_2 . The feedback voltage on the grid of the 6V6-G is reduced by the effect of R_0 , R_1 and the plate resistance of the 6J7-G. The effective grid resistance is $$R_{g'} = \frac{R_g \, r_p}{R_g + r_p}$$ where $R_a = 0.5$ megohm. This is the maximum allowable resistance in the grid circuit of the 6V6-G with cathode bias. $r_p = 4$ megohms = the plate resistance of the 617-G tube $$R_{g'} = \frac{4 \times 0.5}{4 + 0.5} = 0.445 \text{ megohm}$$ The fraction of the feedback voltage across R_2 that appears at the grid of the 6V6-G is $$\frac{R_{g'}}{R_{g'} + R_{I}} = \frac{0.445}{0.445 + 0.25} = 0.64$$ where $R_{I} = 0.25$ megohm. Thus the voltage across R_2 to give the required feedback must be $$\frac{5.9}{0.64}$$ = 9.2 percent of the output voltage. This voltage will be obtained if $R_1 = 50,000$ ohms and $R_2 = 5000$ ohms. This resistance combination gives a feedback voltage ratio of $$\frac{5000 \times 100}{50,000 +
5000} = 9.1$$ percent of the output voltage 457 ## Negative feedback continued In a transformer-coupled output stage, the effect of phase shift on the gain with feedback does not become appreciable until a noticeable decrease in gain without feedback also occurs. In the high-frequency range, a phase shift of 25 degrees lagging is accompanied by a 10-percent decrease in gain. For this frequency, the gain with feedback is computed from (6). $$A' = \frac{A}{\sqrt{1 + (A\beta)^2 - 2(A\beta)\cos\phi}}$$ where A = 15.3, $\phi = 155^{\circ}$, $\cos \phi = -0.906$, $\beta = 0.059$. $$A' = \frac{15.3}{\sqrt{1 + 0.9^2 + 2 \times 0.9 \times 0.906}} = \frac{15.3}{\sqrt{3.44}} = \frac{15.3}{1.85} = 8.27$$ The change of gain with feedback is computed from (7). $$\frac{1}{\sqrt{1 + (A\beta)^2 - 2(A\beta)\cos\phi}} = \frac{1}{1.85} = 0.541$$ if this gain with feedback is compared with the value of 8.5 for the case of no phase shift, it is seen that the effect of frequency on the gain is only 2.7 percent with feedback compared to 10 percent without feedback. The change of gain with feedback is 0.541 times the gain without feedback whereas in the frequency range where there is no phase shift, the corresponding value is 0.5. This quantity is 0.511 when there is phase shift but no decrease of gain without feedback. ## Special applications of feedback (anode follower) For the basic circuit shown at the right, Z_l includes the plate capacitance, plate resistance r_p , load resistance R_l , and any external load coupled to the output terminals; Z_1 includes the source capacitance, Z_2 includes the plategrid capacitance; the grid-ground capacitance is ignored; and the dc circuits are omitted for clarity. Then, $$\boldsymbol{E}_2/\boldsymbol{E}_1 \approx -Z_2/Z_1$$ so long as $$g_m Z_l \gg \left(\frac{Z_l}{Z_1} + \frac{Z_2}{Z_1} + 1\right)$$ and $$g_m Z_2 \gg 1$$ The two inequalities shown above must be satisfied if the circuits shown in this section are to give satisfactory performance. $$Y_{out} = \frac{Z_1}{Z_1 + Z_2} g_m + \frac{1}{Z_1} + \frac{1}{Z_1 + Z_2}$$ ## Integrator (Miller type) $$\mathbf{E}_2 \approx -\frac{\mathbf{E}_1}{j\omega C_2 R_1}$$ #### Differentiator $$\mathbf{E}_2 \approx -j\omega R_2 C_1 \mathbf{E}_1$$ ## Adding network $$\frac{{\bm E}_1}{Z_1} + \frac{{\bm E}_1'}{Z_1'} + \frac{{\bm E}_1''}{Z_1''} + \ldots \approx - \; \frac{{\bm E}_2}{Z_2}$$ #### Phase inverter $$Z_2 \approx Z_1$$ #### Negative feedback continued #### Selective amplifier $$C = 1/2\pi f_0 R$$ $$R_1 \gg R$$ $$R_1 \ll R$$ $$(bw)_{3db} = 4f_0/(gain)$$ $$(gain) = [E_2/E_1] f_0$$ #### Phase shifter $$\theta \approx 2 \arctan (2\pi f R_3 C_1)$$ $$R_1 = R_2 \ll R_3$$ ## Distortion A rapid indication of the harmonic content of an alternating source is given by the distortion factor which is expressed as a percentage. $$\binom{\text{Distortion}}{\text{factor}} = \sqrt{\frac{\text{(sum of squares of amplitudes of harmonics)}}{\text{(square of amplitude of fundamental)}}} \times 100 \text{ percent}$$ If this factor is reasonably small, say less than 10 percent, the error involved in measuring it, $$\sqrt{\frac{\text{(sum of squares of amplitudes of harmonics)}}{\text{(sum of squares of amplitudes of fundamental and harmonics)}}} imes 100 percent$$ is also small. This latter is measured by the distortion-factor meter. ## Capacitive-differentiation ampliflers Capacitive-differentiation systems employ a series-RC circuit (Fig. 5) with the output voltage e_2 taken across R_2 . The latter includes the resistance of the load, which is assumed to have a negligible reactive component compared to R_2 . In many applications the circuit time constant $RC \ll T$, where T is the period of the input pulse e_1 . Thus, transients constitute a minor part of the response, which is essentially a steady-state phenomenon within the time domain of the pulse. #### Differential equation $$e_1 = e_c + RC \frac{de_c}{dt}$$ where $R = R_1 + R_2$. Then $$e_2 = R_2 C \frac{de_c}{dt} = \frac{R_2}{R} (e_1 - e_c)$$ Fig. 5—Capacitive differentiation. When the rise and decay times of the pulse are each >RC. $$e_2 \approx R_2 C \frac{de_1}{dt}$$ ## Trapezoidal input pulse When T_1 , T_2 , and T_3 are each much greater than RC, the output response e_2 is approximately rectangular, as shown in Fig. 6. $$E_{21} = E_1 R_2 C / T_1$$ $$E_{23} = -E_1 R_2 C/T_3$$ More accurately, for any value of T, but for widely spaced input pulses, If $$0 < t < T_1$$: $e_{21} = \frac{E_1 R_2 C}{T_1} \left[1 - \exp\left(-\frac{t}{RC}\right) \right]$ $$T_1 < t < (T_1 + T_2)$$: $e_{22} = \frac{E_1 R_2 C}{T_1} \left[exp\left(\frac{T_1}{RC}\right) - 1 \right] exp\left(-\frac{t}{RC}\right)$ Note: $$\exp\left(-\frac{t}{RC}\right) = \epsilon^{-t/RC}$$ #### Capacitive-differentiation amplifiers $$(T_1 + T_2) < t < T: e_{23} = -\frac{E_1 R_2 C}{T_3} \left\{ 1 - \left\{ \frac{T_3}{T_1} \left[\exp\left(\frac{T_1}{RC}\right) - 1 \right] + \exp\left(\frac{T_1 + T_2}{RC}\right) \right\} \exp\left(-\frac{t}{RC}\right) \right\}$$ $$t > T: \quad e_{2x} = \frac{E_1 R_2 C}{T_3} \left\{ \frac{T_3}{T_1} \left[\exp\left(\frac{T_1}{RC}\right) - 1 \right] + \exp\left(\frac{T_1 + T_2}{RC}\right) - \exp\left(\frac{T}{RC}\right) \right\} \exp\left(-\frac{t}{RC}\right)$$ $$= A \exp\left(-\frac{t}{RC}\right)$$ when $T_2 \gg RC: \quad e_{23} = -\frac{E_1 R_2 C}{T_3} \left[1 - \exp\left(-\frac{t_3}{RC}\right) \right]$ For a long train of identical pulses repeated at regular intervals of T_r between starting points of adjacent pulses, add to each of the above $(e_{21}, e_{22}, e_{23}, and e_{2x})$ a term $$e_{20} = \frac{A}{\exp\left(\frac{T_r}{RC}\right) - 1} \exp\left(-\frac{t}{RC}\right)$$ where A is defined in the expression for e_{2x} above. Fig. 7—Single rectangular pulse and response for T much shorter than in Fig. 6. #### Rectangular input pulse Fig. 7 is a special case of Fig. 6, with $T_1 = T_3 = 0$. $$0 < t < T: \quad e_{21} = \frac{R_2}{R} E_1 \exp\left(-\frac{t}{RC}\right) = E_{21} \exp\left(-\frac{t}{RC}\right)$$ $$t > T: \quad e_{23} = -\frac{R_2}{R} E_1 \left[\exp\left(\frac{T}{RC}\right) - 1\right] \exp\left(-\frac{t}{RC}\right)$$ $$= E_{23} \exp\left(-\frac{t_3}{RC}\right)$$ where $E_{23} = -\frac{R_2}{R} E_1 \left[1 - \exp\left(-\frac{T}{RC}\right)\right]$ #### Capacitive-differentiation amplifiers continued #### Triangular input pulse Fig. 8 is a special case of the trapezoidal pulse, with $T_2 = 0$. The total output amplitude is approximately $$|E_{21}| + |E_{23}| = |E_1| R_2 C \frac{T_1 + T_3}{T_1 T_3}$$ which is a maximum when $$T_1 = T_3$$. Fig. 9—Capacitive-differentiation circuit with cathode-follower source. Fig. 8 — Triangular pulse—special case of Fig. 6. Fig. 10—Capacitive-differentiation circuit with platecircuit source. ## Schematic diagrams Two capacitive-differentiation circuits using vacuum tubes as driving sources are given in Figs. 9 and 10. #### Capacitive-integration amplifiers Capacitive-integration circuits employ a series-RC circuit (Fig. 11) with the output voltage e_2 taken across capacitor C. The load admittance is accounted for by including its capacitance in C; while its shunt resistance is combined with R_1 and R_2 to form a voltage divider treated by Thevenin's theorem. In contrast with capacitive differentiation, time constant $RC \gg T$ in many applications. Thus, the output voltage is composed mostly of the early part of a transient response to the input voltage wave. For a long repeated train of identical input pulses, this repeated transient response becomes steady-state. #### Capacitive-integration amplifiers continued #### Circuit equations $$e_1 = e_2 + RC \frac{de_2}{dt}$$ where $$R = R_1 + R_2$$. Fig. 11—Capacitive integration. When $t \ll RC$ and E_{20} is very small compared to the amplitude of $e_{\mathbf{L}}$ $$e_2 \approx E_{20} + \frac{1}{RC} \int_0^t e_1 \, dt$$ where E_{20} = value of e_2 at time t = 0. #### Rectangular input-wave train See Fig. 12. $$E_{\rm av} = \frac{1}{T} \int_0^T e_1 \, dt$$ Then $$E_{11}T_1 + E_{12}T_2 = 0$$ After equilibrium or steady-state has been established, $$e_{21} = E_{av} + E_{11} \left[1 - exp \left(-\frac{t_1}{RC} \right) \right] + E_{21} exp \left(-\frac{t_1}{RC} \right)$$ $$e_{22} = E_{av} + E_{12} \left[1 - exp \left(-\frac{t_2}{RC} \right) \right] + E_{22} exp \left(-\frac{t_2}{RC} \right)$$ If the steady-state has not been established at time $t_1 = 0$, add to e_2 the term $$(E_{20} - E_{av} - E_{21}) \exp\left(-\frac{t_1}{RC}\right)$$ When $T_1 = T_2 = T/2$, then $$E_{11} = -E_{12} = E_1$$ $E_2 = E_{22} = -E_{21} = E_1 \tanh (T/4RC)$ #### Capacitive-integration amplifiers continued Approximately, for any T_1 and T_2 , provided $T \ll RC$, $$\begin{array}{lll} 0 < t_1 < T_1: & e_{21} = E_{av} - E_2 \ (1 - 2t_1/T_1) \\ 0 < t_2 < T_2: & e_{22} = E_{av} + E_2 \ (1 - 2t_2/T_2) \\ \text{where } E_2 = E_{22} = -E_{21} = E_{11}T_1/2RC \\ & = -E_{12}T_2/2RC \end{array}$$ Error due to assuming a linear outputvoltage wave (Fig. 13) is $$E_{\Lambda}/E_{2} \approx T/8RC$$ when $T_1 = T_2 = T/2$. The error in E_2 due to setting tanh (T/4RC) = T/4RC is comparatively negligible. When T/RC = 0.7, the approximate error in E_2 is only 1 percent. However, the error E_Δ is 1 percent of E_2 when T/RC = 0.08. Fig. 13—Error E∆ from assum- ing a linear output (dashed line). Fig. 14—Rectangular input wave gives stepped output. #### Biased rectangular input wave In Fig. 14, when $(T_1 + T_2) \ll RC$, and $E_{20} = 0$ at t = 0, the output voltage approximates a series of steps. $$E_2 = E_1 T_1 / RC$$ ## Triangular input wave $E_{22} = -E_1T_2/4RC$ In Fig. 15, when $(T_1 + T_2) \ll RC$, and after the steady-state has been established, then, approximately, $$0 < t_1 < T_1:$$ $$e_{21} = E_{20} + E_{21} - 4E_{21} \left(\frac{t_1}{T_1} - \frac{1}{2}\right)^2$$ $$0 < t_2 < T_2:$$ $$e_{22} = E_{20} + E_{22} - 4E_{22} \left(\frac{t_2}{T_2} - \frac{1}{2}\right)^2$$ where $$E_{20} = E_1
(T_2 - T_1) / 6RC$$ $$E_{21} = E_1 T_1 / 4RC$$ Fig. 15—Triangular input wave at top. Below, parabolic output wave on an exaggerated voltage scale. #### Capacitive-integration amplifiers #### Schematic diagrams Two capacitive-integration circuits using vacuum tubes as sources are given in Figs. 16 and 17. Fig. 16 (right)—Capacitive-integration circuit with cathode-fol- continued lower source. ## Relaxation oscillators Relaxation oscillators are a class of oscillator characterized by a large excess of positive feedback, causing the circuit to operate in abrupt transitions between two blocked or overloaded end-states. These end-states may be stable, the circuit remaining in such condition until externally disturbed; or quasistable, recovering (after a period determined by coupling time-constants and bias) and switching back to the opposite state. Relaxation oscillators are classified as bistable, monostable, or astable according to the number of stable end-states. Most circuits are adaptable to all three forms. Multistate devices are also possible. A wide variety of circuit arrangements is possible, including multivibrators, blocking oscillators, trigger circuits, counters, and circuits of the phantastron, sanotron, and sanophant class. Relaxation oscillators are often used for counting and frequency division, and to generate nonsinusoidal waveforms for timing, triggering, and similar applications. #### Multivibrators A number of multivibrator circuits are formed from three basic two-stage amplifiers (grounded-cathode-grounded-cathode, grounded-plate-grounded- #### Relaxation oscillators continued arid, and arounded-cathode-arounded-arid or combinations of these types), that readily provide the needed positive feedback with simple resistance or resistance-capacitance coupling. End-states may be any two of the four "blocked" conditions corresponding to cutoff or saturation in either stage. In general, the duration of a quasistable state will be determined by the exponential decay of charge stored in a coupling-circuit timeconstant (the circuit switching back to the opposite state when the saturated or the cutoff tube recovers gain) while stable states are produced by direct coupling with bias sufficient to hold one tube inoperative. The memory effect of charge storage also operates in the case of stable end-states to ensure completion of transfer across the unstable region. The timing accuracy of an astable or auasistable multivibrator is considerably improved by supplying the grid resistors from a high positive voltage (B+). The recovery from a cutoff condition thereby becomes an exponential towards a voltage much higher than the operating point, terminating in switch-over when the cutoff tube conducts. Grid conduction serves to clamp the capacitor voltage during the conducting state, erasing residual charge from the previous state. The starting condition for the next transition is thus more precisely determined and the linearity of the exponential recovery is improved by the more nearly constant-current discharge (since the range from cutoff to zero bias represents a smaller fraction of total charge). The gridcircuit time-constant must be appropriately increased to obtain the same dwell time. #### Bistable circuits Bistable circuits are especially suited for binary counters and frequency dividers and as trigger circuits to produce a step or pulse when an input signal passes above or below a selected amplitude. Symmetrical bistable multivibrator: The circuit is shown in Fig. 18. Trigger signal may be applied to both plates, both grids, or if pentodes are used, to both suppressor grids. **Binary counter stage:** An adaptation of the symmetrical bistable multivibrator is shown in Fig. 19. Alternative trigger inputs are shown with corresponding outputs to drive a following stage. The use of coupling diodes (V_3, V_4) reduces the tendency of C_1 , C_2 in the circuit of Fig. 18 to cause misfiring by unbalanced stored charge. Tubes V_6 and V_6 illustrate the application of clamping diodes, especially useful in high-speed circuits, to fix critical operating voltages. Pentodes with plate and grid clamping are suitable for very-high speeds. ### Relaxation oscillators continued Fig. 18—Symmetrical bistable multivibrator (basic binary counter). Fig. 19-Binary counter stage. Schmitt trigger: The circuit of Fig. 20 has the property that an output of constant peak value (a flat-topped pulse) is obtained for the period that the input waveform exceeds a specific voltage. Fig. 20-Basic Schmitt trigger. #### Monostable circuits Monostable multivibrators are useful for driven-sweep, pulse, and timing-wave generators. The absence of time-constants and residual charge "memory" in the stable state reduces jitter when driven with irregularly spaced timing signals. Monostable versions may be derived from all of the foregoing bistable multivibrators by elimination of the direct (dc) coupling to one or the other grid. The circuit of Figure 21 with R omitted is commonly used for pulse generation. Most astable circuits can be made monostable by sufficient inequality of bias. The circuit of Fig. 24 is an example. Sweep waveforms can be produced by integration of pulse outputs. The phantastron class of Miller sweep generators are also particularly useful for this purpose. Driven (one-shot) multivibrator: Circuit is given in Fig. 22. Equations are # Relaxation oscillators continued Fig. 21—Regenerative clipper (modified Schmitt trigger). $f_{mv} = f_s$ $f_{mv} = \text{multivibrator frequency in cycles/second}$ f. = synchronizing frequency in cycles/second Conditions of operation are $f_a > f_n$ or $3_a < 3_n$ Fig. 22—Driven (one-shot) multivibrator schematic and waveforms. where $f_n = free$ -running frequency in cycles/second $\mathfrak{I}_s = \text{synchronizing period in seconds}$ 3n =free-running period in seconds $$3n_2 = R_{g2}C \log_e \left(\frac{E_{b1} - E_{m1} + E_{c2}}{E_{c2} + E_{x2}} \right)$$ Regenerative clipper: Bias on the first grid places the circuit of Fig. 21 in the center of the unstable region, giving regenerative clipping. Phantastron: The phantastron circuit is a form of monostable multivibrator with similarities to the Miller sweep circuit. It is useful for generating very-short pulses and linear sweeps. It uses a characteristic of pentodes: that Fig. 23—Cathade-coupled phantastron. while cathode current is determined mainly by control-grid potential, the screen-grid, suppressor-grid and plate potentials determine the division of current between plate and screen. In certain tubes, such as the 6AS6, the transconductance from suppressor grid to plate is sufficiently high so that the plate current may be cut off completely with a small negative bias on the suppressor. A typical phantastron circuit is shown in Figure 23. During operation it switches between two states of interest. ## Relaxation oscillators continued - **a.** Stable: the control grid is slightly positive and draws current. Cathode current is maximum and the suppressor is biased negatively to plate-current cutoff by the cathode current in R_k . The plate is at a high potential determined by the clamping diode and the screen potential is low. - **b.** Unstable: when a positive trigger is applied to the suppressor grid (or a negative trigger to the control grid, cathode, or plate) the plate conducts, driving the control grid negative, reducing the cathode current, and taking most of the screen current. The plate potential then runs down linearly as in the Miller circuit. The end of this period comes when the control grid goes positive again, resulting in increase of cathode current, suppressor cutoff, and heavy screen current. In the circuit shown, the pulse length is variable from 0.3 to 0.6 microseconds. For longer pulses, it is possible to get a wide range of control both by varying R and C and by varying the plate-clamping potential. Decreasing R_k results in a stable operation. #### Astable circuits The operating principles of the multivibrator and the exponential recovery from quasistable states are illustrated by the analysis of the free-running multivibrator. **Free-running zero-bias symmetrical multivibrator:** Exact equation for semi-period (Figs. 24 and 25): $$\mathbf{J_1} = \left(R_{g1} + \frac{R_{l2}r_p}{R_{l2} + r_p}\right)C_1\log_e\frac{E_b - E_m}{E_x}$$ Fig. 24—Schematic diagram of symmetrical multivibrator and voltage waveforms on tube elements. where $$3 = 3_1 + 3_2 = 1/f$$, $3_1 = 3_2$, $R_{a1} = R_{a2}$, $C_1 = C_2$. f = repetition frequency in cycles/second 3 = period in seconds $3_1 = \text{semiperiod in seconds}$ r_p = plate resistance of tube in ohms $E_b = plate-supply voltage$ $E_m = minimum$ alternating voltage on plate $E_x = \text{cutoff voltage corresponding to } E_b$ C = capacitance in farads Fig. 25—Multivibrator potentials on plate-characteristic curve. Approximate equation for semiperiod, where $R_{g1}\gg rac{R_{l2}r_{p}}{R_{l2}+r_{p}}$, is $$\mathfrak{I}_1 = R_{g1}C_1 \log_e \left(\frac{E_b - E_m}{E_x}\right)$$ Equation for buildup time is $$3_{\rm B} = 4(R_l + r_p)C = 98$$ percent of peak value Free-running zero-bias unsymmetrical multivibrator: See symmetrical multivibrator for circuit and terminology; the wave forms are given in Fig. 26. grid of $$T_1$$ plate of T_2 plate of T_2 T_1 T_2 Fig. 26 — Unsymmetrical multivibrator waveforms. Equations for fractional periods are $$\mathfrak{I}_{1} = \left(R_{g1} + \frac{R_{l2}r_{p}}{R_{l2} + r_{p}}\right)C_{1}\log_{e}\left(\frac{E_{b2} - E_{m2}}{E_{x1}}\right)$$ $$\mathfrak{I}_2 = \left(R_{g2} + \frac{R_{l1}r_p}{R_{l1} + r_n}\right)C_2\log_e\left(\frac{E_{b1} - E_{m1}}{E_{\pi^2}}\right)$$ $$3 = 3_1 + 3_2 = 1/f$$ Free-running positive-bias multivibrator: Equations for fractional period (Fig. 27) are $$3_{1} = \left(R_{g1} + \frac{R_{I2}r_{p}}{R_{I2} + r_{p}}\right)C_{1}\log_{e}\left(\frac{E_{b2} - E_{m2} + E_{c1}}{E_{c1} + E_{x1}}\right)$$ $$3_{2} =
\left(R_{g2} + \frac{R_{I1}r_{p}}{R_{I1} + r_{c}}\right)C_{2}\log_{e}\left(\frac{E_{b1} - E_{m1} + E_{c2}}{E_{c2} + E_{c2}}\right)$$ where $$3 = 3_1 + 3_2 = 1/f$$ E_c = positive bias voltage $R_c = bias control$ Fig. 27—Free-running positive-bias multivibrator. # Blocking oscillators The blocking oscillator is a single-tube relaxation oscillator using a close-coupled (current) transformer that imposes a fixed current ratio between grid current and plate current, while also providing the polarity reversal for positive feedback. There are, therefore, two end-states that satisfy the requirement i_p/i_0 = turns ratio: one in the positive-grid region, with large grid current, and one at cutoff, with both currents zero. Astable and monostable forms are illustrated in the following discussion. # Astable blocking oscillator: Conditions for blocking are $$E_1/E_0 < 1 - \epsilon^{1/\alpha f - \theta}$$ where $E_0 = \text{peak grid volts}$ E_1 = positive portion of grid swing in volts $E_c = grid bias in volts$ f = frequency in cycles/second α = grid time constant in seconds $\epsilon = 2.718 = base of natural logs$ $\theta = \text{decrement of wave}$ **b.** Use large grid time constant $= \alpha$ is large **c.** Use high decrement (high losses) $= \theta$ is high Pulse width is $3_1 \approx 2\sqrt{LC}$ Fig. 28—Free-running blocking oscillator—schematic and waveforms. Fig. 29-Blocking-oscillator grid voltage. where 3_1 = pulse width in seconds L = magnetizing inductance of transformer in henries C = interwinding capacitance of transformer in farads $$L = M \frac{n_1}{n_2}$$ where M = mutual inductance between windings n_1/n_2 = turns ratio of transformer Fig. 30—Blocking oscillator pulse waveform. Repetition frequency $$\mathfrak{I}_2 \approx \frac{1}{f} \approx R_g C_g \log_e \frac{E_b + E_g}{E_b + E_g}$$ where $J_2 \gg J_1$ t = repetition frequency in cycles/second $E_h = plate-supply voltage$ $E_q = \text{maximum negative grid voltage}$ $E_x = \text{grid cutoff in volts}$ $3 = 3_1 + 3_2 = 1/f$ Astable positive-bias wide-frequency-range blocking oscillator: Typical circuit values (Fig. 31) are R = 0.5 to 5 megohms C = 50 micromicrofarads to 0.1 microfarads $R_k = 10$ to 200 ohms $R_b = 50,000 \text{ to } 250,000 \text{ ohms}$ $\Delta f = 100$ cycles to 100 kilocycles Fig. 31 — Free-running positive bias blocking oscillator. Monostable blocking oscillator: Operating conditions (Fig. 32) are - **a.** Tube off unless positive voltage is applied to grid. - Signal input controls repetition frequency. - c. E_c is a high negative bias. Fig. 32—Driven blocking oscillator. ## Relaxation oscillators continued Synchronized astable blocking oscillator: Operating conditions (Fig. 33) are $$f_n < f_s \text{ or } T_n > T_s$$ where $f_n = free$ -running frequency in cycles/second $f_{\bullet} = \text{synchronizing frequency in cycles}/$ T_n = free-running period in seconds T_s = synchronizing period in seconds Fig. 33—Synchronized blocking oscillator. # **Gas-tube oscillators** A simple relaxation oscillator is based on the negative-resistance characteristic of a glow discharge, the two end-states corresponding to ignition and extinction potential of the discharge. Two astable forms are discussed. The circuit of Fig. 34 may also be used with a simple diode (neon lamp), omitting the grid resistor and bias. The circuit of Fig. 35 may be made monostable if the supply voltage is less than the ignition voltage at the selected bias. Astable gas-tube oscillator: This circuit is often used as a simple generator of the sawtooth waveform necessary for the horizontal deflection of a cathode-ray oscilloscope beam. Equation for period (Fig. 34) $$3 = \alpha RC (1 + \alpha/2)$$ where 3 = period in cycles/second $$\alpha = \frac{E_1 - E_x}{E - E_x}$$ E_i = ignition voltage $E_x = \text{extinction voltage}$ E = plate-supply voltage Fig. 34—Free-running gas-tube oscillator. # Gas-tube oscillators continued Velocity error = change in velocity of cathode-ray-tube spot over traceperiod. Maximum percentage error = $\alpha \times 100$ if $\alpha \ll 1$. Position error = deviation of cathode-ray-tube trace from linearity. Maximum percentage error = $\frac{\alpha}{8} \times 100$ if $\alpha \ll 1$. **Synchronized astable gas-tube oscillator:** Conditions for synchronization (Fig. 35) are $$f_s = Nf_n$$ where $f_n = \text{free-running frequency in } \text{cycles/second}$ $f_s = \text{synchronizing frequency in cycles/second}$ N = an integer For $f_* \neq Nf_n$, the maximum δf_n before slipping is given by Fig. 35—Synchronized gas-tube oscillator. $$\frac{E_0}{E_n} \frac{\delta f_n}{f_n} = 1$$ where $$\delta f_n = f_n - f_s$$ E_0 = free-running ignition voltage E_{ϵ} = synchronizing voltage referred to plate circuit ### Semiconductors and transistors ## **Definitions** Acceptor impurity: An impurity that may induce hole conduction. **Base region:** The interelectrode region of a transistor into which minority carriers are injected. Bias: The quiescent direct emitter current or collector voltage of a transistor. **Breakdown voltage:** The reverse voltage at which a pn junction draws a large current. Carrier: In a semiconductor, a mobile conduction electron or hole. **Collector:** An electrode through which a flow of minority carriers leaves the interelectrode region. **Conduction band:** A range of states in the energy spectrum of a solid in which electrons can move freely. **Depletion layer, space-charge layer:** A region in which the mobile carrier charge density is insufficient to neutralize the net fixed charge density of donors and acceptors. Donor impurity: An impurity that may induce electronic conduction. **Doping:** Addition of *impurities* to a semiconductor or production of a deviation from stoichiometric composition, to achieve a desired characteristic. **Electron:** The electrons in the conduction band of a solid, which are free to move under the influence of an electric field. **Emitter:** An electrode from which a flow of minority carriers enters the interelectrode region. **Energy gap:** The energy range between the bottom of the conduction band and the top of the valence band. # **Definitions** continued Hole: A mobile vacancy in the electronic valence structure of a semiconductor that acts like a positive electronic charge with a positive mass. Interbase current: In a junction tetrode transistor, the current that flows from one base connection to the other through the base region. *i*-type or intrinsic semiconductor: A semiconductor in which the electrical properties are essentially not modified by *impurities* or *imperfections* within the crystal. Junction: See pn junction. **Lifetime of minority carriers:** The average time interval between the generation and recombination of *minority* carriers in a homogeneous semi-conductor. Majority carriers: The type of carrier constituting more than half of the total number of carriers. Minority carriers: The type of carrier constituting less than half of the total number of carriers. Mobility: The average drift velocity of carriers per unit electric field. **n-type semiconductor:** An extrinsic semiconductor in which the conduction-electron density exceeds the hole density. Ohmic contact: A contact between two materials, possessing the property that the potential difference across it is proportional to the current passing through it. **Photodiode:** A two-electrode semiconductor device sensitive to light. Photoconductive cells are photodiodes in which the resistance decreases when illuminated. Photoelectric cells are self-generating photodiodes. **Phototransistors:** Photoconductive cells that have current-multiplying collectors. **pn junction:** A region of transition between p- and n-type semiconducting material. p-type semiconductor: An extrinsic semiconductor in which the hole density exceeds the conduction-electron density. # **Definitions** continued Punch-through: At sufficiently high collector voltage in a junction transistor with very narrow base region, the space-charge layer may extend completely across the base region, causing an emitter-to-collector breakdown that is called punch-through (see Fig. 21). Saturation current: In a reverse-biased junction, the current due to thermally generated electrons or holes. Semiconductor: An electronic conductor, with resistivity in the range between metals and insulators, in which the electrical charge carrier concentration increases with increasing temperature over some temperature range. Certain semiconductors possess 2 types of carriers, namely, negative electrons and positive holes. Semiconductor device: An electronic device in which the characteristic distinguishing electronic conduction takes place within a semiconductor. **Semiconductor, extrinsic:** A semiconductor with electrical properties dependent upon *impurities*. **Thermistor:** An electronic device that makes use of the change of resistivity of a semiconductor with change in temperature. Transistor: An active semiconductor device with 3 or more electrodes. Valence band: The range of energy states in the spectrum of a solid crystal in which lie the energies of the valence electrons that bind the crystal together. **Varistor:** A 2-electrode semiconductor device having a voltage-dependent nonlinear resistance. # Semiconductors # Semiconductor materials and applications | device | semiconductor | type | applications | |-------------|---------------|---------------|--------------------------| | Transistors | Germanium | Junction | General-purpose to 75° C | | | Germanium | Point-contact | Computors | | | Silicon | Junction | High-temperature use | #### **Semiconductors** continued | device | semiconductor | type | applications | |-----------------|-----------------------|---------------------|---| | Rectifiers | Germanium | Point-contact diode | Economical, useful to vhf | |
 Germanium | Junction diode | High-rectification-ratio diode | | | Germanium | Junction diode | Power rectifier | | | Silicon | Point-contact diode | Microwave detector, mixer | | | Silicon | Junction diode | Very-high-rectification-ratio diode,
voltage control or reference | | | Silicon | Junction diode | Power rectifier | | | Selenium | Dry-disk | Power-supply rectifier, low-fre-
quency diode | | | Copper oxide | Dry-disk | Meter rectifier, ring modulator | | | Copper sulfide | Dry-disk | Low-voltage power rectifier | | Varistors | Silicon carbide | Fired | Voltage surge suppressor, voltage limiter | | | Selenium | Dry-disk | Contact protector | | | Copper oxide | Dry-disk | Voltage surge suppressor | | Thermistors | Mixed metallic oxides | Fired | Temperature sensing, current surge suppressor, temperature compensation | | Photoconductive | Germanium | Junction | General-purpose | | cells | Germanium | Point-contact | Phototransistor | | | Lead sulfide | | Infrared detector | | | Lead telluride | _ | Infrared detector | | Photoelectric | Silicon | Junction | Power source for transistors | | cells | Cadmium sulfide | Junction | Power source for transistors | | | Selenium | Dry-disk | Light meter | # Diodes, photodiodes, varistors, and thermistors Diodes as discussed here denote rectifiers for rated currents of less than I ampere. These can be divided into three general classes: **a.** Point-contact diodes are better for high frequencies than junction diodes due to reduced minority-carrier storage effects and smaller rectifying areas. **b.** Junction diodes have better rectifying characteristics than point-contact types, especially in the reverse direction, and they are generally less noisy. **c.** Selenium diodes are small-area selenium rectifiers that have characteristics similar to selenium power rectifiers. Photodiodes are junction germanium diodes constructed so that light can be directed onto the crystal surface at the pn junction. The diode is reverse-biased, the saturation current comprising the dark current. Incident light causes photo-generated hole-electron pairs, some of which are "collected" through the junction, adding to the current. Phototransistors are similar except that the diode has either a point-contact collector or a junction-hook collector, either of which "multiplies" collected current. Varistors, or voltage-sensitive resistors, made of silicon carbide, have voltage-current characteristics that can be approximated by $I \approx AV^n$ for V > 5 volts. Units are available for values of n between about 3.5 and 7.0. Characteristics somewhat similar to this are obtained with pairs of dry-disk rectifiers wired in series, back-to-back (Fig. 1). Selenium rectifiers are used in this way for contact protection* in which service they offer a low resistance to high induced voltages but a high resistance to normal voltages. With this connection, the characteristic is essentially that of the reverse of one of the cells but is symmetrical in either direction. In the parallel front- to-back connection, the characteristic is like that of the forward of the individual cell, but symmetrical. Copper-oxide rectifiers are used in the latter way as symmetrical limiters for low voltages. Series back-to-back. Parallel front-to-back. Fig. 1—Connections for rectifier-type varistors. Silicon junction diodes have very-sharp reverse voltage breakdown characteristics and hence are also useful as voltage limiters. (Nonsymmetrical unless two are used in series back-to-back.) They are available with breakdown voltages in 20-percent-range steps from 6.8 to 470 volts. They can be used in a way similar to gas discharge voltage-regulator tubes to give a constant-voltage supply with varying input voltage or varying load current. ^{*} H. F. Herbig and J. D. Winters, "Investigation of the Selenium Rectifier for Contact Protection," Transactions of the American Institute of Electrical Engineers, vol. 70, port 2, pp. 1919–1923; 1951: also, Electrical Communication, vol. 30, pp. 96–105; June, 1953. Thermistors, or thermally sensitive resistors, are made of complex metallic-oxide compounds using oxides of manganese, nickel, copper, cobalt, and sometimes other metals. They are useful for temperature measurement and control, to compensate for positive temperature coefficient of resistance of metallic conductors, and for current surge suppression.* Vacuum or gas-filled sealed units are usable up to about 300° centigrade and air-exposed units to about 120° centigrade. The resistance decreases with increasing temperature, varying approximately exponentially with inverse absolute temperature. Cold resistances are between 500 and 500,000 ohms. #### pn junctions† Single-crystal semiconductors like germanium and silicon have little conductivity when pure, such conductivity being called *intrinsic*. Intrinsic conductivity increases exponentially with absolute temperature *T*, being,‡ for germanium, $$\sigma_i = 4.3 \times 10^4 \ \mathrm{exp} \ (-4350/T) \ \mathrm{ohm}^{-1} \ \mathrm{centimeter}^{-1}$$ and for silicon, $$= 3.4 \times 10^4 \text{ exp } (-6450/T) \text{ ohm}^{-1} \text{ centimeter}^{-1}$$ If very-small amounts of impurities are built into the crystal, substitutionally replacing some atoms of the semiconductor in the crystal lattice, such impurities may increase the conductivity. One atom of impurity for 10^9 to 10^5 atoms of semiconductor is used for practical purposes to bring the conductivity within the range of about 0.2 to 2000 ohm^{-1} centimeters $^{-1}$ (5 to 0.0005 ohm^{-1} centimeters resistivity). Pentavalent elements like antimony and arsenic (donors) make the semiconductor n-type and trivalent elements like indium and aluminum (acceptors) make the semiconductor p-type. When donor and acceptor impurities are both present in the same part of a single crystal, the effects tend to cancel. The conductivity becomes n- or p-type depending on whether the donors or acceptors, respectively, are present in excess. ^{*} J. W. Howes, "Characteristics and Applications of Thermally Sensitive Resistors, or Thermistors," Proceedings of the Institution of Radio Engineers, Australia, vol. 13, pp. 123–131; May, 1952: also Electrical Communication, vol. 32, pp. 98–111; June, 1955. [†] W. Shockley, "Electrons and Holes in Semiconductors," D. Van Nostrand Company, Inc., New York, N. Y.; 1950. [‡] E. M. Conwell, "Properties of Silicon and Germanium," Proceedings of the IRE, vol. 40, pp. 1327–1337; November, 1952. A single crystal of semiconductor may be n-type in one region and p-type in another region due to impurity density variation, the surface separating the two regions being called a pn junction. Nearly all of the interesting properties of semiconductors are associated with the electrical characteristics of pn junctions. These pn junctions have rectifying properties. At room temperature, the current through such a junction is related to the voltage across it, as $$I = I_s [(\exp 40V) - 1]$$ where $I_{\bullet} = \text{saturation current.}$ Fig. 2—Polarity for forward current in a pn junction. When a pn junction is biased in the forward direction (Fig. 2) making the p region positive with respect to the n region, holes are readily emitted from the p region (where they are plentiful and are called majority carriers) into the p region (where they are referred to as minority carriers) and conversely, electrons are emitted into the p region to become minority carriers there. These minority carriers, the electrons in the p region and holes in the p region, will recombine with some of the larger number of opposite-type-charge carriers, but not instantaneously; the time required for the number injected to decay to 1/p of its original value is called the lifetime of minority carriers. This lifetime is a characteristic of a particular crystal and is generally between a fraction of a microsecond and a few milliseconds, more perfect crystals giving the longer lifetimes. In the forward conducting direction, the charge carriers are practically unimpeded in their flow across the junction. When a pn junction is reverse-biased, the holes in the p region and the electrons in the n region are withdrawn away from the junction leaving a depletion layer that becomes wider as the voltage is increased. The only current that can flow arises from thermally generated electron—hole pairs that form in or near the junction. Electrons from such thermally generated pairs are drawn into the n region and holes into the p region. This reverse current is called the saturation current since it saturates at a very-low voltage and increases little with higher voltage (surface defects may cause reverse current to increase substantially with increase in voltage, but well-made semiconductor devices have junctions in which the current increases only slowly as the voltage is raised from about 0.1 to 40 volts). Being due to thermally generated electron—hole pairs, the saturation current increases exponentially with temperature. The theoretical breakdown voltage of a pn junction is approximately inversely proportional to the donor or acceptor density near the junction. Significant departures from this inverse relationship have been found. Nevertheless, an empirical relationship sometimes used as a guide is, for germanium, $$V_b \approx 96\rho_n + 45\rho_p$$ and for silicon, $\approx 39\rho_n + 8\rho_p$ where ρ_n , ρ_p = resistivity of n, p, regions in ohm-centimeters Surface leakage may cause breakdown at a considerably lower voltage. # Properties of germanium and silicon* | property | germanium | at °C | silicon | at °C | |--|------------------------|-------|------------------------|-------| | Atomic number | 32 | _ | 14 | | | Atomic weight | 72.60 | _ | 28.08 | | | Density in grams centimeter ⁻⁸ | 5.323 | | 2.328 | | | Energy gap in
electron-volts | 0.72 | 25 | 1.12 | 25 | | Temperature coefficient of energy gap in electron-volts °C ⁻¹ | -0.0001 | _ | -0.0003 | _ | | Mobility of electrons in centimeters ² volt ⁻¹ second ⁻¹ | 3600 | 25 | 1200 | 25 | | Mobility of holes in centimeters ² volt ⁻¹ second ⁻¹ | 1700 | 25 | 250 | 25 | | Melting point in °C | 936 | _ | 1420 | _ | | Linear thermal expansion coefficient
in °C ⁻¹ | 6.1 x 10 ⁻⁶ | 0-300 | 4.2 x 10 ⁻⁶ | 10-50 | | Thermal conductivity in calories sec-
ond ⁻¹ centimeter ⁻¹ °C ⁻¹ | 0.14 | 25 | 0.20 | 20 | | Specific heat in calories gram ^{−1} °C ^{−1} | 0.074 | 0-100 | 0.181 | 20-90 | | Dielectric constant | 16 | | 12 | | ^{*} E. M. Conwell, "Properties of Silicon and Germanium," Proceedings of the IRE, vol. 40, pp. 1327-1337; November, 1952. ### Transistors ### List of symbols $V_c = \text{collector voltage (quiescent value relative to base)}$ V_a = emitter voltage (quiescent value relative to base) $I_c = \text{collector current (quiescent value)}$ $I_a = \text{emitter current (quiescent value)}$ $I_{co} = \text{collector cutoff current } (I_c \text{ with } I_e = 0)$ $r_a = \text{emitter resistance (see Fig. 3)}$ r_b = base resistance (see Fig. 3) r_c = collector resistance (see Fig. 3) $r_b' = \text{high-frequency}$ (or extrinsic) base resistance (see Fig. 18) $r_b^{\prime\prime}$ = low-frequency component of base resistance (see Fig. 18) $\alpha = alpha$ (current multiplication factor) $= \left[\partial i_e / \partial i_e \right]_V$ $\alpha_0 = low-frequency alpha$ $\beta = \text{beta}$ $= \alpha / (1 - \alpha)$ $C_c = \text{collector capacitance (see Fig. 3)}$ $f_a = \text{alpha cutoff frequency (at which } \alpha = \alpha_0 / (2)^{\frac{1}{2}}$) $f_{\beta} = \text{beta cutoff frequency (at which } \beta = \alpha_0 / (2)^{\frac{1}{2}} (1 - \alpha_0)$ Fig. 3—Equivalent circuit for definition of r., rb, and rc. #### Point-contact transistors Point-contact transistors have two sharp pointed metal wires or whiskers pressed against the surface of a semiconductor, the contact points being in close juxtaposition. The whiskers are the emitter and collector connections and a soldered ohmic connection to the semiconductor is the base connec- tion. The construction is shown in Fig. 4. The semiconductor is generally n-type germanium that requires biasing polarities the same as for pnpjunction types. They are less useful than junction types because they are more noisy (≈ 50-decibel noise figure), give less power gain at low frequencies, have higher collector Fig. 4-Point-contact transistor. cutoff current, and tend to be unstable as amplifiers in common-emitter circuits because α is greater than unity. They are used principally in computer circuits where the latter characteristic and the high cutoff frequency are advantageous. #### **Junction transistors** Junction transistors are made in several different types, most of the differences arising out of the methods of manufacture. The basic type is the triode, which may be either pnp or npn. pnp triode: The most-common junction transistor; made either by alloying (fusing) or by etching and electroplating (surface-barrier technique). Alloyed transistors are made by placing a thin wafer cut from a semiconductor crystal, usually n-type germanium, between two small pieces of a suitable metal such as indium; this assembly is heated until the wafers melt and alloy with the semiconductor. Wires are attached to the metal dots to serve as emitter and collector connections and a soldered ohmic contact to the semiconductor serves as the base connection. The collector is made larger than the emitter to improve the collector efficiency. Such a unit is shown diagrammatically in Fig. 5. Surface-barrier transistors are made by electrolytically etching a semiconductor wafer with two jet streams and immed- iately thereafter plating two metallic spots thereon. The appearance is similar to the alloyed type except that the dimensions, especially of the base thickness and the thickness of the metal spots, is much smaller in the surface-barrier type. Fig. 5—Alloyed-junction transistor. **Power transistors** are made by the alloying process. In this case the base connection is made in the form of a ring around the emitter and close to it and the collector is soldered to a heat-conducting stud. Grown-junction npn triodes: Made with germanium and with silicon. Made by growing a single crystal, which is mainly *n*-type but has one or more thin layers that are *p*-type, cutting this into a number of small bars, each of which includes one *p*-layer separating two *n*-regions, and Fig. 6-Grown-junction non transistor. making welded or soldered connections to each of the three regions. Such a unit is shown diagrammatically in Fig. 6. Tetrodes: Germanium high-frequency tetrodes are made in the same way except that a second base connection is made to the same p-layer (Fig. 7). Interbase current lowers the base resistance to allow operation at considerably higher frequency than can be obtained with the same crystal used as a triode. Audio-frequency gain-control tetrodes also made in this way utilize the dependence of current gain α on interbase current for gain-control purposes. Fig. 7—Junction tetrode transistor symbol. (Construction of Fig. 6 with second connection to base.) #### **Special transistors** Several kinds of experimental junction transistors have been devised either for operation at higher frequencies or for negative-resistance characteristics useful in switching and pulse circuits. **Intrinsic-barrier transistor:** (pnip or npin) functions in the same way as the pnp or npn transistor, except that the intrinsic layer between the p and n regions of the collector junction reduces collector capacitance and allows the use of a low-resistivity base region, and therefore low base resistance, without lowering the collector breakdown voltage. The high-frequency limit for oscillation has been estimated to be about 1500 megacycles. In Fig. 8, a germanium *ni* crystal is grown by pulling from a melt and the p-type emitter and collector are formed by alloying indium into the *n* and *i* regions. Fig. 8—Intrinsic-barrier transistor. Unipolar transistor is so-called because its operation depends on the action of only one type of charge carrier, either electrons or holes, but not both, as does that of other junction transistors. Two ohmic connections called the source and drain are made to, say, n-type germanium, and these are connected in series with a direct-current power supply and load impedance. A p region called the gate surrounds the current path between source and drain where this path is very narrowly constricted, as shown in Fig. 9. The gate-to-source pn junction is biased in the reverse direction causing a depletion layer between them that still further constricts the current path from source to drain. The input signal voltage is superimposed on the gate bias. The varying gate voltage causes the cross-sectional area of the undepleted current path from source to drain to change, causing, in turn, a variation in output current. More like a vacuum tube than other transistors, with input voltage controlling output current, unipolar transistor gain is expressed as transconductance. The input impedance is high and output impedance is relatively low. Operation at high frequencies is possible because charge carriers move by drifting in an electric field, rather than by diffusion. Fig. 9-Unipolar transistor. **Hook-collector transistors** have an extra pn junction in the collector. The hook refers to the potential trap for electrons or holes caused by the pn junction, which results in current multiplication and an alpha greater than one. In one type of hook-collector transistor the n-type base region and the pn collector regions are grown into a crystal that is cut into small bars. The p-type emitter is formed by alloying a gold-gallium wire into the base region as shown in Fig. 10. Holes are emitted from the p-type emitter, diffuse through the n-type Fig. 10—Hook-collector transistor. base, are collected in he p-type hook region, and (since they change the potential of this region with respect to the n-type collector), cause electrons to be emitted in the opposite direction. These electrons diffuse through the p-type hook region and are collected into the base region. Alpha increases with emitter current and reaches 20 or 30 before collector dissipation becomes excessive. Very-simple switching circuits are possible with this transistor since only one transistor is needed for a bistable flip-flop. **Double-base** diode: Not usually referred to as a transistor, but is described briefly here because it exhibits negative-resistance effects similar to the hook-collector and point-contact transistors. Two ohmic base connections are made to an *n*-type crystal as shown in Fig. 11. A p region is formed by alloying with indium, for example. A bias voltage is applied between the base connections. Since the potential in the base region now varies with position, the p region can be biased positive with respect to a part of the base region in contact with it, but negative with respect to another part. The p region then emits holes in the former part and collects holes in the latter. This effect, and modulation of the conductivity of the n-region by injected holes, results in a negative-resistance region in the voltage—current characteristic between the p-region connection and one of the base-region connections. Simple switching circuits can be made with the double-base diode with the further possibility of relatively high power-dissipation capabilities*. Fig. 11-Double-base diode. #### **Amplification in transistors** The npn junction-triode transistor consists of two pn junction diodes (as described above) within a single crystal, the middle, or base region being Fig. 12-Transistor amplification process. common to both diodes (Fig. 12). The emitter-to-base
junction is biased in the forward (highly conducting) direction and the collector-to-base junction is biased in the reverse (poorly conducting) direction. Crossing the junction, the emitter-to-base current is composed of two parts, electrons emitted into the base region and holes into the emitter region. ^{*} R. F. Shea, "Principles of Transistor Circuits," John Wiley & Sons, Inc., New York, N. Y.; 1953. Electrons in the base region wander randomly while repelling one another (diffusion), rapidly spreading throughout that region. Those that wander to the collector junction are attracted across that junction by the strong electric field there. If the base region is narrow, only a few reach the base connection and the rest are collected. Collected electrons comprise emitter-to-collector current, whereas those not collected comprise undesired emitter-to-base current. Another source of undesired emitter-to-base current results from holes emitted from the base region into the emitter region. These would leave the base region negatively charged except that an equal number of electrons are forced out through the base lead to prevent such a charge buildup. The ratio of the desired emitted electron current to the total emitter current (emitter efficiency) can be made nearly one by more-heavily doping the emitter than the base so that the emitter region is strongly *n*-type with a high density of electrons whereas the base region is weakly p-type with only few holes. It can be seen that by proper design, the collector current can be nearly equal to the emitter current; small variations in emitter current (signal input) will then cause nearly equal variations in collector current. The signal power required for any given signal current is small because the emitter-to-base voltage variations are small, being of the order of millivolts. The output power, however, is high since the load voltage variations can be large (of the order of volts). In this way, power amplification of the order of 30 decibels is obtained. The action is the same in pnp transistors except that bias polarities are reversed and holes and electrons are interchanged. In point-contact transistors, the action is believed to be similar to that in the pnp-junction type, but is not as well understood. Holes are emitted from the emitter point into the n-type germanium, diffuse through it and are collected by the collector point. The collector current, however, is larger than the emitter current, possibly due to a hook mechanism (as described above). # Typical transistor characteristic curves The curves given in Figs. 13–17 are typical of the results obtained with various present-day transistors. Fig. 13—Collector-family curves for pointcontact-type transistor in common-base circuit. Fig. 14—Collector-family curves for germanium junction-type transistor in common-base (top) and common-emitter (below) circuits. ### **Transistors** continued Fig. 15—Emitter-family curves for germanium junction transistor. Fig. 16—Collector-family curves for germanium junction transistor in commonbase circuit at high temperature (85° C). Fig. 17—Collector-family curves for silicon grown-junction-type transistor in common-base (top) and common-emitter (below) circuits. Vc in valts ## Variation of characteristics for junction transistors #### **Emitter resistance** $r_e \approx c/I_e$ in ohms, where c is a constant. If $I_{m{e}}$ is in milliamperes, useful empirical values for c are c = 12 for low-power germanium alloyed types = 25 for germanium grown types = 35 for silicon grown types The other variations of r_e are either unimportant or unpredictable. Base resistance: Base resistance decreases with increasing I_e . The variation of base resistance with frequency can best be described by separating r_b into two parts, r_b' and r_b'' as shown in Fig. 18. $r_b' + r_b'' = \text{low-frequency base resistance}$ $r_b' = \text{high-frequency base resistance ("extrinsic base resistance")}.$ $$r_b' = \text{generally } r_b''/4 \text{ to } r_b''/10$$ r_b ' is an important criterion for high-frequency performance, ranking with f_α and C_c in this respect. For example, the maximum frequency at which oscillation can be obtained with alloyed transistors is $$f = (\alpha_0 f_\alpha / 8\pi r_b' C_c)^{1/2}$$ Fig. 18—Separation of two components of transistor base resistance. The product $r_b'C_c$ also enters into the denominator of calculated power gain for band-pass amplifiers at high frequencies.* Collector resistance: r_c decreases to half its 25-degree-centigrade value at about 85 degrees centigrade in most germanium types. In silicon the change is small. r_c decreases with increasing I_c . ^{*} J. B. Angell and F. P. Keiper, "Circuit Applications of Surface-Barrier Transistors," Proceedings of the IRE, vol. 41, pp. 1709–1712; December, 1953. Current gain*: α and β increase to a maximum at I_e between 1 and 10 milliamperes, the increase at low currents being generally small. At high I_e , the decrease is more rapid, which is important when high output power is desired, especially at low V_c . Power transistors are designed to minimize this effect. The magnitude of α decreases with increasing frequency and a phase shift is introduced. Magnitude and phase can be computed from the approximate formula $$\alpha \approx \frac{\alpha_0}{1 + j \left(f / f_{\alpha} \right)}$$ which is fairly accurate up to $f=f_{\alpha}$. As an example of the application of this formula, in a transistor with $\alpha=0.95$ and $f_{\alpha}=2$ megacycles, the α at 1 megacycle and the phase shift between collector and emitter currents is $$\alpha \approx \frac{0.95}{1+j(1/2)} = 0.76 - j 0.38 = 0.85 / - 26.6^{\circ}$$ The cutoff frequency for β (f $_{\beta}=0.707$ of low-frequency β) is approximately $$f_{\beta} \approx (1 - \alpha_0) f_{\alpha}$$ which is much lower than f_{α} . In the example above, it is approximately $$f_{\beta} \approx (1 - 0.95) 2 = 0.1$$ megacycle and $$\beta = \frac{0.95}{1 - 0.95}$$ (0.707) = 19 (0.707) = 13.4 at 100 kilocycles Current gain varies little with V_c as long as V_c is greater than 1 volt. Current gain generally increases with increasing temperature. In grown-junction silicon and germanium, β increases about 0.6 percent/degree centigrade between -40 and +150 degrees centigrade for silicon and between -40 and +50 degrees centigrade for germanium. At higher temperatures, β tends to increase more rapidly and α may exceed 1. In alloyed germanium above room temperature, β may rise slightly, remain constant, or fall, depending on the manufacturing process used, but α generally does not go above 1 at any temperature. ^{*} R. L. Pritchard, "Frequency Variations of Current-Amplification Factor for Junction Transistors," Proceedings of the IRE, vol. 40, pp. 1476–1481; November, 1952. Collector cutoff current: I_{co} increases exponentially with temperature (see Fig. 19). In silicon at room temperature, it is about 2 decades lower than in germanium. It also increases with collector voltage, generally because of minute surface contamination. Noise: Noise figure increases with emitter bias current and with collector bias voltages above about one volt and therefore low-noise amplifier stages should have $V_c \approx 1$ volt and I_e should be as low as I_{co} and stability considerations will permit. Noise figure is a minimum when the signal source resistance is approximately 1000 ohms, but the minimum is broad, so that resistances between 300 and 3000 ohms are usually satisfactory. Noise figure tends to decrease with increasing frequency as shown in Fig. 20. At low frequencies, the noise figure is inversely proportional to frequency (1/f noise) and differences between units becomes more pronounced. Quoted figures are usually measured at $V_c = 1.5$ to 2.5 volts $I_e = 0.5 \text{ milliampere}$ f = 1 kilocycle Fig. 19—Change of collector cutoff current with temperature. Fig. 20-Variation of noise figure with frequency. Typical values (1956) are between 10 and 20 decibels. #### Collector capacitance: $C_c \propto V_c^{-n}$ where n = 1/2 for step junctions (alloyed) = 1/3 for graded junctions (grown) Fig. 21—Depletion layer and effective baseregion width. This effect is due to space-charge-layer widening (Fig. 21). $C_{\rm c}$ increases slowly with increasing $I_{\rm e}$. Cutoff frequency: f_{α} increases with increasing collector bias voltage because widening of the space-charge layer* decreases the effective base region width (Fig. 21) and for f_{α} in megacycles, $$f_{\alpha} = C/W^2$$ where W =width of base region in mils C = 5.6 for germanium npn = 1.9 for silicon npn = 2.6 for germanium pnp = 0.4 for silicon pnp # Basic principles of biasing As in the electron-tube triode, the biasing of transistor triodes is fixed by two independent parameters but, whereas in the electron tube the simplest description of bias conditions results from considering the cathode electrode as common and the independent bias parameters as the grid voltage and plate voltage, in transistor triodes it is simplest to consider the base electrode as common and the independent bias parameters as the emitter current and ^{*} J. M. Early, "Effects of Space Charge Layer Widening in Junction Transistors," Proceedings of the IRE, vol. 40, pp. 1401–1406; November, 1952. collector voltage. Collector voltage biasing of transistors using a constant-voltage source of supply is similar to plate-voltage biasing of tubes. Emitter biasing of transistors, however, since it requires a constant bias current to be obtained generally from a constant-voltage source, must be treated differently than any electron-tube biasing problem. Because the emitter-to-base junction is a forward-biased diode, the voltage required for any given current is small, generally a few tenths of a volt. For stable fixed
emitter-current bias, a much larger supply voltage should be used together with a current-determining series resistor to provide, in effect, a constant-current source not seriously affected by transistor characteristics or supply-voltage variations. For biasing purposes, the base electrode is considered common, and the emitter current and collector-to-base voltage are fixed whether the base electrode is common to input and output signals or not, just as in the analogous common-grid and common-plate (cathode-follower) operation of tubes. Common-emitter operation of junction transistors is used often and requires that the direct-current circuit consisting of resistors, inductors, and transformer windings hold the average emitter current and collector-to-base voltage substantially constant while the alternating-current circuit, which includes capacitors as well, supplies the signal alternating-current to the base and the output alternating-current is taken from the collector. Similar considerations apply for grounded-collector operation. #### ■ Transistor circuits In this chapter are given in condensed form descriptions of the various types of circuits in which transistors are operated together with design information enabling the determination of the circuit parameters. The following symbols are used. A_4 = current amplification $A_{r} = \text{voltage amplification}$ $a = r_m/r_c$ e_a = signal input voltage G = power gain i_{e0} = collector current with i_e = 0 $i_1 = load current$ r_b = base resistance r_c = collector resistance $r_{\bullet} = \text{emitter resistance}$ r_a = generator resistance $r_i = input resistance$ $r_1 = load resistance$ r_m = equivalent emitter-collector transresistance $r_o = \text{output resistance}$ $y_i = load admittance$ $z_1 = load impedance$ $\alpha = \text{short-circuit current multiplication factor}$ $\Delta = determinant$ # Basic circuits * The triode transistor is a 3-terminal device and is connected into a 4-terminal circuit in any of 3 possible methods, as illustrated by the charts of Figs. 1–3. ^{*} R. F. Shea et al, "Principles of Transistor Circuits," John Wiley & Sons, Inc., New York, N. Y.: 1953. Also, Staff of Bell Telephone Laboratories, "The Transistor, Selected Reference Material," Bell Telephone Laboratories, New York, N. Y.: 1951. Also, W. H. Duerig, et al, "Transistor Physics and Electronics," Applied Physics Laboratory of Johna Hopkins University, Baltimore, Md.: 1953. continued Basic circuits | Fig. 1—Common-base circuit. | cost. | | (| |---|---|--|---| | $\Delta = n_1(r_c - r_m + r_1 + r_2) + r_2 (r_c + r_1)$ | 1 + 12 (to + 12) | | | | Stability afterion: | ;
;
; | *
*
* | ~ | | $\frac{r_n}{r_n + n} < 1 + \frac{r_0 + r_0}{r_0} + \frac{r_0 + r_0}{r_0 + r_0}$ | $\frac{r_0+r_0}{r_0+r_0}$ | | \ | | | exact formula | approximate formulas | Jas | | Conditions
for validity | | $r_a \ll r_c - r_m$
$r_b \ll r_c$ | $t_{\ell} \ll f_{\ell} - f_{m}$ $t_{b} \ll f_{\ell}$ $t_{\ell} \ll f_{\ell}$ $t_{\ell} \ll f_{\ell} \ll f_{\ell} - f_{m}$ | | Input
resistance = r; | $r_0 + r_0 - \frac{r_0 \left(r_0 + r_m \right)}{r_1 + r_0 + r_0}$ | $r_a + r_b \cdot \frac{r_c(1-a) + r_1}{r_c + r_1}$ | r. + r. (1 – a) | | Output resistance = r _o | $r_c + r_b - \frac{r_b \left(r_b + r_m \right)}{r_g + r_e + r_b}$ | r_{c} , $r_{c} + r_{b} + r_{d}$ | $r_c \cdot \frac{r_c + r_b (1 - a) + r_g}{r_c + r_b + r_g}$ | | Voltage
amplification = A _v | $\frac{(r_m + r_b) \ r_t}{r_b + r_c + r_t} + r_e (r_c + r_t)$ | $\frac{a \cdot t_c \cdot t_1}{t_c[t_a + t_b(1 - a)] + t_1[t_c + t_b]}$ | $\frac{a n}{r_b + r_b (1 - a)}$ | | Current
amplification = A; | $\frac{r_n+r_0}{r_0+r_0+r_1}$ | $\frac{a}{1+a/r_c}$ | ō | | Power
gain = G | $\frac{(r_m + r_0)^2 r_1}{[r_0 + r_2 + r_1] [r_0 (r_0 - r_m + r_1 + r_1) + r_4 (r_0 + r_1)]}$ | $\frac{a^{2} (c^{2} t_{1})}{[t_{2} + t_{1}] t_{2} [t_{2} \times t_{3} (1 - a) + t_{1} t_{2} + t_{3}]}$ | $\frac{a^2 n}{n + n (1 - a)}$ | Fig. 2—Common-emitter circuit. | $\Delta = r_0(r_c - r_m + r_e + r_l) + r_e (r_c + r_l)$ | $v_1 + r_2 (r_2 + r_1)$ | | | |---|---|--|--| | Stability criterion: | | `
~
~. | ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | $\frac{r_n}{r_c + n} < 1 + \frac{r_o}{r_o + r_g} + \frac{r_e}{r_o + r_g}$ | 10 69 | | \ | | | exact formula | approximate formulas | ulas | | Conditions
for validity | | $t_{\mathbf{r}} \ll t_{\mathbf{c}} - t_{\mathbf{m}}$ $t_{\mathbf{b}} \ll t_{\mathbf{c}}$ | $c \leqslant c - c_{\mathbf{m}}$ $c \leqslant c_{\mathbf{r}} - c_{\mathbf{m}}$ $c \leqslant c_{\mathbf{r}}$ $c_{\mathbf{r}} \leqslant c_{\mathbf{r}} - c_{\mathbf{m}}$ | | Input
resistance = r; | $r_e + r_b + \frac{r_e (r_m - r_e)}{r_l + r_e + r_c - r_m}$ | $n + r_e \cdot \frac{r_e + n}{r_e \cdot (1 - o) + n}$ | 0-1+0 | | Output
resistance = ro | $t_c + t_e - t_m + \frac{t_c}{t_0} \frac{(t_m - t_e)}{+ t_0 + t_e}$ | $r_{e} (1 - o) + r_{e} \cdot \frac{r_{m} + r_{g}}{r_{e} + r_{b} + r_{g}}$ | $r_{c} (1-a) + r_{s} \cdot \frac{r_{m} + r_{g}}{r_{e} + r_{b} + r_{g}}$ | | Voltage
omplification = A, | $\frac{-r_1 (r_m - r_e)}{r_b (r_c - r_m + r_e + r_l) + r_e (r_c + r_l)}$ | $\frac{-a t_{e} n}{t_{e} [t_{e} + r_{b} (1 - o)] + r_{t} (r_{e} + r_{b})}$ | 10 - 0 11 10 10 10 10 10 10 10 10 10 10 10 1 | | Current $amplification = A_i$ | $\frac{r_m-r_e}{r_c-r_m+r_e+r_l}$ | $\frac{o}{1-o+r_1/r_c}$ | 0 | | Power
gain = G | $\frac{r_1 (r_m - r_s)^2}{(r_c - r_m + r_e + r_t) [r_0(r_c - r_m + r_e + r_t) + r_e(r_c + r_t)]}$ | $\frac{\alpha^2 r_c^2 n}{[r_c(1-\sigma)+r_1] r_c[r_c+r_0(1-\sigma)] + r_1[r_c+r_0)}$ | $\frac{\alpha^2 n}{(1-\alpha) \left[r_4 + r_6 \left(1-\alpha\right)\right]}$ | | ÷ | |------| | į | | è | | ģ | | 9 | | ģ | | Ē | | ខ្លួ | | I | | e, | | Ĩ | | 5 | | |-----|---| | + | | | ي | | | ٥ | | | + | | | 5 | , | | + | | | 2 | | | + | | | Ē | | | - 1 | | | يى | • | | č | | | H | | | Δ | | | | | Stability criterion: $$\frac{r_m}{r_e} < 1 + \frac{r_e + r_l}{r_b + r_g} + \frac{r_e + r_l}{r_e}$$ | * | | |---|--| | | | | 4 | | | | | (S) | ^ | | |----------|---| | | • | | ~~°° | | (C) approximate formulas | , , , , , , , , , , , , , , , , , , , | | |---------------------------------------|--| | V-0*0- | | | | - | |----------|--------| | | | | <u>~</u> | - Inch | | exact formula |
$r_0 + r_0 + \frac{r_0 (r_m - r_0)}{r_1 + r_0 + r_0 - r_m}$ | |---------------|---| | | : | $r_e \ll r_c - r_m$ $r_b \ll r_c$ $r_e \ll r_t \ll r_c - r_m$ 2 1 10+10-10+11 14 + 11 $r_{\mathbf{c}} \ll r_{\mathbf{c}} - r_{\mathbf{m}}$ $r_{\mathbf{b}} \ll r_{\mathbf{c}}$ $r_e + r_c (1 - a) \cdot \frac{r_a + r_b}{r_o + r_c}$ | | $r_b + r_c + \frac{r_c (r_m - r_c)}{r_1 + r_e + r_c - r_m}$ | $r_c + t_c - t_m + \frac{r_c t_m - r_c}{r_0 + r_b + r_c}$ | |----------------------------|---|---| | Conditions
for validity | Input resistance $= r_i$ | Output
resistance = r _o | | ; | | |-------------------|----------| | | | | | <u> </u> | | , | | | | | | ي | | | | | | utput
sistance | | | utpu
sista | - | | | | | $r_b t_c - r_m + r_t + r_l) + r_c (r_t + r_l)$ | 21 - 21 - 21 | |--|-------------------------------| | Voltage
amplification = A _* | Current amplification $= A_i$ | | $(1-a)+n/r_e$ | $\frac{n \epsilon}{+n! \left[\epsilon_0 + \epsilon_0 \left(1 - \sigma \right) + n \right]}$ | |---------------|--| | 1 | + | |------|-----| | | 9 | | | ı | | | Ξ | | | ē | | r 1° | + | | 2 | | | | [1] | | | + | $$\frac{n \, r_c}{\alpha + n} \left[r_c + r_b \left(1 - \frac{1}{\alpha} \right) \right]$$ $$\frac{n}{[r_e (1-a)+n]} [n+n (1)]$$ $[r_c - r_m + r_e + r_l] [r_b (r_c - r_m + r_e + r_l) + r_c (r_e + r_l)]$ gain = G Power rc2 17 $$\frac{n}{n} \epsilon_0$$ $$\frac{n}{\alpha} = \frac{n}{\alpha} + \frac{n}{\alpha}$$ $$\vdash r_b (1 - a)$$ $$[u + (b - a) + u]$$ 1. + 1. (1 - a) + 1. - $(r_0 + (r_0 + r_0)) (1 a)$ # Matrixes for transistor networks Fig. 4 gives the properties of properly terminated 4-terminal networks in terms of their matrix coefficients, Fig. 5 gives transistor matrixes and Fig. 6 gives the matrixes of 3-terminal networks. In these figures, $$z_i = load impedance$$ $$z_g = source impedance$$ $$\Delta^z = z_{11}z_{22} - z_{12}z_{21}$$ $$\Delta^{\nu} = y_{11}y_{22} - y_{12}y_{21}$$ $$\Delta^h = h_{11}h_{22} - h_{12}, h_{21}$$ $$d = h_{11}h_{22} - h_{12}h_{23} - h_{12} + h_{21} + 1$$ $$\approx 1 + h_{21}$$ for junction transistors Note that for junction transistors, $$\Delta^h \ll -h_{21}$$ and $$h_{12} \ll 1$$ ### Matrixes for transistor networks continued Fig. 4—Transistor terminal characteristics in terms of 4-terminal matrix coefficients. | | input
impedance = z; | output | voltage | current amplification = A; | |---|---|---|---
---| | z | $\frac{\Delta^z + z_{11}z_i}{z_{22} + z_i}$ | $\frac{\Delta^z + z_{22}z_g}{z_{11} + z_g}$ | $\frac{z_{21}z_t}{\Delta^2 + z_{11}z_t}$ | $\frac{z_{21}}{z_{22}+z_1}$ | | у | $\frac{y_{22}+y_l}{\Delta^y+y_{11}y_l}$ | $\frac{y_{11}+y_g}{\Delta^y+y_{22}y_g}$ | $\frac{-y_{21}}{y_{22} + y_{1}}$ | $\frac{-y_{21}y_{l}}{\Delta^{y}+y_{11}y_{l}}$ | | h | $\frac{\Delta^{h}+h_{11}y_{l}}{h_{22}+y_{l}}$ | $\frac{h_{11}+z_{\sigma}}{\Delta^{h}+h_{22}z_{\sigma}}$ | $\frac{-h_{21}z_{l}}{h_{11}+\Delta^{h}z_{l}}$ | $\frac{-h_{21}y_i}{h_{22}+y_i}$ | | g | $\frac{g_{22}+z_l}{\Delta^g+g_{11}z_l}$ | $\frac{\Delta^g + g_{22} y_g}{g_{11} + y_g}$ | $\frac{g_{21}z_{l}}{g_{22}+z_{l}}$ | $\frac{g_{21}}{\Delta^g+g_{11}z_l}$ | | a | $\frac{\sigma_{11}z_l + \sigma_{12}}{\sigma_{21}z_l + \sigma_{22}}$ | $\frac{\sigma_{22}z_g + \sigma_{12}}{\sigma_{21}z_g + \sigma_{11}}$ | $\frac{z_t}{\sigma_{12} + \sigma_{11}z_t}$ | $\frac{1}{\sigma_{22}+\sigma_{21}z_1}$ | | Ь | $\frac{b_{22}z_{i}+b_{12}}{b_{21}z_{i}+b_{11}}$ | $\begin{array}{c} b_{11}z_g + b_{12} \\ b_{21}z_g + b_{22} \end{array}$ | $\frac{z_i \Delta^b}{b_{12} + b_{22} z_i}$ | $\frac{\Delta^b}{b_{11}+b_{12}z_l}$ | Fig. 5—Transistor matrixes. $\Delta = r_e \, \sigma_i + r_c [r_e + \sigma_i \, (1 - \sigma_i)]$ | | common emitter | | common base | | common collector | |------------|---|---------|---|---------------------|--| | , | r.+n r. | | r, + r, | e | $r_{10} + r_{2}$ $r_{2}(1-0)$ | | • | $\int_{\Gamma_{\theta}} -\sigma r_{\theta} \qquad r_{\theta} + r_{\theta}(1-\sigma)$ | | L18 + a1e | L2+ ε2 | $\begin{bmatrix} r_e & r_e + r_e(1-o) \end{bmatrix}$ | | ` | | | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | e | $\frac{1}{\sqrt{1- \alpha }} \int_{-1}^{1- \alpha } \frac{1}{r_0(1-\alpha)} d\alpha$ | | | $\Delta = \begin{bmatrix} - (r_e - \alpha r_c) & r_e + r_b \end{bmatrix}$ | | $\lfloor - \iota_b + \alpha_c brace$ | Le + re | 1 -1.e 10+1.e | | | ٥, ۵ | - | ∇ | و | [(0 − (1) ₂ , | | 4 | $\frac{1}{r_e + r_c(1-\alpha)} \left[- \left(r_e - \alpha r_e \right) \right]$ | 10 + 1c | $[-(r_b+\sigma r_o)]$ | - | $r_e + r_o(1-o)$ $-r_e$ | | | 1 | | <u>-</u> | [₆] | [- o-1] - I | | D 3 | $r_e + r_b$ $r_e - \sigma r_c$ Δ | r. + r. | $\Box r_b + ar_e$ | 7 | $r_0 + r_c$ r_c Δ | | , | \rac{1}{\operatorname{1}{ | - | ν + ν.
 | σ | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | | | $r_e - \sigma r_e$ 1 $r_e + r_e (1 - \sigma)$ | 13 - OF | _
 | 13 + r _o | r_{c} 1 $r_{o} + r_{c}(1 - a)$ | | | $\sum_{l} r_e + r_c(1-\alpha) \qquad \Delta$ | _ | اري + ده
ا | 4 | $\begin{bmatrix} r_e + r_e(1-a) & \Delta \end{bmatrix}$ | | -0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | e | | | $r_o(1-a)$ 1 r_b+r_c | #### Matrixes for transistor networks continued Fig. 6—Matrixes of 3-terminal networks exactly expressed in terms of common-base h parameters. | | commo | n base | commo | emitter | comme | on collector | |---|--------------------------------------|------------------------------------|--------------------------------------|--|---------------------------|----------------------------| | | Δ ^h h ₂₂ | h ₁₂
h ₂₂ | Δ ^k
h ₂₂ | $\frac{\Delta^h-h_{12}}{h_{22}}$ | 1
h ₂₂ | $\frac{1+h_{21}}{h_{22}}$ | | z | - h ₂₁ | 1
h ₂₂ | $\frac{\Delta^h + h_{21}}{h_{22}}$ | d
h ₂₂ | $\frac{1-h_{12}}{h_{22}}$ | d
h ₂₂ | | | $\frac{1}{h_{11}}$ | $-\frac{h_{12}}{h_{11}}$ | $\frac{d}{h_{11}}$ | $\frac{h_{12}-\Delta^h}{h_{11}}$ | <u>d</u> | $-\frac{1+h_{21}}{h_{11}}$ | | у | h ₂₁ | Δ ^λ
h ₁₁ | $-\frac{\Delta^h+h_{21}}{h_{11}}$ | $\frac{\Delta^h}{h_{11}}$ | $\frac{h_{12}-1}{h_{11}}$ | $\frac{1}{h_{11}}$ | | | h ₁₁ | h ₁₂ | $\frac{h_{11}}{d}$ | $\frac{\Delta^h - h_{12}}{d}$ | h ₁₁ | $\frac{1+h_{21}}{d}$ | | h | h ₂₁ | h ₂₂ | $-\frac{h_{21}-\Delta}{d}$ | h h ₂₂ | $\frac{h_{12}-1}{d}$ | h ₂₂ d | | | <u>h₂₂</u> Δ ^h | $-\frac{h_{12}}{\Delta^5}$ | $\frac{h_{22}}{\Delta^h}$ | $\frac{h_{12}-\Delta^h}{\Delta^h}$ | h ₂₂ | $-(1+h_{21})$ | | g | $-\frac{h_{21}}{\Delta^h}$ | $\frac{h_{11}}{\Delta^h}$ | $\frac{h_{21}+\Delta^h}{\Delta^h}$ | $\frac{h_{11}}{\Delta^h}$ | 1 — h ₁₂ | h ₁₁ | | | $-\frac{\Delta^h}{h_{21}}$ | $-\frac{h_{11}}{h_{21}}$ | $\frac{\Delta^h}{\Delta^h + h_{21}}$ | $\frac{h_{11}}{\Delta^h + h_{21}}$ | $\frac{1}{1-h_{12}}$ | $\frac{h_{11}}{1-h_{12}}$ | | a | - h ₂₂ h ₂₁ | $-\frac{1}{h_{21}}$ | $\frac{h_{22}}{\Delta^h + h_{21}}$ | $ rac{d}{\Delta^h + h_{21}}$ | $\frac{h_{22}}{1-h_{12}}$ | $\frac{d}{1-h_{12}}$ | | | 1
h ₁₂ | $\frac{h_{11}}{h_{12}}$ | $\frac{d}{\Delta^h-h_{12}}$ | $\frac{h_{11}}{\Delta^h-h_{12}}$ | $\frac{d}{1+h_{21}}$ | $\frac{h_{11}}{1+h_{21}}$ | | Ь | h ₂₂ h ₁₂ | $\frac{\Delta^h}{h_{12}}$ | $\frac{h_{22}}{\Delta^h - h_{12}}$ | $\frac{\Delta^{h}}{\Delta^{h}-h_{12}}$ | $\frac{h_{22}}{1+h_{21}}$ | $\frac{1}{1+h_{21}}$ | #### Typical transistor characteristics Typical values of impedances and gains for junction-type and point-contacttype transistors are given in Fig. 7. Fig. 7—Transistor characteristics (as of 1956). | | | commo | n base | common | emitter | common collector | | |--|----------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|---------------------| | | | point
contact | junction | point
contact | junction | point
contact | junction | | Maximum volt plification = $r_g = 0$ and r_l | A, with | 1.9 × 10 ² | 1.7 × 10 ⁴ | -1.9×10² | −1.7×10 ⁵ | 1 | 1 | | Maximum curreplification = r _l = 0 | | +2.5 | +0.95 | - 1.7 | 19 | +0.67 | +19 | | Input resis- | $r_l = 0$ | 8 | 35 | -5 | 750 | -5 | 120 | | tance = r_i
in ohms | $r_l = \infty$ | 200 | 270 | 200 | 270 | 1.5 × 10 ⁴ | 5 × 106 | | Output resis- | $r_g = 0$ | 6 × 10 ² | 6.8 × 10 ⁵ | 6 × 10 ² | 7 × 10 ⁵
 7.5 | 37 | | $tance = r_o$ $in ohms$ | $r_g = \infty$ | 1.5×10^{3} | 5 × 10 ⁶ | -2.2×10^{4} | 2.5×10^{3} | -2.2×10^{4} | 2.5 × 10 | | Matched inputance in ohms | | 37 | 100 | Unstable | 450 | Unstable | 6 × 10 ⁴ | | Matched outp | | 3000 | 2 × 10 ⁶ | Unstable | 4 × 10 ⁵ | Unstable | 3 × 10 ³ | | Typical equivalent generator resistance = r_g in ohms | | 300 | 300 | 300 | 300 | 2 × 10 ⁴ | 2 × 10 ⁴ | | Small-signal p
gain = G wit
typical r _g and | h | 20 | 25 | 35 | 40 | 13 | 12 | #### Cascade, series, and parallel circuits Fig. 8 gives the 6 possible forms of equations relating the terminal voltages and currents of a 4-terminal network. The definitions of the z and h matrix coefficients are also apparent from equations in Fig. 8A and C. The definitions of the y, g, a, and b matrix coefficients may be found from equations B, D, E, and F, respectively, of Fig. 8. The use of matrices will frequently simplify the calculations required when combining networks, as indicated in the accompanying diagrams. ## Cascade, series, and parallel circuits continued Fig. 8—Use of matrixes in combining transistor circuits. | network configuration | 4-pole equations | |--|--| | A. Series (add matrixes) e ₁ 2 e ₂ 2 | $e_1 = z_{11}i_1 + z_{12}i_2$ $e_2 = z_{21}i_1 + z_{22}i_2$ | | B. Parallel (add matrixes) | $i_1 = y_{11}e_1 + y_{12}e_2$ $i_2 = y_{21}e_1 + y_{22}e_2$ | | C. Series-parallel (add matrixes) o e 1 2 e 0 1 2 0 1 2 0 1 2 0 1 1 2 2 | $e_1 = h_{11}i_1 + h_{12}e_2$ $i_2 = h_{21}e_1 + h_{22}e_2$ | | D. Parallel—series (add matrixes) | $i_1 = g_{11}e_1 + g_{12}i_2$
$e_2 = g_{21}e_1 + g_{22}i_2$ | | E. Cascade (multiply matrixes) | $e_1 = a_{11}e_2 - a_{12}i_2$ $i_1 = a_{21}e_2 - a_{22}i_2$ | | F. Cascade (multiply matrixes) | $e_2 = b_{11}e_1 - b_{12}i_1$ $i_2 = b_{21}e_1 - b_{22}i_1$ | # Duality and electron-tube analogy | ig. 9—Current-voltage duals. voltage aperation | Courtesy of Bell System Technical Journal. current operation | |---|--| | | | | A. Constant-voltage supply. | Constant-current supply. | | —-(I —- | -1- | | Ε | I'= E/r | | 3. Series battery and resistance. | Canstant-current supply and | | | resistance in parallel. | | | | | E R | Ř' | | _ | I'=E/r R'=r²/R | | C. Series bottery and resistance. | Series battery and resistance. (Equivalent to | | | constant-current supply B obove by Thevenin's theorem). | | | | | Ë R. | E R | | | $E'=(r/R) R'=r^2/R$ | |); Resistance. | Resistance. | | — V V V —— | | | | $R'=r^2/R$ | | Power-sensitive resistance with positive temperature coefficient. | Power-sensitive resistance with negative temperature coefficient | | 1 1/ | 1 1/ | | ε / | r V | | | | | <u> </u> | F' | | | I'= E/r E'= rI | | . Short-circuit-stable negative resistonce. | Open-circuit-stable negative resistance | | | | | ε | r r | | | | | I | E' | | | I'=E/r E'=rI | | 6. Copacitance | Inductance | | (| | | Ċ | L'
L'=r ² C | | f. Ideal transformer of impedance ratio 1: a^2 | Ideal transformer of impedance ratio a2:1 | | — E |]] _ | | 5 <u>}</u> | { | | 1: a2 | g ² :1 | #### Duality and electron-tube analogy continued Fig. 9—Continued. The transistor is current-operated, in circuit design, it is possible to replace the constant-voltage source of the electron tube with a current source. This principle (called duality) may be extended by replacing elements with given voltage characteristics by elements having equivalent current characteristics.* Fig. 9 is a list of current-voltage duals. It is sometimes possible, when consideration is given to loading effects, to convert electron-tube circuits directly to junction-transistor circuits by using the electron-tube analogy shown in Fig. 10. * R. L. Wallace, Jr. and G. Raisbeck, "Duality as a Gulde in Transitor Circuit Design," Bell System Technical Journal, vol. 30, pp. 381–417; April, 1951. not voltage-operated. As a guide Fig. 10—The 3 basic transistor connections are at the left and the electron-tube equivalent circuits at the right. | transistor circuit | electron-tube equivolent | |--------------------|--------------------------| | Common base. | Grounded grid. | | Common emitter. | Grounded cathode. | | Comman collector. | Cathode-follower. | #### Small-signal amplifiers #### General Small-signal amplifiers may be designed using the formulas in the preceeding section. It must be remembered that the transistor is a bilateral device; any change in the output circuit will affect all preceeding stages. In the application of point-contact transistors, care must be taken to insure stability. Junction transistors have $\alpha < 1$ and, therefore, should not cause instability troubles at low frequencies. #### Biasing In both Fig. 11A and B, battery polarity is shown for pnp transistors. The polarity is reversed for npn transistors. Fig. 11-Transistor biasing methods. In Fig. 11, $$\begin{aligned} e_3 &\equiv e_1 + e_2 \\ e_1 &\equiv e_3 r_2/(r_3 + r_2) \\ e_2 &\equiv e_3 r_3/(r_3 + r_2) \end{aligned}$$ The branch currents in Fig. 11B are: $$\begin{split} i_{e} &= \frac{i_{e0} \; (1 + r_{1}/r_{2} + r_{1}/r_{3}) \; + \; \alpha e/r_{2}}{1 \; - \; \alpha \; + \; r_{1}/r_{2} \; + \; r_{1}/r_{3}} \\ i_{e} &= \; (i_{e} \; - \; i_{e0}) \, / \; \alpha \\ i_{b} &= \; i_{e} \; (1 \; - \; \alpha) \; - \; i_{e0} \\ \end{split}$$ where $i_{e0} = \; \text{collector current when} \; i_{e} = 0.$ #### Small-signal amplifiers continued #### Coupling circuits Transistors may be cascaded in much the same manner as electron tubes. The common-base, common-emitter, or common-collector configurations may be used. The stages may be coupled by transformers or by *R*–C networks Unlike the unilateral electron tube, the transistor is bilateral and essentially a current-operated device. In addition, the transistor (except in common-collector circuits) generally has an input impedance that is comparable to or lower than the output impedance. It is important that care be taken to match impedances between stages. The common-collector stage is a useful impedance-matching device and in view of the efficiency of the transistor, it can be used for impedance matching in place of a transformer. The equations given in Figs. 1–3 may be used to determine the interstage transformation ratios. Any analysis of a transistor amplifier on a stage-by-stage basis is at best but a rough approximation. For accurate analysis, the matrix methods described above are available. #### Large-signal operation #### Output stage * The transistor output stage has two power limitations: - **a.** The maximum voltage that can be applied between the collector and base of the transistor. - **b.** The temperature rise in the transistor. The second limitation is especially important, because it can lead to a "runaway" effect. The higher the temperature, the higher the i_{e0} , which, in turn, leads to higher temperature and ultimately to failure of the transistor. It is possible to obtain efficiencies of the order of 47 percent with class-A rransistor amplifiers. However, when transistors are used in power stages, it is advisable to use class-B amplification, since the output can approach 3 times the total dissipated power, which is equivalent to 6 times the allowable dissapation of each unit. Furthermore, the no-signal standby power is negligible in the class-B circuit. The output circuit for the class-B transistor amplifier can be analyzed by the same methods used for the conventional electron-tube equivalents. ^{*} P. I. Richards, "Power Transistors, Circuit Design and Data," Transistor Products, Inc., Waltham, Mass. #### Large-signal operation continued For a class-B transistor amplifier with sinusoidal driving voltage, $$P = e_c^2/2r_I$$ where P = power output r₁ = reflected
load resistance to one-half the primary $$\eta = \frac{\pi}{4(1+\pi \; r_l i_{c0}/e_c)}$$ where η is the efficiency at maximum power-output levels. In actual cases η will be 65 to 75 percent. The equivalent circuit for large-signal operation is given in Fig. 12. D. Farward and reverse resistances. Fig. 12—Large-signal transistor operation. Symbol r_f is the dynamic resistance of the emitter diode biased in the forward conducting direction and r_r is the dynamic resistance of the collector diode blased in the reverse direction. #### **Complementary symmetry** A class-B transistor amplifier can be constructed without the need for a separate phase inverter or a push-pull output transformer. This can be done by using a pnp and an npn transistor as shown in Fig. 13. The pnp unit will amplify the negative part of the input signal and the npn transistor will amplify the positive part. In this manner, phase inversion is automatically accomplished. The positive and negative signals are combined by coupling the two outputs. Fig. 13—Complementary symmetry for pushpull stage. #### Negative resistance #### **Trigger circuits** Point-contact and hook-collector transistors have an α that is greater than unity. #### Negative resistance continued This can give rise to a negative input resistance that can be utilized in switching or regenerative circuits. Fig. 14 illustrates the typical input characteristic of a common-base amplifier. The "N" curve shown in Fig. 14 has counterparts for the common-emitter and the common-collector configurations. These are all the result of equivalent transistor properties and only the common-base curve will be considered in this discussion. Fig. 14—Input resistance of a common-base transistor amplifier. **Monostable operation** is obtained if the load line intersects a positive-resistance portion only once, either in the saturation region or in the cutoff region. **Bistable operation** is obtained when the load line intersects a positive-, a negative-, and again a positive-resistance region. Astable operation is obtained when the load line intersects only the negative-resistance part of the characteristic. A circuit that may be used as an astable or monostable trigger is shown in Fig. 15. The emitter current is: $$i_e = \frac{r_c e_c}{r_l (r_b + r_c + r_l)} \exp - \frac{(r_b' + r_l) t}{r_b' r_l C}$$ The period of the pulse is: $$t = \frac{r_b r_l C}{r'_b + r_l} \ln \frac{r_c [a (r_l + r'_b) - r_b]}{r_l (r'_b + r_c + r_l)}$$ Fig. 15—Astable or monostable trigger circuit. #### Negative resistance continued #### Oscillators Oscillators may be grouped into two classes: - a. Four-terminal or feedback oscillators. - b. Two-terminal or negative-resistance oscillators. The feedback oscillators may be constructed with either point-contact or junction transistors. The design may be based on electron-tube circuit theory and analogy or duality (described earlier). Fig. 16---Oscillator circuits using negative-resistance characteristic of transistor. The point-contact and the hook-collector transistor can be used as a two-terminal oscillator by placing a resonant circuit in series with the base lead (Fig. 16A), or in parallel with the emitter resistance (Fig. 16B), or in parallel with the collector resistance (Fig. 16C). #### Video-frequency ampliflers #### Low-frequency compensation A transistor amplifier may be compensated to give an improved low-frequency response by splitting the collector load and bypassing a portion of this split load. The condition for constant current flowing in the input resistance of the next stage is $$\frac{r_1 + r_2/(1 + \omega^2 C_1^2 r_2^2)}{r_i} = \frac{\omega C}{(1 + \omega^2 C_1^2 r_2^2) (r_2^2 \omega C_1)}$$ where r_1 = unbypassed portion of collector load r_2 = bypassed portion of collector load C_1 = bypass capacitor C = coupling capacitor to following stage r_i = input resistance of following stage when $r_2 \approx r_1 \gg 1/\omega C_1$, the above equation becomes $r_1/r_i \approx C/C_1$ #### **High-frequency compensation** Transistor video-frequency amplifiers are generally capacitor-coupled because of the bandwidth limitations of impedance-matching transformers. The common-emitter configuration permits reasonable impedance matching and is therefore best suited for this application. The input equivalent circuit of a common-emitter stage for high frequencies is shown in Fig. 17. The input impedance is approximately $$z_i = r_3 + r_3/[1 + j(10f/f_{\alpha 0})]$$ where, for most transistors currently available for use as video amplifiers, $$r_3 = r_4$$ $$2\pi f_{\alpha 0} r_{4} = 10$$ $$C_{3}r_{4} = 10/2\pi f_{a0}$$ Fig. 17—Equivalent circuit. High-frequency compensation may be obtained if an inductance L is placed in series with the collector load resistance r_1 . The value of the compensating L may be obtained from the following equations. #### Video-frequency amplifiers continued $$|A_i| = \left(\frac{r_1^2 + \omega^2 L^2}{A^2 + B^2}\right)^{1/2} \times \frac{1}{\left\{ [(1/\alpha_0) - 1]^2 + [(1/\alpha_0) (\omega/\omega_{\alpha_0})]^2 \right\}^{1/2}}$$ where $$A = r_1 + r_3 \frac{1}{1 + (10\omega/\omega_{\alpha 0})^2} \left[2 - 2\omega^2 C_2 L + (1 - \omega^2 C_2 L)^2 \frac{10\omega^2}{\omega_{\alpha 0}} + r_1 C_2 \omega \frac{10\omega}{\omega_{\alpha 0}} \right]$$ and $$B = \omega L + \omega r_3 \frac{1}{1 + (10\omega/\omega_{\alpha})^2} \left(2C_2 r_1 + C_2 r_1 \left(\frac{10\omega}{\omega_{\alpha}0} \right)^2 + \omega C_2 L \frac{\omega 10}{\omega_{\alpha}0} - \frac{10}{\omega_{\alpha}0} \right)$$ If ω≪ω₂ $$|A_1| = \frac{r_1}{r_1 + 2r_3} \frac{\alpha_0}{1 - \alpha_0}$$ where $\omega_2 = \text{cutoff frequency of amplifier}$ $a_0 = low-frequency alpha$ C_2 = capacitance across L and r_1 In addition to the shunt compensation described above, series inductance can be used to resonate with the input capacitance. Another method of high-frequency compensation is available. The emitter resistance may be only partially bypassed, resulting in degeneration at lower frequencies. The compensation conditions are similar to that of electron-tube cathode compensation. #### Intermediate-frequency ampliflers #### Series-resonant interstages For the series-resonant coupling circuit (Fig. 18), the power gain per stage is $$G \approx |b|^2 r_{i2}/r_{i1}$$ For iterated stages, $r_{i1} = r_{i2}$, and $$G \approx |b|^2$$ For common-base stages, $$G \approx |a|^2 r_{i2}/r_{i1}$$ Fig. 18-Series-resonant Interstage circuit. #### Intermediate-frequency ampliflers continued where a = common-base current gain b = a/(1-a) r_{i1} = input resistance of stage r_{i2} = input resistance of following stage Junction transistors give less than unity gain in this circuit for common-base or common-collector connection. Point-contact transistors may be used in the common-base connection. $$f_0/\Delta f_{3db} = Q = \omega_0 L/(R + r_{i2})$$ where $f_0 = center frequency$ $\Delta f_{3ab} = 3$ -decibel bandwidth #### Parallel-resonant interstages If Q (> 10) includes the effect of the input impedance of the next stage for common-base stages (Fig. 19), $$G \approx |a|^2 Q^2 r_{i2}/r_{i1}$$ For common-emitter stages, $$G \approx |b|^2 Q^2 r_{i2}/r_{i1}$$ The formulas below apply also. # Parallel-resonant interstage with impedance transformation: Power gain per stage: $G = A_t^2 (r_l/r_{t1}) \times (fraction of output power delivered to load)$ Let: r_{i1} = input resistance of stage r_{i2} = input resistance of next stage #### Intermediate-frequency amplifiers con $g_i = \text{conductance seen at } A \text{ (Fig. 19) due to } r_{i2}$ $g_n = \text{conductance seen at } A \text{ due to network losses } R$ go = output conductance of transistor p = ratio of equivalent series resistance seen at A to input resistance of next stage $$= r_1/r_{i2}$$ $z_l = r_l + jx_l = \text{total load impedance seen at A}$ $$z_e = \frac{r_e (1 - j\omega r_e C_e)}{1 + \omega^2 r_e^2 C_e^2} = \text{collector impedance}$$ Then, for common-base stages, power gain is, $$G = \left| \frac{\sigma}{1 + z_l/z_c} \right|^2 \rho \frac{r_{i2}}{r_{i1}} \left(\frac{g_i}{g_i + g_n} \right)^2$$ For common-emitter connection, $$G = \left| \frac{\sigma}{1 - \sigma + z_1/z_c} \right|^2 \rho \frac{r_{i2}}{r_{i1}} \left(\frac{g_i}{g_i + g_n} \right)^2$$ For common-collector stages, $$G = \left| \frac{1}{1 - \alpha + z_l/z_e} \right|^2 \rho \frac{r_{i2}}{r_{i1}} \left(\frac{g_i}{g_i + g_n} \right)^2$$ where C is the total C seen at A (Fig. 19) due to the transistor output, the coupling network, and the following stage. $$\frac{f_0}{f_{3db}} = Q = \frac{\omega_0 C}{g_0 + g_n + g_i}$$ If $z_i \ll z_c$ and $g_i \gg g_n$ (load not matched, network losses low) and successive stages are identical $(r_{i1} = r_{i2})$: For common-base stages, $$G = |a|^2 \rho$$ For common-emitter stages, $$G = |b|^2 p$$ For common-collector stages, $$G = |b+1|^2 p$$ Fig. 20—Three types of single-luned resonant interstage circult. Fig. 21—Various double-tuned interstage circuits. #### Intermediate-frequency amplifiers continued #### **Tuned-circuit interstages** Other configurations of single-tuned interstage are shown in Fig. 20. Any of the 3 transistor configurations may be used in these circuits. #### **Double-tuned interstages** For double-tuned interstages (Fig. 21), the same gain formulas apply as for the single-tuned case. For a given bandwidth, however, p may be made larger in the double-tuned case. The T and π equivalents of the transformers will not always be physically realizable. For large bandwidth, the condition $Q_1\gg Q_2$ is desirable, since then loading resistors are not required with their accompanying power loss. For $Q_1 \gg Q_2$, for transitional coupling (Fig. 22), $$\Delta f_{3dh}/f_0 = k = 1/Q_2 (2)^{1/2}$$ where k = coefficient of coupling. If $z_i = r_i + jx_i =$ input impedance of next stage then, $$Q_2 = \frac{\omega_0 L_2 + x_i}{r_i}$$ $$L_2 = \frac{Q_2 r_i - x_i}{\omega_0}$$
$$=\frac{r_i}{2\pi\Delta f_{3db}}-\frac{x_i}{\omega_0}$$ Fig. 22-Double-tuned interstage. L_2 , C_2 , and x_i are series-resonant at f_0 . $$L_1C_1 = 1/\omega_0^2$$ $$\rho \approx Q_2^2 C_2 / C_1$$ C₁ includes the transistor output capacitance. #### Neutralization * For neutralization (Fig. 23), $$r_b'C_c = r_nC_n$$ Either point A or point B may be at ground potential. The choice will depend on the relative ease of isolating the source or the load from ground. The effect of neutralization is to make the 12 term of the matrix equal to zero. Fig. 23—Neutralization of common-base amplifier #### **Temperature compensation** The i_c of a transistor may increase appreciably with temperature. This is objectionable since it increases the power dissipated in the transistor and so increases its temperature rise. Two possible methods for stabilizing i_c against temperature variations follow. The circuit of Fig. 24A depends on negative feedback, similar to cathode bias in electron tubes, i_e being stabilized by the degeneration produced by R_1 at direct current. Capacitor C must bypass R_1 at the frequencies to be amplified. Fig. 24—Two types of temperature compensation for transistors. ^{*} A. P. Stern, C. A. Aldrich, and W. F. Chou, "Internal Feedback and Neutralization of Transistor Amplifiers," Proceedings of the IRE, vol. 43, pp. 838—848; July, 1955. #### Temperature compensation continued For the circuit of Fig. 24A, with α being assumed constant over the operating range, $$i_c = \frac{i_{c0} (1 + R_1/R_2 + R_1/R_3) + \alpha e/R_3}{1 - \alpha + R_1/R_2 + R_1/R_3}$$ When the variation with frequency of the phase shift resulting from R_1 and C is objectionable, or where C must be made inconveniently large, the circuit of Fig. 24B may be used. Since r_c and R_3 are higher resistances than R_1 , a smaller C may be used for the same bypassing effect. Here stabilization is obtained by the drop in i_c influencing base potential and R_1 is made small to minimize degeneration of signal frequencies. If $R_3 \gg R_1$ and $r_e \gg R_1$, then $$i_c = \frac{i_{c0}[(r_c/R_3)](1 + R_1/R_2) + 1 + R_1/R_2 + R_1/R_3] + \alpha e_1/R_3}{1 - \alpha + R_1/R_2 + R_1/R_3 + (r_c/R_3)(1 + R_1/R_2)}$$ #### **Pulse circuits** Transistors may be utilized for the generation, amplification, and shaping of pulse waveforms. The Ebers and Moll* equivalent circuits of Figure 25 give the large-signal transient response of a junction transistor. The parameters are defined as follows: $i_{e0} = \text{saturation current of emitter junction with zero collector current}$ ${}^{*i}c_{0} = {}^{*i}c_{0} = {}^{*i}c_{0}$ saturation current of collector junction with zero emitter current α_n = transistor direct-current gain with the emitter functioning as an emitter and the collector functioning as a collector (normal α) α_i = transistor direct-current gain with the collector functioning as an emitter and the emitter functioning as collector (inverted α) $$\Phi_e = \frac{kT}{q} \ln \left[-\frac{i_e + \alpha_i i_c}{i_{e0}} + 1 \right]$$ = emitter-to-junction voltage $$\Phi_c = \frac{kT}{q} \ln \left[-\frac{i_c + \alpha_n i_e}{i_{c0}} + 1 \right]$$ = collector-to-junction voltage ^{*} J. J. Ebers and J. L. Moll, "Large-Signal Behavior of Junction Transistors:" also, J. L. Moll, "Large-Signal Transient Response of Junction Transistors," Proceedings of the IRE, vol. 42, pages 1761–1772, 1773–1784; December, 1954. #### Pulse circuits continued The switching time can be calculated from the smallsignal equivalent circuit parameters, the turn-on time, from cutoff to saturation, depends on the frequency response of the transistor in the active region. The turn-off time. from saturation to cutoff depends on minority carrier storage time and decay time. Carrier storage time is that required for the operating point to move out of the saturation region into the active region on removal of the drive current and is a function of the frequency response of A. Regions I and II Fig. 25—Low-frequency large-signal equivalent circuit of a junction transistor. the transistors in the saturation region. Decay time follows the storage time and returns the transistor to cutoff; it depends on the frequency response in the active region. Switching time of order $3/\omega_n$ is realized if carrier storage is avoided. Turn-on time $$= \frac{1}{\omega_n} \frac{i_{e2}}{i_{e2} - 0.9 i_c/\alpha_n}$$ Storage time $$= \frac{\omega_n + \omega_i}{\omega_n \omega_i (1 - \alpha_n \alpha_i)} \ln \frac{i_{e2} - i_{e1}}{i_c/\alpha_n + i_{e2}}$$ Decay time $$= \frac{1}{\omega_n} \ln \frac{i_c + \alpha_n i_{e2}}{(i_c + \alpha_n i_{e2})/10}$$ where $\omega_n=$ cutoff frequency of normal alpha $\omega_i = ext{cutoff frequency of inverted alpha}$ i_{e1} , i_{e2} = emitter current before and after switching step is applied i_c = collector current in the saturation state. k = Boltzmann's Constant T = absolute temperature q = charge on electron ### Measurement of small-signal parameters The small-signal parameters may be represented by ratios of small alternating voltages and currents if care is taken to keep the magnitudes of these signals small compared to direct-current condition. For instance, $$z_{11} = r_e + r_b$$ $$= \left[\frac{\partial v_e}{\partial i_e} \right]_{i_c} \approx \left[\frac{\Delta v_e}{\Delta i_e} \right]_{i_c} \approx \left[\frac{v_e}{i_e} \right]_{i_c}$$ Also, $$z_{11} = e_1/i_1$$ when $i_2 = 0$ $$z_{12} = e_1/i_2$$ when $i_1 = 0$ $$z_{21} = e_2/i_1$$ when $i_2 = 0$ $$z_{22} = e_2/i_2$$ when $i_1 = 0$ and $$h_{11} = e_1/i_1$$ when $e_2 = 0$ $$h_{12} = e_1/e_2$$ when $i_1 = 0$ $$h_{21} = i_2/i_1$$ when $e_2 = 0$ $$h_{22} = i_2/e_2$$ when $i_1 = 0$ Fig. 26 indicates the use of matrixes for solution of transistor parameters, where $$z_{11} = r_e + r_b$$ $$z_{12} = r_b$$ $$z_{21} = r_b + \alpha r_c$$ $$z_{22} = r_c + r_b$$ #### Measurement of small-signal parameters continued and $$h_{11} = r_e + r_b + h_{21} r_b$$ $$h_{12} = r_b / (r_c + r_b)$$ $$h_{21} = - (r_b + \alpha r_c) / (r_c + r_b)$$ $$h_{22} = 1 / (r_c + r_b)$$ Fig. 26—Transistor parameters in terms of common-base matrix coefficients. | | Z | h | |------------------|---------------------------------------|---| | Γe | $z_{11} - z_{12}$ | $h_{11} - \frac{h_{12}}{h_{22}} (1 + h_{21})$ | | re | $z_{22} - z_{12}$ | $(1 - h_{12})/h_{22}$ | | rb | Z ₁₂ | h ₁₂ /h ₂₂ | | r _m , | $z_{21} - z_{12}$ | $-\frac{h_{21}+h_{12}}{h_{22}}$ | | α | $\frac{z_{21}-z_{12}}{z_{22}-z_{12}}$ | $\frac{h_{21} - h_{12}}{1 - h_{12}}$ | | α | | $\frac{h_{21} - h_{12}}{1 - h_{12}}$ | #### ■ Modulation The material in this chapter is divided into two sections on continuous-wave (cw) and noncontinuous (pulse) relations. #### Continuous-wave modulation The process of continuous-wave modulation of a radio-frequency carrier $y = A(t) \cos \gamma(t)$ is treated under two main headings as follows: - a. Modification of its amplitude A(t) - **b.** Modification of its phase $\gamma(t)$ For a harmonic oscillation, $\gamma(t)$ is replaced by $(\omega t + \phi)$, so that $$y = A(t) \cos (\omega t + \phi) = A(t) \cos \psi(t)$$ A is the amplitude. The whole argument of the cosine $\psi(t)$ is the phase. #### **Amplitude modulation** In amplitude modulation (Fig. 1), ω is constant. The signal intelligence f(t) is made to control the amplitude parameter of the carrier by the relation $$A(t) = [A_0 + \alpha f(t)]$$ = $A_0[1 + m_\alpha f(t)]$ Fig. 1—Vector and sideband representation of amplitude modulation for a single sinusoidal modulation frequency ($a \cos \rho t$). where $$\psi(t) = \omega t + \phi$$ $\omega = \text{angular carrier frequency}$ $\phi = \text{carrier phase constant}$ A_0 = amplitude of the unmodulated carrier a = maximum amplitude of modulating function f(t) = generally, a continuous function of time representing the signal; $0 \le f(t) \le 1$ $$m_a = a/A_0 =$$ degree of amplitude modulation; $0 \leqslant m_a < 1$ $$y = A_0 [1 + m_a f(t)] \cos (\omega t + \phi)$$ For a signal f(t) represented by a sum of sinusoidal components $$af(t) = \sum_{K=1}^{K-m} a_K \cos (\rho_K t + \theta_K)$$ where p_K is the angular frequency of the kth component of the modulating signal and θ_K is the constant part of its phase. Assuming the system is linear, each frequency component ρ_K gives rise to a pair of sidebands $(\omega + \rho_K)$ and $(\omega - \rho_K)$ symmetrically located about the carrier frequency ω . $$y = A_0 \left[1 + \frac{1}{A_0} \sum_{K=1}^{K=m} \alpha_K \cos (\rho_K t + \theta_K) \right] \cos (\omega t + \phi)$$ The constant component of the carrier phase ϕ is dropped for simplification $$y = \underbrace{A_0 \cos(\omega t) + \underbrace{(\cos \omega t) \left[\sum_{K=1}^{K=m} \alpha_K \cos(\rho_K t + \theta_K) \right]}_{\text{carrier}}$$ $$= \underbrace{A_0 \cos \omega t + \frac{\alpha_1}{2} \cos[(\omega + \rho_1)t + \theta_1] + \frac{\alpha_1}{2} \cos[(\omega - \rho_1)t - \theta_1] + \cdots}_{\text{carrier}}$$ $$= \underbrace{A_0 \cos \omega t + \frac{\alpha_1}{2} \cos[(\omega + \rho_1)t + \theta_1] + \frac{\alpha_1}{2} \cos[(\omega - \rho_1)t - \theta_1]}_{\text{lower sideband}}$$ $$+ \underbrace{\frac{\alpha_m}{2} \cos[(\omega + \rho_m)t + \theta_m] + \frac{\alpha_m}{2} \cos[(\omega - \rho_m)t - \theta_m]}_{\text{lower sideband}}$$ lower sideband upper sideband #### Continuous-wave modulation c Degree of modulation $=\frac{1}{A_0}\sum_{K=1}^{K=m} a_K$ for ρ 's not harmonically related. Percent modulation = $$\frac{\text{(crest ampl)} - \text{(trough ampl)}}{\text{(crest ampl)} + \text{(trough ampl)}} \times 100$$ Percent modulation may be measured by means of an oscilloscope, the modulated carrier wave being applied to the vertical plates and the modulating voltage wave to the horizontal plates. The resulting trapezoidal pattern and a nomograph for computing percent modulation are shown in Fig.
2. The dimensions A and B in that figure are proportional to the crest amplitude and trough amplitude, respectively. Peak voltage at crest for ρ 's not harmonically related: $$A_{\text{crest}} = A_{0, \text{rms}} \left[1 + \frac{1}{A_0} \sum_{K=1}^{K-m} \sigma_K \right] \times (2)^{\frac{1}{2}}$$ Effective value of the modulated wave in general: $$A_{\text{eff}} = A_{0, \text{ rms}} \left[1 + \frac{1}{2A_0^2} \sum_{K=1}^{K-m} \alpha_K^2 \right]^{\frac{1}{2}}$$ In the design of some components of a system, such as capacitors and transmission lines, frequently all the signal is considered as being present in one pair of sidebands. Then the peak voltage and the kilovolt-amperes are as follows, $$V_{\text{peak, crest}} = (1 + m_d) V_{\text{peak, carrier}}$$ $(kva) = (1 + m_d^2/2) (kva)_{\text{carrier}}$ where m_a is the degree of amplitude modulation. For example, if the design is for a 1-kilowatt carrier, 100-percent modulated, $m_a = 1.00$ and the power at full modulation is 1.50 kilowatts. The effective current is $(1.50)^{1/2} = 1.225$ times the root-mean-square carrier current. #### Continuous-wave modulation continued To determine the modulation percentage from an oscillogram of type illustrated apply measurements A and B to scales A and B and read percentage from center scale. Any units of measurement may be used. Example: A = 3 inches, B = 0.7 inches; modulation = 62 percent. Fig. 2-Modulation percentage from oscillograms. #### Continuous-wave modulation #### Systems of amplitude modulation The above analysis shows how two sidebands are generated when the amplitude of a carrier signal is controlled by a modulation signal. It is apparent that the desired information is contained in the sidebands, and, in fact, in either sideband alone. Consequently, there have arisen three additional systems of amplitude modulation other than double-sideband with full carrier. These are: suppressed-carrier, single-sideband, and vestigial-sideband modulations. continued Suppressed-carrier modulation: It is sufficient to transmit only enough carrier so that at the receiver this carrier can be used to control the frequency and phase of a locally generated carrier. The locally generated carrier may be made sufficiently large to reduce the effective percentage of modulation. This will aid in removing the distortion inherent in some types of detectors when the modulation percentage approaches or exceeds 100 percent. Single-sideband modulation: Single-sideband systems are used to translate the spectrum of a modulation signal to a new space in the frequency domain with or without inversion. Substantially no carrier voltage is transmitted in this system. The principal advantage is that the effective bandwidth required for transmission is half that required for a double-sideband system. It is required, in order to demodulate this signal, that a locally generated carrier be supplied. This carrier must be very close to the frequency of the carrier used in the modulation process at the transmitter to preserve the spectral components in the derived modulation signal. Vestigial-sideband modulation: Single-sideband systems are at a serious disadvantage when the modulation signal contains very-low frequencies. It becomes increasingly difficult as the low-frequency limit approaches zero frequency to suppress the adjacent portion of the unwanted sideband. However, it is not necessary to suppress the unwanted sideband completely. If the characteristic that modifies the two sidebands satisfies certain requirements, then the modulating wave can be recovered without distortion with a product demodulator. This is known as a vestigial-sideband system. Envelope detectors can also be employed provided that the modulation percentage is not too high. Excessive distortion will otherwise result. #### **Angular modulation** All sinusoidal angular modulations derived from the harmonic oscillation $y = A \cos(\omega t + \phi)$ can be expressed in the form $$y = A \cos \psi(t)$$ = $$A \cos (\omega_0 t + \Delta \theta \cos \rho t)$$ where the oscillating component $\Delta\theta$ cos ρt of the phase excursion is determined by the type of angular modulation used. In all angular modulations A is constant. #### Frequency modulation $$y = A_0 \cos \psi(t)$$ The signal intelligence f(t) is made to control the instantaneous frequency parameter of the carrier by the relation $$\omega(t) = \omega_0 + \Delta \omega f(t)$$ where $\omega(t)$ = instantaneous frequency $$= d\psi(t)/dt$$ $$\psi(t) = \int \omega(t) dt$$ ω_0 = frequency of unmodulated carrier $\Delta \omega =$ maximum instantaneous frequency excursion from ω_0 For single-frequency modulation $f(t) = \cos \rho t$, $$y = A \cos \left(\omega_0 t + \frac{\Delta \omega}{\rho} \sin \rho t \right)$$ $\Delta\omega/\rho=\Delta\theta$ (in radians) is the modulation index. The phase excursion $\Delta\theta$ is inversely proportional to the modulation frequency ρ . In general for broadcast applications, $\Delta\omega\ll\omega_0$ and $\Delta\theta\gg1$. #### Phase modulation $$y = A_0 \cos \psi(t)$$ The signal intelligence f(t) is made to control the instantaneous phase excursions of the carrier by the relation $\delta\theta = \Delta\theta f(t)$. $$\psi(t) = [\omega_0 t + \Delta \theta f(t)] = \int_0^t \omega(t) dt$$ $$v = A \cos [\omega_0 t + \Delta \theta f(t)]$$ For sinusoidal modulation $f(t) = \cos \rho t$. $$y = A \cos (\omega_0 t + \Delta \theta \cos \rho t)$$ Maximum phase excursion is independent of the modulation frequency ρ . The instantaneous frequency of the phase-modulated wave is given by the derivative of its total phase: $$\omega(t) = d\psi(t)/dt = (\omega_0 - \rho\Delta\theta \sin \rho t)$$ $$\Delta \omega = \omega(t) - \omega_0 = -\rho \Delta \theta \sin \rho t$$ Maximum frequency excursion $\Delta\omega=-\rho\Delta\theta$ is proportional to the modulation frequency ρ . Fig. 3—Sideband and modulation vector representation of angular modulation for $\Delta \theta <$ 0.2 as well as for amplitude modulation. #### Sideband energy distribution in angular modulation $$y = A \cos (\omega_0 t + \Delta \theta \cos \rho t)$$ for $\Delta \theta \le 0.2$ and a single sinusoidal modulation. See Fig. 3. $$y = A(\cos \omega_0 t) - \underbrace{\Delta \theta \cos \rho t \sin \omega_0 t}_{\text{modulation vector}}$$ $$= A\left[\underbrace{\cos \omega_0 t}_{\text{carrier}} - \underbrace{\frac{\Delta \theta}{2} \sin (\omega_0 + \rho) t}_{\text{upper sideband}} - \underbrace{\frac{\Delta \theta}{2} \sin (\omega_0 - \rho) t}_{\text{lower sideband}}\right]$$ Frequency spectrum of angular modulation: No restrictions on $\Delta\theta$. $$y = A \cos (\omega_0 t + \Delta \theta \cos \rho t)$$ $$= A[J_0(\Delta \theta) \cos \omega_0 t - 2J_1(\Delta \theta) \cos \rho t \sin \omega_0 t$$ $$- 2J_2(\Delta \theta) \cos 2\rho t \cos \omega_0 t$$ $$+ 2J_3(\Delta \theta) \cos 3\rho t \sin \omega_0 t$$ $$+ \dots \dots]$$ This gives the carrier modulation vectors. See Fig. 4. The sideband frequencies are given by $$y = A\{J_0(\Delta\theta)\cos\omega_0 t - J_1(\Delta\theta)[\sin(\omega_0 + \rho)t + \sin(\omega_0 - \rho)t]$$ $$-J_2(\Delta\theta)[\cos(\omega_0 + 2\rho)t + \cos(\omega_0 - 2\rho)t]$$ $$+J_3(\Delta\theta)[\sin(\omega_0 + 3\rho)t + \sin(\omega_0 - 3\rho)t]\}$$ Here, $J_n(\Delta\theta)$ is the Bessel function of the first kind and nth order with argument $\Delta\theta$. An expansion of $J_n(\Delta\theta)$ in a series is given on page 1085, tables of Bessel functions are on pages 1118 to 1121; and a 3-dimensional representation of Bessel functions is given in Fig. 5. The carrier and sideband amplitudes are oscillating functions of $\Delta\theta$: Carrier vanishes for $\Delta\theta$ radians = 2.40; 5.52; 8.65 + $n\pi$ First sideband vanishes for $\Delta\theta$ radians = 3.83; 7.02; 10.17; 13.32 + $n\pi$ The property of vanishing carrier is used frequently in the measurement of $\Delta\omega$ in frequency modulation. This follows from $\Delta\omega=(\Delta\theta)(\rho)$. Knowing $\Delta\theta$ and ρ , $\Delta\omega$ is computed. Fig. 5—Three-dimensional representation of Bessel functions. The approximate number of important sidebands and the corresponding bandwidth necessary for transmission are as follows, where $f=\rho/2\pi$ and $\Delta f=\Delta\omega/2\pi$, | | $\Delta \theta = 5$ | $\Delta \theta = 10$ | $\Delta \theta = 20$ | |------------------------------|-------------------------------|----------------------|----------------------| | Signal frequency | 0.2 \(\Delta f \) | 0.1 Δf | 0.05 ∆f | | Number of pairs of sidebands | 7 | 13 | 23 | | Bandwidth | 14 <i>f</i>
2.8 Δ <i>f</i> | 26 f
2.6 Δf | 46 f
2.3 Δf | This table is based on neglecting sidebands in the outer regions where all amplitudes are less than $0.02A_0$. The amplitude below which the sidebands are neglected, and the resultant bandwidth, will depend on the particular application and the quality of transmission desired. #### Interference and noise in am and fm Interference rejection in amplitude and frequency modulations: Simplest case of interference; two unmodulated carriers: en = desired signal $= E_0 \sin \omega_0 t$ e₁ = interfering signal $= E_1 \sin \omega_1 t$ The vectorial addition of these two results in a voltage that has both amplitude and frequency modulation. #### Amplitude-modulation interference E_t = resultant voltage $$\approx E_0 \left[1 + \frac{E_1}{E_0} \cos (\omega_1 - \omega_0) t \right]$$ for $E_1 \ll E_0$ The interference results in the amplitude modulation of the original carrier by a beat frequency equal to $(\omega_0-\omega_1)$ having a modulation index equal to E_1/E_0 . #### Frequency-modulation interference $\omega(t)$ = resultant instantaneous frequency $$= \omega_0 + \frac{E_1}{E_0} (\omega_1 - \omega_0) \cos (\omega_1 - \omega_0) t \text{ for } E_1 \ll E_0$$ $$\Delta\omega_1 = \omega(t) - \omega_0 = \frac{E_1}{E_0}(\omega_1 - \omega_0)\cos(\omega_1 -
\omega_0)t$$ The interference results in frequency modulation of the original carrier by a beat frequency equal to $(\omega_0-\omega_1)$ having a frequency deviation ratio to maximum desired deviation equal to $E_1(\omega_1-\omega_0)/E_0\Delta\omega$ and relative interference of $$\left(\frac{\text{interference amplitude modulation}}{\text{interference frequency modulation}}\right) = \frac{\Delta\omega}{(\omega_1 - \omega_0)}$$ where $\Delta \omega$ is the desired frequency deviation. Noise reduction in frequency modulation: The noise-suppressing properties of frequency modulation apply when the signal carrier level at the frequency discriminator is greater than the noise level. When the noise level exceeds the carrier signal level, the noise suppresses the signal. For a given amount of noise at a receiver there is a sharp threshold level of frequency-modulation signal above which the noise is suppressed and below which the signal is suppressed. This threshold has been defined as the improvement threshold. For the condition where the threshold level is exceeded: Random noise: Assuming the receivers have uniform gain in the pass band, the resultant noise is proportional to the square of the voltage components over the spectrum of noise frequencies: $$\left(\frac{\text{fm signal/random-noise ratio}}{\text{am signal/random-noise ratio}}\right) = (3)^{\frac{1}{2}} \frac{\Delta \omega}{\rho} = (3)^{\frac{1}{2}} \Delta \alpha$$ Impulse noise: Noise voltages add directly: $$\left(\frac{\text{fm signal/impulse-noise ratio}}{\text{am signal/impulse-noise ratio}}\right) = 2 \frac{\Delta \omega}{\rho} = 2 \Delta \theta$$ The carrier signal required to reach the improvement threshold depends on the frequency deviation of the incoming signal. The greater the deviation, the greater the signal required to reach the improvement threshold, but the greater the noise suppression, once this level is reached. Fig. 6 illustrates this characteristic. Fig. 6—Improvement threshold for frequency modulation. Deviation $\Delta\theta$ affects amount of signal required to reach threshold and also amount of noise suppression obtained. Solid line shows peak, and dotted line the root-mean-square noise in the output. Courtest of McGrow-Hill Book Company In amplitude modulation, the presence of the carrier increases the background noise in a receiver. In frequency modulation, the presence of the carrier decreases the background noise, since the carrier effectively suppresses it. #### **Pulse modulation** The process of pulse modulation covers methods where either the amplitude or time of occurrence of some characteristic of a pulse carrier are controlled by instantaneous samples of the modulating wave. #### Sampling Instead of transmitting a continuous signal, it is sufficient to sample the signal at regular, discrete time intervals and to transmit information regarding the signal amplitudes at the sampling times only. This information may be put into any one of many different forms. It may be used to amplitude-modulate a pulse train (pam), time-modulate a pulse train Fig. 7—Pulse trains of single channels for various pulse systems, showing effect of modulation on amplitude and time-spacing of subcarrier pulses. The modulation signal is at the top. #### Pulse modulation continued (ptm), etc., as shown in Fig. 7. The original signal can be recovered from the pulse-modulated signal provided that the sampling rate is sufficiently high. The minimum sampling frequency is given by $$f_p = 2 f_h/m$$ where $f_p = \text{sampling frequency}$ m = largest integer not exceeding f_h/w $w = (f_h - f_l) = modulation - frequency bandwidth$ f_h = highest frequency limit of modulation-frequency band Fig. 8—Minimum sampling frequency versus highest frequency in the modulation-frequency band as a function of modulationfrequency bandwidth. f_l = lowest frequency limit of modulation-frequency band A plot of this relation in terms of the quantities f_p , f_h , and w is shown in Fig. 8. For example, if $f_h = 7.5$ kilocycles and $f_l = 4.5$ kilocycles, then w = 3 kilocycles or $f_h = 2.5w$. Then, $f_p = 2.5w = 7.5$ kilocycles. In practice, a value of f_p 15-percent larger than that given in the above formula is utilized. This permits the sampling components to be separated from the voice components with a more-economical filter. Inherent spurious distortion is introduced by the modulation process in conventional pulse-time modulation (but not in pulse-amplitude modulation) and for distortion requirements of less than 1 percent, a factor of 2.5 to 3 in the above formula is recommended. #### Basic modulating and encoding methods Pulse-time modulation (ptm) in which the values of instantaneous samples of the modulating wave control the time of occurrence of some characteristic of a pulse carrier; the amplitude of the individual pulses being fixed. Pulse-amplitude modulation (pam) in which the values of the instantaneous samples of the modulating wave control the amplitude of a pulse carrier; the time of occurrence of the individual pulses being fixed. # 540 CHAPTER 19 #### Pulse modulation continued Pulse-code modulation (pcm) in which the modulating wave is sampled, quantized, and coded. #### Pulse-time-modulation types Pulse-position modulation (ppm) in which each instantaneous sample of a modulating wave controls the time position of a pulse in relation to the timing of a recurrent reference pulse. Pulse-duration modulation (pdm) in which each instantaneous sample of the modulating wave controls the time duration of a pulse. Also called pulsewidth modulation (pwm). Pulse-frequency modulation (pfm) in which the modulating wave is used to frequency-modulate a carrier wave consisting of a series of pulses. Additional methods that include modified-time-reference and pulse-shape modulation. #### Pulse-amplitude-modulation types Pulse-amplitude modulation (pam) used when the modulating wave is caused to amplitude-modulate a pulse carrier. Forms of this type of modulation include single-polarity pam and double-polarity pam. # Pulse-code-modulation types Binary pulse-code modulation (pcm): Pulse-code modulation in which the code for each element of information consists of one of two distinct kinds or values, such as pulses and spaces. Fig. 9 shows a 32-level binary code raster. A level of 21 in decimal notation is represented in this method by | 2 [| | | | | | | | | | | | | | | |------------|--|------|------|-------|---|------|------|---|------|---|--------|------|---|---| | 2 <u> </u> | | | | | " | | | | | | \Box | | | M | | | |
 | **** |
- | |
 |
 | |
 | | |
 | | | | 4 🗌 | | | | | | | | | | 1 | | | | | | 8 🗌 | | Τ | | | | | Ι. | Π | П | | | | W | | | 6 | | | | | | Ш | | | | | | | | | Fig. 9—Binary code raster for 32 levels. #### Pulse modulation continued Ternary pulse-code modulation (pcm): Pulse-code modulation in which the code for each element of information consists of any one of three distinct kinds or values, such as positive pulses, negative pulses, and spaces. N-gry pulse-code modulation (pcm): Pulse-code modulation in which the code for each element of information consists of any one of N distinct kinds or values #### Terminology Baud: The unit of signaling speed equal to one code element per second. The signaling speed is sometimes measured in cycles per second. See p. 846. Clipper: A device that gives output only when the input exceeds a critical value. Code: A plan for representing each of a finite number of values as a particular arrangement of discrete events. Code character: A particular arrangement of code elements used in a code to represent a single value. Code element: One of the discrete events in a code. Limiter: A device whose output is constant for all inputs above a critical value. Noise improvement factor (nif): Ratio of receiver output signal-to-noise ratio to the receiver input signal-to-noise ratio. (Receiver is used in the broad sense and is taken to include pulse demodulators.) PCM level: The number by which a given subrange of a quantized signal may be identified. Pulse decay time: The time required for the instantaneous amplitude to go from 90 percent to 10 percent of the peak value. Pulse duration: The time required for the instantaneous amplitude to go from the 50-percent point of the leading edge through the peak value and return to the 50-percent level of the trailing edge. Pulse improvement threshold: In constant-amplitude pulse-modulation systems, the condition that exists when the ratio of peak pulse voltage to peak noise voltage exceeds 2 after selection and before any nonlinear process such as amplitude clipping and limiting. The ratio of peak to root-meansquare noise voltage is ordinarily taken to be 4. Therefore, at the improvement threshold, the ratio of peak to root-mean-square noise voltage is taken to be 8 (or 18 db). Pulse regeneration: The process of replacing each code element by a new element standardized in timing and magnitude. #### Pulse modulation continued **Pulse rise time:** The time required for the instantaneous amplitude to go from 10 percent to 90 percent of the peak value. Quantization: A process wherein the complete range of instantaneous values of a wave is divided into a finite number of smaller subranges, each of which is represented by an assigned or quantized value within the subranges. Time gate: A device that gives output only during chosen time intervals. **Quantization distortion:** The inherent distortion introduced in the process of quantization. This is sometimes referred to as quantization noise. #### Pulse bandwidth The bandwidth necessary to transmit a video pulse train is determined by the rise and decay times of the pulse. This bandwidth F_{π} is approximately given by $$F_n \approx 1/2t_r$$ where t_r is the rise or decay time, whichever is the smaller. The radio-frequency bandwidth F_R is then $$F_R \approx 1/t_r$$ for amplitude-keyed
radio-frequency carrier. Bandwidth is $$F_R \approx \frac{1}{t_r} (m+1)$$ for frequency-keyed radio-frequency carrier where m is the index of modulation. # Time-division multiplex Pulse modulation is commonly used in time-division-multiplex systems. Because of the time space available between the modulated pulses, other pulses corresponding to other signal channels can be inserted if they are Fig. 10—Time-multiplex train of subcarrier pulses for 8 channels and marker pulse M for synchronization of receiver with transmitter. in frequency synchronism. A multiplex train of pulses is shown in Fig. 10. It is common practice to use a channel or a portion of a channel for synchronization between the transmitter and the receiver. This pulse is shown as M in Fig. 10. This synchronizing pulse may be separated from the signal-carrying pulses by giving it some unique characteristic such as modulation at a submultiple of the sampling rate, wider duration, or by using two or more pulses with a fixed spacing. #### Signal-to-noise ratio The signal/noise improvement factors (nif) for the pulse subcarrier are as follows: **Pulse-amplitude modulation:** If the minimum bandwidth is used for transmission of pam pulses, the signal/noise ratio at the receiver output is equal to that at the input to the receiver. The improvement factor is therefore unity. **Pulse-position modulation:** By the use of wider bandwidths, an improvement in the signal/noise ratio at the receiver output may be obtained. This improvement is similar to that obtained by frequency modulation applied to a continuous-wave carrier. Since ppm is a constant-amplitude method of transmission, amplitude noise variations may be removed by limiting and clipping the pulses in the receiver. An improvement threshold is then established at which the signal/noise power ratio s/n at the receiver output is closely given in decibels by s/n = 18 db + (nif) where the noise improvement factor (nif) for pulse-position modulation is given by (nif in db) = 20 $\log_{10} (\delta/t_r)$ where δ = peak modulation displacement t_r = rise time of received pulses Pulse-code modulation: The output signal/noise ratio is extremely large after the improvement threshold is exceeded. However, because of the random nature of noise peaks, the exact threshold is indeterminate. The output signal/noise ratio in decibels can be closely given in terms of the input power ratio for a binary-pcm system by Idecibels output s/n = 2.2 × linput s/n For N-ary codes of orders greater than 2, the (nif) is less than that for the binary code, and decreases with larger values of N. The over-all radio-frequency-transmission signal/noise ratio is determined by the product of the transmission and the pulse-subcarrier improvement factors. To calculate the over-all output s/n ratio, the pulse-subcarrier signal/noise ratio is first determined using the radio-frequency modulation-improvement formula. This value of pulse s/n is substituted as the input s/n in the above equations. #### Quantization noise In generating pulse-code modulation, the process of quantization is introduced to enable the transformation of the sampled signal amplitude into a pulse code. This process divides the signal amplitude into a number of discrete levels. Quantization introduces a type of distortion that, because of its random nature, resembles noise. This distortion varies with the number of levels used to quantize the signal. The percent distortion D is given by $$D = [1/(6)^{1/2}L] \times 100$$ where L is the number of levels on one side of the zero axis. #### Cross-talk An important characteristic of a multiplex system is the interchannel crosstalk. Such cross-talk can be kept to a low value by preventing excessive carryover between channel pulses. **Pulse-amplitude modulation:** The cross-talk is directly proportional to the amplitude of the decaying pulse at the time of occurrence of the following channel. If the pulse decays over a time \mathcal{T} in an exponential manner, such as might be caused by transmission through a resistance-capacitance network, the cross-talk ratio is then (pam cross-talk ratio) = $\exp(2\pi F_v T)$ where F_n is measured at the 3-decibel point. Pulse-position modulation: The cross-talk ratio under the same conditions is (ppm cross-talk ratio) = $$\frac{\exp(2\pi F_{\rm e}T)}{\sinh(2\pi F_{\rm e}\delta)} \frac{\delta}{t_{\rm r}}$$ **Pulse-code-modulation:** Cross-talk between channels in a pcm system will arise if the carryover from the last pulse of a channel does not decay to one-half or less of the amplitude of the pulse at the time of the next channel. #### **Pulse-modulation spectrums** The approximations $J_n(x) \approx (x/2)^n/n!$ and $\sin x \approx x$ used in Figs. 11 and 12 are valid for small arguments typical of time-division-multiplex equipment. When in doubt, use the exact magnitudes that are listed first. - following list defines the symbols used in expressing the spectrums of a pled modulating signal. - A = average amplitude of pulse in peak volts - A_0 = magnitude of the direct-current component in volts - $A_c = peak$ amplitude of radio-frequency carrier component in peak volts - A_{mp} = Peak magnitude of the mth sampling carrier-frequency harmonic component in peak volts - A_{mp+nq} = peak magnitude of the nth upper and lower audio sidebands about the mth sampling carrier-frequency harmonic component in peak volts - A_{nq} = peak magnitude of the *n*th-modulation-frequency harmonic component in peak volts - $A_p = \text{peak magnitude of the sampling carrier-frequency component}$ in peak volts - $\mathbf{A}_q = \mathbf{peak}$ magnitude of the modulation-frequency component in \mathbf{peak} volts - A_v = peak amplitude of the modulating signal or peak excursions from the average pulse amplitude for pulse-amplitude modulation in peak volts - $A_{\omega}=$ peak magnitude of the radio-frequency carrier-frequency component in peak volts - $A_{\omega \pm q}$ = peak magnitude of the audio-frequency sidebands about the radio-frequency carrier-frequency component in peak volts - $A_{\omega\pm mp}=$ peak magnitude of the sampling carrier sidebands about the radio-frequency carrier-frequency component in peak volts - $A_{\omega \pm q \pm mp} = \text{peak magnitude of the } m\text{th sampling-carrier sidebands about}$ the audio sidebands of the radio-frequency carrier-frequency component in peak volts - $J_n(x)$ = Bessel function of the first kind, of nth order and argument x - m = harmonic order of the sampling carrier p - m_a = degree of amplitude modulation of radio-frequency carrier Fig. 11—Video-frequency pulse-modulation spectrums. | component | symbol | natural
ppm | uniform
ppm | natura)
pdm
(pwm) | |--|----------------|--|--|--| | Direct-current component | A ₀ | $\frac{A\Delta}{T}$ | $\frac{A\Delta}{T}$ | <u>ΑΔ</u>
Τ | | Modulation-
frequency
component | A_q | $-\frac{2A\delta}{T}\sin\frac{q\Delta}{2}$ | $\frac{4A}{qT}J_1(q\delta)\sin\frac{q\Delta}{2}$ | <u>Αδ</u>
Τ | | | | $\approx \frac{A\Delta\delta q}{T}$ | $\approx \frac{A\Delta\delta q}{T}$ | | | nth modulation-
frequency
harmonic | Anq | 0 | $\frac{4A}{nqT}J_{\pi}(nq\delta)\sin\frac{nq\Delta}{2}$ | 0 | | component | | | $\approx \frac{2A\Delta}{Tn!} \left(\frac{nq\delta}{2}\right)^n$ | | | Sampling
carrier-
frequency | Ap | $\frac{2A}{\pi} J_0(\rho \delta) \sin \frac{\rho \Delta}{2}$ | $\frac{2A}{\pi} J_0(\rho \delta) \sin \frac{\rho \Delta}{2}$ | $\frac{A}{\pi} \left \frac{1}{0} - J_0(\rho \delta) / - \rho \Delta \right $ | | component | | $\approx \frac{2A\Delta}{T}$ | $\approx \frac{2A\Delta}{T}$ | $\approx -\frac{2A}{\pi} \sin \frac{\rho \Delta}{2} \approx \frac{2A\Delta}{T}$ | | mth sampling
carrier-
frequency | Amp | $\frac{2A}{m\pi}J_0(mp\delta)\sin\frac{mp\Delta}{2}$ | $\frac{2A}{m\pi}J_0(mp\delta)\sin\frac{mp\Delta}{2}$ | $\left \frac{A}{m\pi} \right 1 - \frac{10^{\circ}}{3} - J_0(mp\delta) / - mp\Delta$ | | harmonic
component | | $\approx \frac{2A\Delta}{T}$ | $\approx \frac{2A\Delta}{T}$ | $\approx \frac{2A}{m\pi} \sin \frac{mp\Delta}{2} \approx \frac{2A\Delta}{T}$ | | nth upper and lower audio sidebands about the mth sampling carrier-frequency component | Amp±nq | $\frac{2A}{m\pi} \int_{n} (mp\delta) \sin \left[(mp\pm nq) \frac{\Delta}{2} \right]$ $\approx \frac{A\Delta}{m\pi n!} \left(\frac{mp\delta}{2} \right)^{n} (mp\pm nq)$ | $\frac{2AJ_n[(mp\pm nq)\delta]}{m\pi(1\pm nq/mp)}\sin\left[(mp\pm nq)\frac{\Delta}{2}\right]$ $\approx \frac{2A\Delta}{Tn!}\left(\frac{\delta}{2}\right)^n (mp\pm nq)^n$ | $\frac{A}{m\pi} \int_{n} \{m\rho\delta\}$ $\approx \frac{A}{m\pi^{n!}} \left(\frac{m\rho\delta}{2}\right)^{n}$ | | uniform
pdm
(pwm) | flat-topped
double-polarity
pam | flat-topped
single-polarity
pam | double-polarity
pam or
pulsed audio | single-polarity
pam or
gated audio | |--|---|---|---|---| |
$\frac{A\Delta}{T}$ | 0 | $\frac{A\Delta}{T}$ | 0 | $\frac{A\Delta}{T}$ | | $\frac{2A}{qT} J_1 (q\delta)$ | $\frac{2A_v}{qT}\sin\frac{q\Delta}{2}$ | $\frac{2A_v}{qT}\sin\frac{q\Delta}{2}$ | $\frac{A_v\Delta}{T}$ | $\frac{A_v\Delta}{T}$ | | $\approx \frac{A\delta}{T}$ | $\approx \frac{A_v \Delta}{T}$ | $\approx \frac{A_v \Delta}{T}$ | | | | $\frac{2A}{nqT} J_n (nq\delta)$ | 0 | 0 | 0 | 0 | | $\approx \frac{2A}{qT} \left(\frac{q\delta}{2}\right)^n \left(\frac{n^{n-1}}{n!}\right)$ | | | | | | $\frac{A}{\pi} \left[1 - J_0 \left(\rho \delta \right) \right]$ | 0 | $\frac{2A}{\pi}\sin\frac{p\Delta}{2}$ | 0 | $\frac{A}{\pi} \sin \frac{p\Delta}{2}$ | | ≈ 0 | | $\approx \frac{2A\Delta}{T}$ | | $\approx \frac{A\Delta}{T}$ | | $\frac{A}{m\pi} \left[1 - J_0(mp\delta) \right]$ | 0 | $\frac{2A}{m\pi}\sin\frac{mp\Delta}{2}$ | 0 | $\frac{A}{m\pi} \sin \frac{mp\Delta}{2}$ | | ≈ 0 | | $\approx \frac{2A\Delta}{T}$ | | $\approx \frac{A\Delta}{T}$ | | $\approx \frac{2A}{T} \frac{J_n \left[(mp \pm nq) \delta \right]}{(mp \pm nq)}$ $\approx \frac{2A}{T} \left(\frac{\delta}{2} \right)^n \frac{(mp \pm nq)^{n-1}}{n!}$ | $\frac{2A_v}{T} \sin \left[(mp \pm q) \Delta/2 \right]$ $= \frac{A_v \Delta}{T}$ | $\frac{2A_{v}}{T} \frac{\sin \left[(mp \pm q) \Delta/2 \right]}{mp \pm q} \approx \frac{A_{v}\Delta}{T}$ | $\frac{A_{v}}{m\pi} \sin \frac{m\rho\Delta}{2}$ $\approx \frac{A_{v}\Delta}{T}$ | $\frac{A_{v}}{m\pi} \sin \frac{m\rho\Delta}{2}$ $\approx \frac{A_{v}\Delta}{T}$ | - n = harmonic order of the modulation frequency a - $\rho = \text{angular sampling carrier or repetition frequency in radians/second}$ - q = angular modulation frequency in radians/second - $T=2\pi/\rho=$ average interval between samples or repetiton period in seconds - δ = peak excursion or deviation of entire ppm pulse or modulated pdm (or pwm) pulse edge from its average position in seconds - Δ = average pulse duration in seconds - θ_{\bullet} = arbitrary phase shift of the modulating signal at time t=0 with respect to the sampling pulse in radians - ω = angular radio-frequency carrier frequency in radians/second Fig. 12-Radio-frequency pulse-modulation spectrums. | component | symbol | simple am | am
(suppressed
carrier) | |---|--------------------|---|--| | Radio-frequency carrier-
frequency component | Aω | $\frac{A_c\Delta}{T}$ | 0 | | Audio sidebands about the rf carrier-frequency component | $A_{\omega\pm q}$ | $\frac{m_a A_c \Delta}{2T}$ | $\frac{m_a A_c \Delta}{2T}$ | | Sampling-carrier sidebands about rf carrier-frequency component | $A_{\omega\pm mp}$ | $\frac{A_c}{m\pi} \sin \frac{m\rho\Delta}{2}$ $\approx \frac{A_c\Delta}{T}$ | 0 | | mth sampling-carrier sidebands
about audio sidebands
of rf carrier-frequency
component | Aw±q±mp | $\frac{m_a A_c}{2m\pi} \sin \frac{m\rho \Delta}{2}$ $\approx \frac{m_a A_c \Delta}{2T}$ | $\frac{m_{\alpha}A_{c}}{2m\pi}\sin\frac{mp\Delta}{2}$ $\approx \frac{m_{\alpha}A_{c}\Delta}{2T}$ | #### ■ Transmission lines #### General The formulas and charts of this chapter are for transmission lines operating in the TEM mode.* At the beginning of several of the sections (e.g., "Fundamental quantities," "Voltage and current," "Impedance and admittance," "Reflection coefficient") there are accurate formulas, according to conventional transmission-line theory. These are applicable from the lowest power and communication frequencies, including direct current, up to the frequency where a higher mode begins to appear on the line. Following the accurate formulas are others that are specially adapted for use in radio-frequency problems. In cases of small attenuation, the terms $\alpha^2 x^2$ and higher powers in the expansion of exp αx , etc., are neglected. Thus, when $\alpha x = (\alpha/\beta)\theta = 0.1$ neper (or about one decibel), the error in the approximate formulas is of the order of one percent. Much of the information is useful also in connection with special lines, such as those with spiral (helical) inner conductors, which function in a quasi-TEM mode; likewise for microstrip. It should be observed that Z_0 and Y_0 are complex quantities and the imaginary part cannot be neglected in the accurate formulas, unless preliminary examination of the problem indicates the contrary. Even when attenuation is small, $Z_0 = 1/Y_0$ must often be taken at its complex value, especially when the standing-wave ratio is high. In the first few pages of formulas, the symbol R_0 is used frequently. However, in later charts and special applications, the conventional symbol Z_0 is used where the context indicates that the quadrature component need not be considered for the moment. #### Rule of subscripts and sign conventions The formulas for voltage, impedance, etc., are generally for the quantities at the input terminals of the line in terms of those at the output terminals (Fig. 1). In case it is desired to find the quantities at the output in terms of those at the input, it is simply necessary to interchange the subscripts 1 and 2 in the formulas Fig. 1—Transmission line with generator, load. ^{*} The information on pp. 549–583 is valid for single-mode waveguides in general, except for formulas where the symbols R, L, G, or C per unit length are involved. #### General continued and to place a minus sign before x or θ . The minus sign may then be cleared through the hyperbolic or circular functions; thus, $$sinh (-\gamma x) = - sinh \gamma x$$, etc. # Symbols Voltage and current symbols usually represent the alternating-current complex sinusoid, with magnitude equal to the root-mean-square value of the quantity. Certain quantities, namely C, c, f, L, T, v, and ω are shown with an optional set of units in parentheses. Either the standard units or the optional units may be used, provided the same set is used throughout. $A = 10 \log_{10} (1/\eta) = \text{dissipation loss in a length of line in decibels}$ $A_0 = 8.686 \alpha x = \text{normal or matched-line attenuation of a length of line}$ in decibels. B_m = susceptive component of Y_m in mhos C = capacitance of line in farads/unit length (microfarads/unit length) c = velocity of light in vacuum in units of length/second (units of length/microsecond). See chapter 2 E = voltage (root-mean-square complex sinusoid) in volts $_{f}E$ = voltage of forward wave, traveling toward load $_{r}E$ = voltage of reflected wave $|E_{\text{flat}}|$ = root-mean-square voltage when standing-wave ratio = 1.0 $|E_{\text{max}}|$ = root-mean-square voltage at crest of standing wave $|E_{min}| = root$ -mean-square voltage at trough of standing wave e = instantaneous voltage $F_p = G/\omega C = power factor of dielectric$ f = frequency in cycles/second (megacycles/second) G = conductance of line in mhos/unit length $G_m = \text{conductive component of } Y_m \text{ in mhos}$ # Symbols continued $g_a = Y_a/Y_0 = \text{normalized admittance at voltage}$ standing-wave maximum $g_b = Y_b/Y_0 = \text{normalized admittance at voltage}$ standing-wave minimum I = current (root-mean-square complex sinusoid) in amperes $_{f}I=$ current of forward wave, traveling toward load $_{t}I = \text{current of reflected wave}$ i = instantaneous current L = inductance of line in henries/unit length (microhenries/unit length) P = power in watts R = resistance of line in ohms/unit length R_m = resistive component of Z_m in ohms $r_a = Z_a/Z_0 =$ normalized impedance at voltage standing-wave maximum $r_b = Z_b/Z_0 = \text{normalized impedance at voltage standing-wave minimum}$ $S = |E_{max}/E_{min}| = \text{voltage standing-wave ratio}$ T = delay of line in seconds/unit length (microseconds/unit length) v = phase velocity of propagation in units of length/second (units of length/microsecond) X_m = reactive component of Z_m in ohms x = distance between points 1 and 2 in units of length (also used for normalized reactance = X/Z_0) $Y_1 = G_1 + B_1 = 1/Z_1 = admittance in mhos looking toward load from point 1$ $Y_0 = G_0 + iB_0 = 1/Z_0 = \text{characteristic admittance of line in mhos}$ $Z_1 = R_1 + jX_1 =$ impedance in ohms looking toward load from point 1 $Z_0 = R_0 + tX_0 = \text{characteristic impedance of line in ohms}$ Z_{oc} = input impedance of a line open-circuited at the far end $Z_{\rm sc} = \text{input impedance of a line short-circuited at the far end}$ α = attenuation constant = nepers/unit length = 0.1151 × decibels/unit length # Symbols continued $$\beta$$ = phase constant in radians/unit length $$\gamma = \alpha + i\beta = \text{propagation constant}$$ $$\epsilon$$ = base of natural logarithms = 2.718; or dielectric constant of medium (relative to air), according to context $$\eta = P_2/P_1 = \text{efficiency (fractional)}$$ $$\theta = \beta x$$ = electrical length or angle of line in radians $$\theta^{\circ} = 57.3\theta = \text{electrical angle of line in degrees}$$ $$\lambda$$ = wavelength in units of length $$\lambda_0$$ = wavelength in free space $$\rho = |\rho|/2\psi = \text{voltage reflection coefficient}$$ $$\rho_{\rm db} = -20 \log_{10} (1/\rho) = \text{voltage reflection coefficient in decibels}$$ $$\phi$$ = time phase angle of complex voltage at voltage standing-wave maximum $$\psi$$ = half the angle of the reflection coefficient = electrical angle to nearest voltage standing-wave maximum on the generator side $$\omega = 2\pi f = \text{angular velocity in radians/second (radians/microsecond)}$$ # Fundamental quantities and line parameters $$dE/dx = (R + j\omega L)I$$ $$d^{2}E/dx^{2} = \gamma^{2}E$$ $$dI/dx = (G + j\omega C)E$$ $$d^{2}I/dx^{2} = \gamma^{2}I$$ $$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$ $$= j\omega \sqrt{LC}
\sqrt{(1 - jR/\omega L)(1 - jG/\omega C)}$$ $$\alpha = \{\frac{1}{2}[\sqrt{(R^{2} + \omega^{2}L^{2})(G^{2} + \omega^{2}C^{2})} + RG - \omega^{2}LC]\}^{\frac{1}{2}}$$ $$\beta = \{\frac{1}{2}[\sqrt{(R^{2} + \omega^{2}L^{2})(G^{2} + \omega^{2}C^{2})} - RG + \omega^{2}LC]\}^{\frac{1}{2}}$$ $$Z_{0} = \frac{1}{Y_{0}} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \sqrt{\frac{L}{C}} \times \sqrt{\frac{1 - jR/\omega L}{1 - jG/\omega C}} = R_{0} \left(1 + j\frac{X_{0}}{R_{0}}\right)$$ $$Y_{0} = 1/Z_{0} = G_{0} (1 + j B_{0}/G_{0})$$ # Fundamental quantities and line parameters continued $$\alpha = \frac{1}{2} (R/R_0 + G/G_0)$$ $$\beta B_0/G_0 = \frac{1}{2} (R/R_0 - G/G_0)$$ $$R_0 = [M/2(G^2 + \omega^2C^2)]^{\frac{1}{2}}$$ $$G_0 = [M/2(R^2 + \omega^2L^2)]^{\frac{1}{2}}$$ $$B_0/G_0 = -X_0/R_0 = (\omega CR - \omega LG)/M$$ where $M = [(R^2 + \omega^2L^2) (G^2 + \omega^2C^2)]^{\frac{1}{2}} + RG + \omega^2LC$ $$1/T = v = f\lambda = \omega/\beta$$ $$\beta = \omega/v = \omega T = 2\pi/\lambda$$ $$\gamma x = \alpha x + j\beta x = \frac{\alpha}{\beta} \theta + j\theta$$ $$\theta = \beta x = 2\pi x/\lambda = 2\pi fTx$$ $$\theta^\circ = 57.3\theta = 360 x/\lambda = 360 fTx$$ **a.** Special case—distortionless line: when R/L = G/C, the quantities Z_0 and α are independent of frequency $$X_0 = 0$$ $$\alpha = R/R_0$$ $$Z_0 = R_0 + j0 = \sqrt{L/C}$$ $$\beta = \omega \sqrt{LC}$$ **b.** For small attenuation: $R/\omega L$ and $G/\omega C$ are small $$\gamma = j\omega\sqrt{LC} \left[1 - j\left(\frac{R}{2\omega L} + \frac{G}{2\omega C}\right) \right] = j\beta \left(1 - j\frac{\alpha}{\beta} \right)$$ $$\beta = \omega\sqrt{LC} = \omega L/R_0 = \omega CR_0$$ $$T = 1/v = \sqrt{LC} = R_0C$$ $$\frac{\alpha}{\beta} = \frac{R}{2\omega L} + \frac{G}{2\omega C} = \frac{R}{2\omega L} + \frac{F_p}{2} = \frac{Rv}{2\omega R_0} + \frac{F_p}{2} = \text{attenuation in nepers/radian}$$ _ (decibels per 100 feet) (wavelength in line, meters) # Fundamental quantities and line parameters continu $$\alpha = \frac{R}{2}\sqrt{\frac{C}{L}} + \frac{G}{2}\sqrt{\frac{L}{C}} = \frac{R}{2R_0} + \pi\frac{F_p}{\lambda} = \frac{R}{2R_0} + \frac{F_p\beta}{2}$$ where R and G vary with frequency, while L and C are nearly independent of frequency. $$Z_{0} = \frac{1}{Y_{0}} = \sqrt{\frac{L}{C}} \left[1 - j \left(\frac{R}{2\omega L} - \frac{G}{2\omega C} \right) \right] = R_{0} \left(1 + j \frac{X_{0}}{R_{0}} \right)$$ $$= \frac{1}{G_{0}(1 + j B_{0}/G_{0})} = \frac{1}{G_{0}} \left(1 - j \frac{B_{0}}{G_{0}} \right)$$ $$R_{0} = 1/G_{0} = \sqrt{L/C}$$ $$\frac{B_{0}}{G_{0}} = -\frac{X_{0}}{R_{0}} = \frac{R}{2\omega L} - \frac{F_{p}}{2} = \frac{\alpha}{\beta} - F_{p}$$ $$X_{0} = -\frac{R}{2\omega L} + \frac{G}{2\omega C} \sqrt{\frac{L}{C}} = -\frac{R\lambda}{4\pi} + \frac{F_{p}}{2\pi} R_{0}$$ **c.** With certain exceptions, the following few equations are for ordinary lines (e.g., not spiral delay lines) with the field totally immersed in a uniform dielectric of dielectric constant ϵ (relative to air). The exceptions are all the quantities not including the symbol ϵ , these being good also for special types such as spiral delay lines, microstrip, etc. $$L = 1.016 R_0 \sqrt{\epsilon} \times 10^{-3} \text{ microhenries/foot}$$ $$= \frac{1}{3} R_0 \sqrt{\epsilon} \times 10^{-4} \text{ microhenries/centimeter}$$ $$C = 1.016 \frac{\sqrt{\epsilon}}{R_0} \times 10^{-3} \text{ microfarads/foot}$$ $$= \frac{\sqrt{\epsilon}}{3R_0} \times 10^{-4} \text{ microfarads/centimeter}$$ $v/c=1016/R_0C'=1/\sqrt{\varepsilon}=velocity$ factor (with capacitance C' in micromicrofarads/foot) $$\lambda = \lambda_0 \text{ v/c} = c/f\sqrt{\epsilon} = \lambda_0/\sqrt{\epsilon}$$ $$T = 1/v = R_0C' \times 10^{-6} = 1.016 \times 10^{-3}/(v/c) = 1.016 \times 10^{-3}\sqrt{\epsilon}$$ microseconds/foot (with capacitance C' in micromicrofarads/foot) The line length is $$x/\lambda = xf \sqrt{\epsilon}/984$$ wavelengths $\theta = 2\pi x/\lambda = xf \sqrt{\epsilon}/156.5$ radians where xf is the product of feet times megacycles. #### Voltage and current $$E_{1} = {}_{f}E_{1} + {}_{r}E_{1} = {}_{f}E_{2}\epsilon^{\gamma z} + {}_{r}E_{2}\epsilon^{-\gamma x} = E_{2}\left(\frac{Z_{2} + Z_{0}}{2Z_{2}}\epsilon^{\gamma z} + \frac{Z_{2} - Z_{0}}{2Z_{2}}\epsilon^{-\gamma z}\right)$$ $$= \frac{E_{2} + I_{2}Z_{0}}{2}\epsilon^{\gamma z} + \frac{E_{2} - I_{2}Z_{0}}{2}\epsilon^{-\gamma z}$$ $$= E_{2}\left[\cosh\gamma x + (Z_{0}/Z_{2})\sinh\gamma x\right] = E_{2}\cosh\gamma x + I_{2}Z_{0}\sinh\gamma x$$ $$= \frac{E_{2}}{1 + \rho_{2}}\left(\epsilon^{\gamma z} + \rho_{2}\epsilon^{-\gamma z}\right)$$ $$I_{1} = {}_{f}I_{1} + {}_{r}I_{1} = {}_{f}I_{2}\epsilon^{\gamma z} + {}_{r}I_{2}\epsilon^{-\gamma z} = Y_{0}({}_{f}E_{2}\epsilon^{\gamma z} - {}_{r}E_{2}\epsilon^{-\gamma z})$$ $$= I_{2}\left(\frac{Z_{0} + Z_{2}}{2Z_{0}}\epsilon^{\gamma z} + \frac{Z_{0} - Z_{2}}{2Z_{0}}\epsilon^{-\gamma z}\right) = \frac{I_{2} + E_{2}Y_{0}}{2}\epsilon^{\gamma z} + \frac{I_{2} - E_{2}Y_{0}}{2}\epsilon^{-\gamma z}$$ $$= I_{2}\left(\cosh\gamma x + \frac{Z_{2}}{Z_{0}}\sinh\gamma x\right)$$ $$= I_{2}\cosh\gamma x + E_{2}Y_{0}\sinh\gamma x = \frac{I_{2}}{1 - \rho_{2}}\left(\epsilon^{\gamma z} - \rho_{2}\epsilon^{-\gamma z}\right)$$ $$E_{1} = AE_{2} + BI_{2}$$ $$I_{1} = CE_{2} + DI_{2}$$ where the general circuit parameters are $$A = \cosh \gamma x$$ $$B = Z_0 \sinh \gamma x$$ $$C = Y_0 \sinh \gamma x$$ $$D = \cosh \gamma x$$ See section on "General circuit parameters" in chapter 5, and that on "Matrix algebra" in chapter 37. **a.** When point 2 is at a voltage maximum or minimum; x' is measured from voltage maximum and x'' from voltage minimum (similarly for currents): $$E_1 = E_{\text{max}} \left[\cosh \gamma x' + \frac{1}{S} \sinh \gamma x' \right]$$ $$= E_{\text{min}} \left[\cosh \gamma x'' + S \sinh \gamma x'' \right]$$ $$I_1 = I_{\text{max}} \left[\cosh \gamma x' + \frac{1}{S} \sinh \gamma x' \right]$$ $$= I_{\text{min}} \left[\cosh \gamma x'' + S \sinh \gamma x'' \right]$$ #### Voltage and current continued When attenuation is neglected: $$E_{1} = E_{\text{max}} \left[\cos \theta' + j \frac{1}{S} \sin \theta' \right]$$ $$= E_{\text{min}} \left[\cos \theta'' + j S \sin \theta'' \right]$$ **b.** Letting Z_l = impedance of load, l = distance from load to point 2 and x_l = distance from load to point 1: $$E_1 = E_2 \frac{\cosh \gamma x_l + (Z_0/Z_l) \sinh \gamma x_l}{\cosh \gamma l + (Z_0/Z_l) \sinh \gamma l}$$ $$I_1 = I_2 \frac{\cosh \gamma x_l + (Z_l/Z_0) \sinh \gamma x_l}{\cosh \gamma l + (Z_l/Z_0) \sinh \gamma l}$$ $$\mathbf{c.} \ \mathbf{e}_{1} = \sqrt{2} \mid_{f} E_{2} \mid_{\epsilon}^{ax} \sin \left(\omega t + 2\pi \frac{x}{\lambda} - \psi_{2} + \phi \right)$$ $$+ \sqrt{2} \mid_{r} E_{2} \mid_{\epsilon}^{-ax} \sin \left(\omega t - 2\pi \frac{x}{\lambda} + \psi_{2} + \phi \right)$$ $$i_{1} = \sqrt{2} \mid_{f} I_{2} \mid_{\epsilon}^{ax} \sin \left(\omega t + 2\pi \frac{x}{\lambda} - \psi_{2} + \phi + \tan^{-1} \frac{B_{0}}{G_{0}} \right)$$ $$+ \sqrt{2} \mid_{r} I_{2} \mid_{\epsilon}^{-ax} \sin \left(\omega t - 2\pi \frac{x}{\lambda} + \psi_{2} + \phi + \tan^{-1} \frac{B_{0}}{G_{0}} \right)$$ d. For small attenuation: $$E_1 = E_2 \left[\left(1 + \frac{Z_0}{Z_2} \alpha x \right) \cos \theta + j \left(\frac{Z_0}{Z_2} + \alpha x \right) \sin \theta \right]$$ $$I_1 = I_2 \left[\left(1 + \frac{Z_2}{Z_0} \alpha x \right) \cos \theta + j \left(\frac{Z_2}{Z_0} + \alpha x \right) \sin \theta \right]$$ e. When attenuation is neglected: $$E_1 = E_2 \cos \theta + jI_2Z_0 \sin \theta$$ $$= E_2 [\cos \theta + j(Y_2/Y_0) \sin \theta]$$ $$= {}_tE_2\epsilon^{j\theta} + {}_tE_2\epsilon^{-j\theta}$$ #### Voltage and current $I_1 = I_2 \cos \theta + jE_2Y_0 \sin \theta$ $= I_2 [\cos \theta + j(Z_2/Z_0) \sin \theta]$ $= Y_0 (_1E_2e^{j\theta} - _2E_2e^{-j\theta})$ General circuit parameters (see p. 555) are: continued $A = \cos \theta$ $B = jZ_0 \sin \theta$ $C = jY_0 \sin \theta$ $D = \cos \theta$ Fig. 2—Diagram of complex voltages and currents at two fixed points on a line with considerable attenuation. (Diagram rotates counterclockwise with time.) Fig. 3—Voltages and currents at time t=0 at a point ψ electrical degrees toward the load from a voltage standing-wave maximum. Fig. 4—Abbreviated diagram of a line with zero attenuation. # Impedance and admittance $$\frac{Z_1}{Z_0} = \frac{Z_2 \cosh \gamma x + Z_0 \sinh \gamma x}{Z_0 \cosh \gamma x + Z_2 \sinh \gamma x}$$ $$\frac{Y_1}{Y_0} = \frac{Y_2 \cosh \gamma x + Y_0 \sinh \gamma x}{Y_0 \cosh \gamma x + Y_2 \sinh \gamma x}$$ $$\frac{Z_2}{Z_0} = \frac{Z_1 \cosh \gamma x - Z_0 \sinh \gamma x}{Z_0 \cosh \gamma x - Z_1 \sinh \gamma x}$$ **b.** The input impedance of a line at a position of maximum or minimum voltage has the same phase angle as the characteristic impedance: $$\frac{Z_1}{Z_0} = \frac{Z_b}{Z_0} = \frac{Y_0}{Y_b} = r_b + j0 = \frac{1}{S} \text{ at a voltage minimum (current maximum)}.$$ $$\frac{Y_1}{Y_0} = \frac{Y_a}{Y_0} = \frac{Z_0}{Z_a} = g_a + j0 = \frac{1}{S}$$ at a voltage maximum (current minimum). c. When attenuation is small: $$\frac{Z_1}{Z_0} = \frac{\left(\frac{Z_2}{Z_0} + \alpha x\right) + j\left(1 + \frac{Z_2}{Z_0}\alpha x\right)\tan\theta}{\left(1 + \frac{Z_2}{Z_0}\alpha x\right) + j\left(\frac{Z_2}{Z_0} + \alpha x\right)\tan\theta}$$ For admittances, replace Z_0 , Z_1 , and Z_2 by Y_0 , Y_1 , and Y_2 , respectively. When A and B are real: $$\frac{A \pm jB \tan \theta}{B \pm jA \tan \theta} = \frac{2AB \pm j(B^2 - A^2) \sin 2\theta}{(B^2 + A^2) + (B^2 - A^2) \cos 2\theta}$$ d. When attenuation is neglected: $$\frac{Z_1}{Z_0} = \frac{Z_2/Z_0 + j \tan \theta}{1 + j(Z_2/Z_0) \tan \theta} = \frac{1 - j(Z_2/Z_0) \cot \theta}{Z_2/Z_0 - j \cot \theta}$$ and similarly for admittances. **e.** When attenuation $\alpha x = \theta \alpha / \beta$ is small and standing-wave ratio is large (say > 10): # Impedance and admittance confinued For θ measured from a voltage minimum $$\frac{Z_1}{Z_0} = \left(r_b +
\frac{\alpha}{\beta}\theta\right) (1 + \tan^2\theta) + j \tan\theta = \left(r_b + \frac{\alpha}{\beta}\theta\right) \frac{1}{\cos^2\theta} + j \tan\theta$$ (See Note 1) $$\begin{aligned} \frac{Z_0}{Z_1} &= \frac{Y_1}{Y_0} = \left(r_b + \frac{\alpha}{\beta} \, \theta \right) (1 + \cot^2 \theta) \, - j \cot \theta \\ &= \left(r_b + \frac{\alpha}{\beta} \, \theta \right) \frac{1}{\sin^2 \theta} - j \cot \theta \end{aligned}$$ (See Note 2) For θ measured from a voltage maximum $$\frac{Z_0}{Z_1} = \frac{Y_1}{Y_0} = \left(g_a + \frac{\alpha}{\beta}\theta\right) (1 + \tan^2\theta) + j \tan\theta$$ (See Note 1) $$\frac{Z_1}{Z_0} = \left(g_a + \frac{\alpha}{\beta}\theta\right)(1 + \cot^2\theta) - j\cot\theta$$ (See Note 2) **Note 1:** Not valid when $\theta \approx \pi/2$, $3\pi/2$, etc., due to approximation in denominator $1 + (r_b + \theta \alpha/\beta)^2 \tan^2 \theta = 1$ for with g_a in place of r_b). Note 2: Not valid when $\theta \approx 0$, π , 2π , etc., due to approximation in denominator $1 + l_b + \theta \alpha/\beta l^2 \cot^2 \theta = 1$ (or with g_a in place of r_b). For open- or short-circuited line, valid at $\theta = 0$. **f.** When x is an integral multiple of $\lambda/2$ or $\lambda/4$. For $x = n\lambda/2$, or $\theta = n\pi$ $$\frac{Z_1}{Z_0} = \frac{\frac{Z_2}{Z_0} + \tanh n\pi \frac{\alpha}{\beta}}{1 + \frac{Z_2}{Z_0} \tanh n\pi \frac{\alpha}{\beta}}$$ For $x = n\lambda/2 + \lambda/4$, or $\theta = (n + \frac{1}{2})\pi$ $$\frac{Z_1}{Z_0} = \frac{1 + \frac{Z_2}{Z_0} \tanh (n + \frac{1}{2}) \pi \frac{\alpha}{\beta}}{\frac{Z_2}{Z_0} + \tanh (n + \frac{1}{2}) \pi \frac{\alpha}{\beta}}$$ **g.** For small attenuation, with any standing-wave ratio: For $x = n\lambda/2$, or $\theta = n\pi$, where n is an integer # Impedance and admittance continued $$\frac{Z_1}{Z_0} = \frac{\frac{Z_2}{Z_0} + n\pi \frac{\alpha}{\beta}}{1 + \frac{Z_2}{Z_0} n\pi \frac{\alpha}{\beta}}$$ $$g_{a1} = \frac{g_{a2} + \alpha n \lambda/2}{1 + g_{a2} \alpha n \lambda/2} = \frac{1}{S_1}$$ For $x = (n + \frac{1}{2})\lambda/2$, or $\theta = (n + \frac{1}{2})\pi$, where n is an integer or zero: $$\frac{Z_1}{Z_0} = \frac{1 + \frac{Z_2}{Z_0} (n + \frac{1}{2}) \alpha \frac{\lambda}{2}}{\frac{Z_2}{Z_0} + (n + \frac{1}{2}) \alpha \frac{\lambda}{2}}$$ $$g_{b1} = \frac{1 + g_{a2}(n + \frac{1}{2}) \frac{\alpha}{\beta} \pi}{g_{a2} + (n + \frac{1}{2}) \frac{\alpha}{\beta} \pi} = S_1$$ Subscript a refers to the voltage-maximum point and b to the voltage minimum. In the above formulas, the subscripts a and b may be interchanged, and/or r may be substituted in place of g, except for the relationships to standing-wave ratio. # Lines open- or short-circuited at the far end Point 2 is the open- or short-circuited end of the line, from which x and θ are measured. # a. Voltages and currents: Use formulas of "Voltages and currents" section p. 555 with the following conditions Open-circuited line: $$\rho_2 = 1.00 \ \underline{0^{\circ}} = 1.00$$; $_{r}E_2 = _{f}E_2 = E_2/2$; $J_2 = -_{f}J_2$; $J_2 = 0$; $J_2 = \infty$. Short-circuited line: $$\rho_2 = 1.00 / 180^\circ = -1.00$$; $_7E_2 = -_7E_2$; $$E_2 = 0$$; $_rI_2 = _fI_2 = I_2/2$; $Z_2 = 0$. # Lines open- or short-circuited at the far end continued # **b.** Impedances and admittances- $$Z_{oc} = Z_0 \coth \gamma x$$ $$Z_{\rm sc} = Z_0 \tanh \gamma x$$ $$Y_{0c} = Y_0 \tanh \gamma x$$ $$Y_{ac} = Y_0 \coth \gamma x$$ #### c. For small attenuation: Use formulas for large (swr) in paragraph e, pp. 558–559, with the following conditions Open-circuited line: $$g_a = 0$$ Short-circuited line: $$r_b = 0$$ # d. When attenuation is neglected: $$Z_{\rm oc} = -jR_0 \cot \theta$$ $$Z_{\rm sc} = jR_0 \tan \theta$$ $$Y_{oc} = jG_0 \tan \theta$$ $$Y_{\rm sc} = -iG_0 \cot \theta$$ # e. Relationships between Z_{oc} and Z_{sc} : $$\sqrt{Z_{\rm oc}Z_{\rm sc}}=Z_0$$ $$\pm \sqrt{Z_{\rm sc}/Z_{\rm oc}} = \tanh \gamma x \approx \frac{\alpha}{\beta} \theta (1 + \tan^2 \theta) + j \tan \theta = \frac{\alpha \theta}{\beta \cos^2 \theta} + j \tan \theta$$ $$\approx j \tan \theta \left[1 - j \frac{\alpha}{\beta} \theta (\tan \theta) + \cot \theta \right] = j \tan \theta \left(1 - j \frac{\alpha}{\beta} \frac{2\theta}{\sin 2\theta} \right)$$ Note: Above approximations not valid for $\theta \approx \pi/2$, $3\pi/2$, etc. $$\pm \sqrt{Z_{oc}/Z_{sc}} = \coth \gamma x \approx \frac{\alpha}{\beta} \theta (1 + \cot^2 \theta) - j \cot \theta = \frac{\alpha \theta}{\beta \sin^2 \theta} - j \cot \theta$$ $$= -j \cot \theta \left[1 + j \frac{\alpha}{\beta} \theta (\tan \theta + \cot \theta) \right] = -j \cot \theta \left(1 + j \frac{\alpha}{\beta} \frac{2\theta}{\sin 2\theta} \right)$$ Note: Above approximations not valid for $\theta \approx \pi$, 2π , etc. # Lines open- or short-circuited at the far end continued **f.** When attenuation is small (except for $\theta \approx n\pi/2$, $n = 1, 2, 3 \dots$): $$\pm \sqrt{\frac{Z_{\rm sc}}{Z_{\rm oc}}} = \pm \sqrt{\frac{Y_{\rm oc}}{Y_{\rm sc}}} = \pm j\sqrt{-\frac{C_{\rm oc}}{C_{\rm sc}}} \left[1 - j\frac{1}{2} \left(\frac{G_{\rm oc}}{\omega C_{\rm oc}} - \frac{G_{\rm sc}}{\omega C_{\rm sc}}\right)\right]$$ Where $Y_{oc} = G_{oc} + j\omega C_{oc}$ and $Y_{sc} = G_{sc} + j\omega C_{sc}$. The + sign is to be used before the radical when C_{oc} is positive, and the - sign when C_{oc} is negative. **g.** R/|X| component of input impedance of low-attenuation nonresonant line: Short-circuited line (except when $\theta \approx \pi/2$, $3\pi/2$, etc.) $$\frac{R_1}{|X_1|} = \frac{G_1}{|B_1|} = \left| \frac{\alpha}{\beta} \theta (\tan \theta + \cot \theta) + \frac{B_0}{G_0} \right| = \left| \frac{\alpha}{\beta} \frac{2\theta}{\sin 2\theta} + \frac{B_0}{G_0} \right|$$ Open-circuited line (except when $\theta \approx \pi$, 2π , etc.) $$\frac{R_1}{|X_1|} = \frac{G_1}{|B_1|} = \left| \frac{\alpha}{\beta} \theta (\tan \theta + \cot \theta) - \frac{B_0}{G_0} \right| = \left| \frac{\alpha}{\beta} \frac{2\theta}{\sin 2\theta} - \frac{B_0}{G_0} \right|$$ # Voltage reflection coefficient and standing-wave ratio $$\rho = \frac{rE}{tE} = -\frac{rI}{tI} = \frac{Z - Z_0}{Z + Z_0} = \frac{Y_0 - Y}{Y_0 + Y} = |\rho| /2\psi$$ where ψ is the electrical angle to the nearest voltage maximum on the generator side of point where ρ is measured (Figs. 2, 3, and 4). à . . . $$\rho_1 = \rho_2 \epsilon^{-2ax} / -2\theta$$ $$|\rho_1| = |\rho_2| / 10^{A_0/10}$$ Voltage reflection coefficient in decibels $$\rho_{\rm db} = -20 \log_{10} |1/\rho|$$ The minus sign is frequently omitted. $$|\rho_{db}$$ at input $|\rho_{db}$ at load $|+2A_{\theta}|$ These two relationships and standing-wave ratio versus reflection coefficient in decibels are shown in the alignment charts on pages 570-571. $$Z = \frac{E}{I} = \frac{fE + rE}{fI + rI} = Z_0 \frac{1 + \rho}{1 - \rho}$$ 563 # Voltage reflection coefficient and standing-wave ratio continued $$\frac{Z}{Z_0} = \frac{1+\rho}{1-\rho} = \frac{1+jS\cot\psi}{S+j\cot\psi}$$ $$S = \left| \frac{E_{\text{max}}}{E_{\text{min}}} \right| = \left| \frac{I_{\text{max}}}{I_{\text{min}}} \right| = \left| \frac{jE \mid + \mid rE \mid}{jE \mid - \mid rE \mid} = \left| \frac{jI \mid + \mid rI \mid}{jI \mid - \mid rI \mid} \right|$$ $$= \frac{1+|\rho|}{1-|\rho|} = r_a = \frac{1}{g_a} = g_b = \frac{1}{r_b}$$ $$|\rho| = \frac{S-1}{S+1}$$ $$1/S_1 = \tanh \left[\alpha x + \tanh^{-1}(1/S_2) \right]$$ $$= \tanh \left[0.1151 A_0 + \tanh^{-1}(1/S_2) \right]$$ **a.** For high standing-wave ratio. When the ratio is greater than 6/1, and for one-percent accuracy: $$1/S_1 = 1/S_2 + \alpha x = 1/S_2 + 0.115 A_0$$ $|\rho_{db}| = 17.4/S$ Subject to the conditions below, the standing-wave ratio is given by one or the other of these equations: $$S \approx (1 + x^2)/r$$ $$S \approx (1 + b^2)/a$$ where $$r + jx = Z/Z_0 = (1/R_0) [R - (B_0/G_0) X + jX]$$ $g + jb = Y/Y_0 = (1/G_0) [G + (B_0/G_0) B + jB]$ Conditions, for one-percent accuracy: $$r < 0.1|x + 1/x|$$ when $|x| > 0.3$ $$g < 0.1|b + 1/b|$$ when $|b| > 0.3$ The boundary of the one-percent-error region can be plotted on the Smith chart by use of the equation (for impedances) $$|\cot \psi| = 0.1 \, S^2/(S^2 - 1)^{1/2}$$ The same boundary line on the chart holds when reading admittances. # Power and efficiency The net power flowing toward the load is $$P = |fE|^2 G_0 [1 - |\rho|^2 + 2 |\rho| (B_0/G_0) \sin 2\psi]$$ where |E| is the root-mean-square voltage. Example: Derive the power formula. By page 151: $$P = (real) EI^*$$ When the following expressions are substituted in this equation, the power formula results: $$E = {}_{f}E (1 + \rho)$$ $$I = {}_{f}EY_{0} (1 - \rho)$$ $$I^{*} = {}_{f}E^{*}Y_{0}^{*} (1 - \rho^{*})$$ $$Y_{0}^{*} = G_{0} (1 - jB_{0}/G_{0})$$ $$\rho = |\rho| \exp j2\psi$$ $$\rho^{*} = |\rho| \exp - j2\psi$$ **a.** When the angle B_0/G_0 of the characteristic admittance is negligibly small, the net power flowing toward the load is given by $$P = G_0(|_f E|^2 - |_r E|^2) = |_f E|^2 G_0(1 - |\rho|^2) = |E_{\text{max}} E_{\text{min}}|/R_0$$ $$P_1 = |_f E_0|^2 G_0(e^{2(\alpha/\beta)\theta} - |\rho_2|^2 e^{-2(\alpha/\beta)\theta})$$ **b.** Efficiency, when B_0/G_0 is negligibly small: $$\eta = \frac{P_2}{P_1} = \frac{1 - |\rho_2|^2}{\epsilon^{2(\alpha/\beta)\theta} - |\rho_2|^2 \epsilon^{-2(\alpha/\beta)\theta}} \\ = \frac{1 - |\rho_2|^2}{1 - |\rho_2|^2 \eta_{\text{max}}^2} \eta_{\text{max}} = \frac{1 - |\rho_2|^2}{1 - |\rho_1|^2} \epsilon^{-2\alpha x} \\ = \frac{1/|\rho_2| - |\rho_2|}{1/|\rho_1| - |\rho_1|} = \frac{S_1 - 1/S_1}{S_2 - 1/S_2}$$ The maximum error in the above expressions is a final and a $$\pm 100 (S_2 - 1/S_2) B_0/G_0$$ percent $$\pm$$ 4.34 (S₂ - 1/S₂) B₀/G₀ decibels # Power and efficiency continued When the load matches the line, $\rho_2 = 0$ and the efficiency is accurately $$\eta_{\text{max}} = \exp \left[-2 (\alpha/\beta) \theta \right] = \exp \left(-2\alpha x \right) = 10^{-A_0/10}$$ $$A - A_0 = 10 \log_{10} \left(\eta_{\text{max}} / \eta \right)$$
The alignment chart on p. 573 is drawn from the expressions in this paraaraph. c. Efficiency, when swr is high: $$\eta = \frac{P_2}{P_1} = \frac{R_2}{R_1} \left(\frac{1 + x_1^2}{1 + x_2^2} \right) = \frac{G_2}{G_1} \left(\frac{1 + b_1^2}{1 + b_2^2} \right)$$ $$= \frac{R_2}{R_0^2 G_1} \left(\frac{1 + b_1^2}{1 + x_2^2} \right) = \frac{R_0^2 G_2}{R_1} \left(\frac{1 + x_1^2}{1 + b_2^2} \right)$$ where R is the ohmic resistance while x is the normalized reactance and similarly for G and b. It is important that the R's and G's be computed properly, using formulas in the section on "Transformation of impedance on lines with high swr," page 566. Note the identity of the efficiency formulas with the left-hand terms of the impedance formulas. The conditions for accuracy are the same as stated for the impedance formulas for high standing-wave ratio. **Example:** Physical significance of formula for efficiency at high standing-wave ratio: Subject to stated conditions, approximately, $x=\cot\psi$ and $I=I_{\max}\sin\psi$. $I_{\max}=$ current standing-wave maximum, practically constant along line when standing-wave ratio > 6. Then $$P = I^2 R = I_{\text{max}}^2 R / (1 + x^2)$$ **d.** Attenuation in nepers = $\frac{1}{2} \log_{\epsilon} \frac{P_1}{P_2} = 0.1151 \times \text{(attenuation in decibels)}$ For a matched line, attenuation = $(\alpha/\beta)\theta = \alpha x$ nepers. Attenuation in decibels = $10 \log_{10} \frac{P_1}{P_2} = 8.686 \times \text{(attenuation in nepers)}$ When $2(\alpha/\beta)\theta$ is small, $$\frac{P_1}{P_2} = 1 + 2\frac{\alpha}{\beta} \theta \frac{1 + |\rho_2|^2}{1 - |\rho_2|^2}$$ and decibels/wavelength = 10 log₁₀ $\left(1 + 4\pi \frac{\alpha}{\beta} \frac{1 + |\rho_2|^2}{1 - |\rho_2|^2}\right)$ # Power and efficiency continued e. For the same power flowing in a line with standing waves as in a matched, or "flat," line: $$P = |E_{\text{flat}}|^{2}/R_{0}$$ $$|E_{\text{max}}| = |E_{\text{flat}}| S^{\frac{1}{2}}$$ $$|E_{\text{min}}| = |E_{\text{flat}}| / S^{\frac{1}{2}}$$ $$|f| = \frac{|E_{\text{flat}}|}{2} \left(S^{\frac{1}{2}} + \frac{1}{S^{\frac{1}{2}}} \right)$$ $$|f| = \frac{|E_{\text{flat}}|}{2} \left(S^{\frac{1}{2}} - \frac{1}{S^{\frac{1}{2}}} \right)$$ When the loss is small, so that S is nearly constant over the entire length, then per half wavelength $$\frac{\text{(power loss)}}{\text{(loss for flat line)}} \approx \frac{1}{2} \left(S + \frac{1}{S} \right)$$ f. The power dissipation per unit length, for unity standing-wave ratio, is $$\Delta P_d/\Delta x = 2 \alpha P$$ $\frac{\text{(dissipation in watts/foot)}}{\text{(line power in kilowatts)}} = 2.30 \text{ (decibels/100 feet)}$ where the decibels/100 feet is the normal attenuation for a matched line. When swr > 1, the dissipation at a current maximum is S times that for swr = 1, assuming the attenuation to be due to conductor loss only. The multiplying factor for local heating reaches a minimum value of (S + 1/S)/2 all along the line when conductor loss and dielectric loss are equal. **g.** Further considerations on power and efficiency are given in the section, "Mismatch and transducer loss," p. 569. # Transformation of impedance on lines with high swr* When standing-wave ratio is greater than 10 or 20, resistance cannot be read accurately on the Smith chart, although it is satisfactory for reactance. ^{*} W. W. Macolpine, "Computation of Impedance and Efficiency of Transmission Lines with High Standing-Wave Ratio," *Transactions of the AIEE*, vol. 72, part 1, pp. 334-339; July, 1953; also *Electrical Cammunication*, vol. 30, pp. 238-246; September, 1953. # Transformation of impedance on lines with high swr continued Use the formula: $$R_1 = R_2 \frac{1 + x_1^2}{1 + x_2^2} + R_0 \left[1 + x_1^2 \right] \left[\frac{\alpha}{\beta} \theta + \frac{B_0}{G_0} \left(\frac{x_1}{1 + x_1^2} - \frac{x_2}{1 + x_2^2} \right) \right]$$ where R = ohmic resistance $x = X/R_0 = \text{normalized reactance.}$ When admittance is given or required, similar formulas can be written with the aid of the following tabulation. The top row shows the terms in the above formula. | R ₁ | R_2 | x_1^2 | x_2^2 | Ro | x ₁ | -x ₂ | |----------------|-------------|---------|--------------|---------|-----------------------|-----------------| | G ₁ | G_2 | b_1^2 | b_{2}^{2} | $1/R_0$ | -b ₁ | b ₂ | | R ₁ | $G_2R_0^2$ | x_1^2 | b_2^2 | R_0 | x ₁ | b ₂ | | G ₁ | R_2/R_0^2 | b_1^2 | \times_2^2 | $1/R_0$ | $-b_1$ | $-x_2$ | | | | | | | | | For transforming R to G or vice versa: $$R = R_0^2 \, \mathbf{G} |\mathbf{x}/\mathbf{b}|$$ where x and b are read on the Smith chart in the usual manner for transforming impedances to admittances. The conditions for roughly one-percent accuracy of the formulas are: Standing-wave ratio greater than 6/1 at input; $|B_0/G_0| < 0.1$; r+jx or g+jb (whichever is used, at each end of line) meet the requirements stipulated in paragraph a ("For high standing-wave ratio") on p. 563; and the line parameters and given impedance be known to one-percent accuracy. The formula for resistance transformation is derived from expressions for high swr in paragraph a, just referred to. Example: A load of 0.4 — j2000 ohms is fed through a length of RG-17A/U cable at a frequency of 2.0 megacycles. What are the input impedance and the efficiency for a 24-foot length of cable and for a 124-foot length? # Transformation of impedance on lines with high swr continued For RG-17A/U, the attenuation at 2.0 megacycles is 0.095 decibel/100 feet (see chart, p. 614). The dielectric constant $\epsilon = 2.26$ and F_p is negligibly small. Then, by formulas in paragraph b and c, pp. 553 and 554, $$B_0/G_0 = \alpha/\beta = (db/100 \text{ ft}) (\lambda_{\text{meters}})/1663$$ = $[0.095 \times 150/(2.26)^{1/2}]/1663 = 0.0057$ $$x/\lambda = xf\epsilon^{1/2}/984 = 24 \times 2.0 \times 1.5/984 = 0.073$$ $\theta = 2\pi x/\lambda = 0.46$ radian for 24-foot length. while $$x/\lambda = 0.38$$ and $\theta = 2.4$ for 124-foot length. $Z_2/Z_0 \approx (0.4 - j2000)/50 = 0.008 - j40$ For the 24-foot length, by the Smith chart, $$x_1 = X_1/Z_0 = -1.9$$, or $X_1 = -95$ ohms The conditions for accuracy of the resistance transformation formula are satisfied. Now, $$1 + x_1^2 = 1 + (1.9)^2 = 4.6$$ $$1 + x_2^2 = 1 + (40)^2 = 1600$$ $$R_1 = 0.4 (4.6/1600) + 50 \times 4.6 \times 0.0057 [0.46 - (1.9/4.6) + (40/1600)]$$ $$= 0.0012 + 0.105 = 0.106 \text{ ohm}$$ The efficiency formula in paragraph c, "When swr is high," p. 565, gives $$\eta = 0.0012/0.106 = 0.0113$$, or 1.1 percent where the 0.0012 figure is taken directly from the first quantity on the right-hand side of the computation of R_1 . Similarly, for the 124-foot length, $$x_1 = 1.1$$, $X_1 = 55$ ohms, $1 + x_1^2 = 2.21$, $R_1 = 0.00055 + 1.83 = 1.83$ ohms $$\eta = 0.00055/1.83 = 3.1 \times 10^{-4}$$, or 0.03 percent Tabulating the results, | , length
in feet | input impedance
in ohms | efficiency
in percent | loss
in decibels | |---------------------|----------------------------|--------------------------|---------------------| | 24 | 0.106 <i>– j</i> 95 | 1.1 | 19.6 | | 124 | 1.8 + <i>j</i> 55 | 0.03 | 35 | # Transformation of impedance on lines with high swr continued The considerably greater loss for 124 feet compared to 24 feet is because the transmission passes through a current maximum where the loss per unit length is much higher than at a current minimum. #### Mismatch and transducer loss On the following pages are formulas and three alignment charts enabling the calculation of attenuation when impedance mismatch exists in a transmission-line system; also change in standing-wave ratio along a line due to attenuation. #### One end mismatched When either generator or load impedance is mismatched to the Z_0 of the line and the other is matched, (mismatch loss) = $$\frac{P_m}{P} = \frac{1}{1 - |\rho|^2} = \frac{(S+1)^2}{4S}$$ (1) where P = power delivered to load P_m = power that would be delivered were system matched S = standing-wave ratio of mismatched impedance referred $to <math>Z_0$ Compared to an ideal transducer (ideal matching network between generator and load): $$(transducer loss) = A_0 + 10 log_{10} (P_m/P) decibels$$ (2) where A_0 = normal attenuation of line. #### Generator and load mismatched $$|X_0/R_0| \ll 1$$ When mismatches exist at both ends of the system: (mismatch loss at input) = $$\frac{P_m}{P} = \frac{(R_o + R_1)^2 + (X_o + X_1)^2}{4 R_o R_1}$$ (3) (transducer loss) = $$(A - A_0) + A_0 + 10 \log_{10} (P_m/P)$$ decibels (4) #### Line attenuation and voltage reflection coefficient for low swr. where $(A - A_0)$ = standing-wave loss factor obtained from chart on p. 573 for S = standing-wave ratio at load. #### Notes on (3): - **a.** This equation reduces to (1) when X_g and/or X_1 is zero. - **b.** In (3), the impedances can be either ohmic or normalized with respect to any convenient Z_0 . - **c.** When determining input impedance $R_1 + jX_1$ on Smith chart, adjust radius arm for S at input, determined from that at output by aid of charts on pp. 570 and 571. Line attenuation and voltage reflection coefficient for high swr. - **d.** For junction of two admittances, use (3) with G and B substituted for R and X, respectively. - e. Equation (3) is valid for a junction in any linear passive network. Likewise (1) when at least one of the impedances concerned is purely resistive. Determine S as if one impedance were that of a line. #### Examples **Example 1:** The swr at the load is 1.75 and the line has an attenuation of 14 decibels. What is the input swr? Using the alignment chart, p. 570, set a straightedge through the 1.75 division on the "load swr" scale and the 14-decibel point on the middle scale. Read the answer on the "input swr" scale, which the straightedge intersects at 1.022. **Example 2:** Readings on a reflectometer show the reflected wave to be 4.4 decibels below the incident wave. What is the swr? Using chart, p. 571, locate
the reflection coefficient 4.4 (or -4.4) decibels on either outside scale. Beside it, on the same horizontal line, read swr = 4.0 + ... **Example 3:** A 50-ohm line is terminated with a load of 200 + j0 ohms. The normal attenuation of the line is 2.00 decibels. What is the loss in the line? Use alignment chart, p. 573. Align a straightedge through the points $A_0 = 2.0$ and swr = 4.0. Read $A - A_0 = 1.27$ decibels on the left-hand scale. Then the transmission loss in the line is: $$A = 1.27 + 2.00 = 3.27$$ decibels This is the dissipation or heat loss as opposed to the mismatch loss at the input, for which see example 4. **Example 4:** In the preceding example, suppose the generator impedance is 100 + j0 ohms, and the line is 5.35 wavelengths long. What is the mismatch loss between the generator and the line? According to example 3, the load swr = 4.0 and the line attenuation is 2.0 decibels. Then, using chart, p. 571, the input swr is found to be 2.22. On the Smith chart, locate the point corresponding to 0.35 wavelength toward the generator from a voltage maximum, and swr = 2.22. Read the input normalized impedance as 0.62 + j0.53 with respect to $Z_0 = 50$ ohms. Now the mismatch loss at the input can be determined by use of (3). However, since the generator impedance is nonreactive, (1) can be used, if desired. Refer to notes a and e above and the following paragraph. With respect to 100 + j0 ohms, the normalized impedance at the line input is 0.31 + j0.265 which gives swr = 3.5 according to the Smith chart. Then by (1), $P_m/P = 1.45$, giving a mismatch loss of 1.62 decibels. The transducer loss is found by using the results of examples 3 and 4 in (4). This is $$1.27 + 2.00 + 1.62 = 4.9$$ decibels Due to load mismatch, an increase of loss in db as read from this chart must be added to normal line attenuation to give total dissipation loss in line. This does not include mismatch loss due to any difference of line *input* impedance from generator impedance. Standing-wave loss factor. # Attenuation and resistance of transmission lines at ultra-high frequencies The normal or matched-line attenuation in decibels/100 feet is: $$A_{100} = 4.34 R_t/Z_0 + 2.78 f \epsilon^{1/2} F_p$$ where the total line resistance/100 feet (for perfect surface conditions of the conductors) is, for copper coaxial line, $$R_t = 0.1 (1/d + 1/D) f^{1/2}$$ and for copper two-wire open line, $$= (0.2/d) f^{1/2}$$ where D = diameter of inner surface of outer coaxial conductor in inches d = diameter of conductors (coaxial-line center conductor) in inches f = frequency in megacycles/second ϵ = dielectric constant relative to air F_p = power factor of dielectric at frequency f. For other conductor materials, the resistance of conductor of diameter d (and similarly for D) is 0.1 (1/d) $(f\mu_r\rho/\rho_{eu})^{1/2}$ ohms/100 feet See the section on "Skin effect," p. 131. # **Resonant lines** # Symbols f_0 = resonance frequency in megacycles $G_a = \text{conductance load in mhos at voltage standing-wave maximum,}$ equivalent to some or all of the actual loads k = coefficient of coupling n = integral number of quarter wavelengths $p = k^2 Q_{1s} Q_{2s} = load$ transfer coefficient or matching factor P_c = power converted into heat in resonator P_m = power capability of generator in watts #### Resonant lines continued P_x = power transferred when load is directly connected to generator (for single resonators); or an analogous hypothetical power (for two coupled resonators) Q = figure of merit of a resonator as it exists, whether loaded or unloaded Q_d = doubly loaded Q (all loads being included) Q_s = singly loaded Q (all loads included except one). For a pair of coupled resonators, Q_{1s} is the value for the first resonator when isolated from the other. (Similarly for Q_{2s}) $Q_u = unloaded Q$ R_b = resistance load in ohms at voltage standing-wave minimum, equivalent to some or all of the actual loads R_{μ} = resistance similar to R_b except for unloaded resonator R_1 = generator resistance, referred to short-circuited end $R_2 = load resistance$ $S_x = R_1/R_2$ or $R_2/R_1 = \text{mismatch factor between generator and load}$ Z_{10} = characteristic impedance of the first of a pair of resonators θ_1 = electrical angle from a voltage standing-wave minimum point a. Q of a resonator (electrical, mechanical or any other) is: $$Q = 2\pi \frac{\text{(energy stored)}}{\text{(energy dissipated per cycle)}}$$ $$= 2\pi f \frac{\text{(energy stored)}}{\text{(power dissipation)}}$$ In a freely oscillating system, the amplitude decays exponentially: $$I = I_0 \exp \left(-\pi f t/Q\right)$$ b. Unloaded Q of a resonant line: $$Q_u = \beta/2\alpha$$ the line length being n quarter-wavelengths, where n is a small integer. The losses in the line are equivalent to those in a hypothetical resistor at the short-circuited end (p. 558, paragraph e): $$R_u = n\pi Z_0/4Q_u$$ c. Loaded Q of a resonant line (Fig. 5) $$\frac{1}{Q} = \frac{1}{Q_u} + \frac{4R_b}{n\pi Z_0} + \frac{4G_a}{n\pi Y_0}$$ $$= (4/n\pi Z_0) (R_u + R_b + G_a/Y_0^2)$$ All external loads can be referred to one end and represented by either R_b or G_a as on Fig. 6. Fig. 5—Quarter-wave line with loadings at nominal short-circuit and open-circuit points. The total loading is the sum of all the individual loadings. General conditions: $$R_b/Z_0 = G_a/Y_0 \ll 1.0$$ or, roughly, $Q > 5$ #### d. Input admittance and impedance: The converse of the equations for Fig. 6 can be used at the resonance frequency. Then R or G is the input impedance or admittance, while $$R_b = n\pi Z_0/4Q_s$$ A. Shunt or tapped load. $$R_b = (Z_0^2/R) \sin^2 \theta_t$$ or $$G_a = G \sin^2 \theta_t = R_b/Z_0^2$$ $$R_b = Z_0^2 \omega^2 C^2 R \sin^2 \theta$$ provided G≫w2C2 $R_h = R \cos^2 \theta$ D. Loop coupling. $$R_b = (\omega^2 M^2/R) \cos^2 \theta_i$$ provided $X_{loop} \ll R$ Fig. 6-Typical loaded quarter-wave sections with apparent R_b equivalent to the loading at distance θ_1 from voltage-minimum point of the line. Outer conductor not shown. where $Q_a = \text{singly loaded } Q$ with the losses and all the loads considered except that at the terminals where input R or G is being measured. In the vicinity of the resonance frequency, the input admittance when looking into a line at a tap point θ_1 in Fig. 7 is approximately $$Y = G + jB = \frac{n\pi Y_0}{4 \sin^2 \theta_1} \left(\frac{1}{Q_s} + j2 \frac{f - f_0}{f_0} \right)$$ Provided $$|f - f_0|/f_0 \ll 1.0$$ and $$\left|\theta \frac{f - f_0}{f_0} \cot \theta_1\right| \ll 1.0$$ where $\theta=n\pi/2=$ length of line at f_0 . It is not valid when $\theta_1\approx 0$, π , 2π , etc., except that it is good near the short-circuited end when $f-f_0\approx 0$. Such a resonant line is approximately equivalent to a lumped LCG parallel circuit, where $$\omega_0^2 L_1 C_1 = (2\pi f_0)^2 L_1 C_1 = 1$$ Fig. 7—Resonant transmission lines and their equivalent lumped circuit. Admittance of the equivalent circuit is $$Y = G + j \left(\omega C_1 - \frac{1}{\omega L_1} \right)$$ $$\approx \omega_0 C_1 \left(\frac{1}{Q_s} + j2 \frac{f - f_0}{f_0} \right)$$ Then, subject to the conditions stated above, $$L_1 = \frac{4 \sin^2 \theta_1}{n \pi \omega_0 Y_0}$$ $$C_1 = \frac{n\pi Y_0}{4\omega_0 \sin^2 \theta_1} = \frac{nY_0}{8f_0 \sin^2 \theta_1}$$ $$G = \frac{n\pi Y_0}{4Q_n \sin^2 \theta_1}$$ $$Q_a = \frac{\omega_0 C_1}{G} = \frac{1}{\omega_0 L_1 G}$$ Similarly, the input impedance at a point in series with the line (Fig. 6C and D) is $$Z = R + jX = \frac{n\pi Z_0}{4\cos^2\theta_1} \left(\frac{1}{Q_s} + j2 \frac{f - f_0}{f_0} \right)$$ Provided $$|f - f_0|/f_0 \ll 1.0$$ and $$\left|\theta \frac{f - f_0}{f_0} \tan \theta_1\right| \ll 1.0$$ It is not valid when $\theta_1 \approx \pi/2, 3\pi/2$, etc. The voltage standing-wave ratio at resonance, on the generator (Fig. 8) is $$S = \frac{R_2 + R_u}{R_1} = \frac{(R_2/R_1) Q_u + Q_d}{Q_u - Q_d}$$ Fig. 8—Equivalent circuits of a resonant line (or a lumped tuned circuit) as seen at the short-circuited and apen-circuited ends. All the power equations are good for either lumped or distributed parameters. When $$R_1 = R_2$$, $$S = \frac{1 + Q_d/Q_u}{1 - Q_d/Q_u}$$ $$\rho = Q_d/Q_u$$ #### e. Insertion loss (Fig. 8) At resonance, for either a distributed or a lumped-constant device: (dissipation loss) = $$10 \log_{10} (P_x/P_{out})$$ = $20 \log_{10} [1/(1 - Q_d/Q_u)]$ $\approx 20 \log_{10} (1 + Q_d/Q_u)$ $\approx 8.7 Q_d/Q_u$ decibels (mismatch loss) = $$10 \log_{10} (P_m/P_x)$$ = $10 \log_{10} [(1 + S_x)^2/4S_x]$ decibels The dissipation loss also includes a small additional mismatch loss due to the presence of the resonator. The error in the form $20 \log_{10} (1 + Q_d/Q_u)$ is about twice that of the form $8.7 \ Q_d/Q_u$. The last expression $(8.7 \ Q_d/Q_u)$ is in error compared to the first, $20 \log_{10} \left[1/(1 - Q_d/Q_u) \right]$, by roughly $-50 \ (Q_d/Q_u)$ percent for $(Q_d/Q_u) < 0.2$. The selectivity is given on page 242, where $Q=Q_d$. That equation is accurate over a smaller range of $(f-f_0)$ for a resonant line than it is for a single tuned circuit. At resonance: $$\frac{P_{\text{in}}}{P_{\text{out}}} = \frac{Q_u + (R_1/R_2) Q_d}{Q_u - Q_d}$$ The maximum power transfer, for fixed Q_u , Q_d and Z_0 occurs when $R_1=R_2$. Then $$P_{\rm in}/P_{\rm out} = (Q_u + Q_d)/(Q_u - Q_d)$$ $$P_{\text{out}}/P_m = (1 - Q_d/Q_u)^2$$ $$P_{in}/P_m = 1 - (Q_d/Q_u)^2$$ When the generator R_1 or G_1 is negligibly small (then $Q = Q_s = Q_d$): $$(P_{in}/P_{out})_s = Q_u/(Q_u - Q)$$ **f.** Power dissipation $(= P_c)$. $$\frac{P_c}{P_m} = \frac{4 (Q_d/Q_u) (1 - Q_d/Q_u)}{1 + R_2/R_1}$$ For matched input and output $(R_1 = R_2)$: $$P_c/P_m = 2 (Q_d/Q_u) (1 - Q_d/Q_u)$$ $\approx 2 Q_d/Q_u \text{ (for } Q_d \ll Q_u)$ $$P_c/P_{\rm out} = 2 Q_d/(Q_u - Q_d)$$ $$P_c/P_{in} = 2 Q_d/(Q_u + Q_d)$$ When the generator R_1 or G_1 is negligibly small:
$$(P_c/P_{\text{out}})_s = Q/(Q_u - Q)$$ g. Voltage and current At the current-maximum point of an n-quarter-wavelength resonant line: $$I_{sc} = 4 \left[\frac{P_m Q_d (1 - Q_d/Q_u)}{(1 + R_2/R_1) n \pi Z_0} \right]^{\frac{1}{2}} \text{ root-mean-square amperes}$$ $$I = I_{sc} \cos \theta_1$$ and $$E = Z_0 I_{sc} \sin \theta_1$$ The voltage and current are in quadrature time phase. When $R_1 = R_2$ and $Q_d \ll Q_u$ and n = 1: $$I_{sc} \approx (8 P_m Q_d / \pi Z_0)^{1/2}$$ In a lumped-constant tuned circuit: $$I = 2 \left[\frac{P_m Q_d (1 - Q_d/Q_u)}{(1 + R_2/R_1) X} \right]^{1/2}$$ h. Pair of coupled resonators (Fig. 9): With inductive coupling near the short-circuited end of a pair of quarter-wave resonant lines: $$k = (4/\pi) \omega M/(Z_{10}Z_{20})^{1/2}$$ For coupling through a lossless quarter-wavelength line, inductively coupled near the short-circuited ends of the resonators (Fig. 9D): $$k = \frac{4\omega^2 M_1 M_2}{\pi Z_0 (Z_{10} Z_{20})^{\frac{1}{2}}}$$ Probe coupling near top (Fig. 9C): $$k = (4/\pi) \omega C_{12} (Z_{10}Z_{20})^{1/2} \sin \theta_1 \sin \theta_2$$ A. Equivalent circuit with resistances as seen at the short-circuited end. C. Probe-coupled resonators. Equivalent circuit of first resonator at resonance frequency. D. Quarter-wavelength line coupling. Fig. 9-Two coupled resonators. For lumped-constant coupled circuits, p and k are defined on pp. 236 and 242. In either lumped or distributed resonators: $$\begin{array}{l} ({\rm dissipation\ loss}) \; = \; 10\; \log_{10}\; (P_x/P_{\rm out}) \\ = \; 10\; \log_{10}\; [1/(1\; - \; {\rm Q_{1s}/Q_{1u}})\; (1\; - \; {\rm Q_{2s}/Q_{2u}})] \\ \approx \; 20\; \log_{10}\; [1/(1\; - \; {\rm Q_{s}/Q_{u}})] \\ \approx \; 20\; \log_{10}\; (1\; + \; {\rm Q_{s}/Q_{u}}) \\ \approx \; 8.7\; {\rm Q_{s}/Q_{u}\ decibels} \end{array}$$ where $$Q_s/Q_u = [(Q_{1s}/Q_{1u}) (Q_{2s}/Q_{2u})]^{1/2}$$ provided (Q_{1s}/Q_{1u}) and (Q_{2s}/Q_{2u}) do not differ by a ratio of more than 4 to 1, and neither exceeds 0.2. (mismatch loss at f_0) = 10 $\log_{10} (P_m/P_x)$ = 10 $\log_{10} [(1 + p)^2/4p]$ decibels Equations and curves for selectivity are given on pp. 242, 243, and 245, where $Q = Q_{\rm g}$. At the peaks, when $p \geqslant 1$, the mismatch loss is zero, except for some that is included in the dissipation loss. Input voltage standing-wave ratio at f_0 for equal or unequal resonators: $$S = \frac{p + Q_{1s}/Q_{1u}}{1 - Q_{1s}/Q_{1u}}$$ At the peak frequencies (p \geqslant 1) for equal or nearly equal resonators: $$S = \frac{1 + Q_{1s}/Q_{1u}}{1 - Q_{1s}/Q_{1u}}$$ Similarly at the output, using subscript 2 instead of 1. When the resonators are isolated, each one presents to the generator or load an swr of $$S = (Q_u/Q_s) - 1$$ The power dissipation in either lumped or distributed (quarter-wave) devices, where the two resonators are not necessarily identical, but $Q_a \ll Q_u$ is: $$P_{10} = I_{100}^2 R_{10} = [4/(1 + p)^2] P_m Q_{10}/Q_{10}$$ $$P_{2c} = [4p/(1 + p)^2] P_m Q_{2s}/Q_{2u}$$ These equations and those below for the currents assume that P_m is concentrated at f_0 . The currents in quarter-wave resonant lines, when $Q_e \ll Q_u$: $$I_{1sc} = [4/(1 + p)] (P_m Q_{1s}/\pi Z_{10})^{1/2}$$ $$I_{2sc}/I_{1sc} = (\rho Z_{10}Q_{2s}/Z_{20}Q_{1s})^{1/2}$$ Similarly, for a pair of tuned circuits at resonance, when $Q_a \ll Q_u$: $$I_1 = [2/(1 + p)] (P_m Q_{18}/X_1)^{1/2}$$ $$I_2/I_1 = (\rho X_1 Q_{2s}/X_2 Q_{1s})^{1/2}$$ # Quarter-wave matching sections The accompanying figures show how voltage-reflection coefficient or standing-wave ratio (swr) vary with frequency f when quarter-wave matching lines are inserted between a line of characteristic impedance Z_0 and a load of resistance R. f_0 is the frequency for which the matching sections are exactly one-quarter wavelength ($\lambda/4$) long. # Impedance matching with shorted stub # Impedance matching with open stub ## Length of transmission line This chart gives the actual length of line in centimeters and inches when given the length in electrical degrees and the frequency, provided the velocity of propagation on the transmission line is equal to that in free space. The length is given on the L-scale intersection by a line between λ and 1°, where 1° = $\frac{360 \text{ L in centimeters}}{\lambda \text{ in centimeters}}$ Example: f = 600 megacycles, $f^{\circ} = 30$, length L = 1.64 inches or 4.2 centimeters. # Measurement of impedance with slotted line ## Symbols Z_0 = characteristic impedance λ = wavelength on line Z = impedance of load (the unknown) χ = distance from load to first V_{min} $Z_1 = \text{impedance at first } V_{\text{min}}$ (swr) = $V_{\text{max}}/V_{\text{min}}$ k = velocity factor $\theta^{\circ} = 180 \frac{\chi}{\lambda/2} = 0.0120 f_{\chi}/k$ = (velocity on line) / (velocity in free space) where f is in megacycles and χ in centimeters. #### Procedure Measure $\lambda/2$, χ , $V_{\rm max}$, and $V_{\rm min}$ Determine $$Z_1/Z_0 = 1/(\text{swr}) = V_{\min}/V_{\max}$$ (wavelengths toward load) = $\chi/\lambda = 0.5\chi/(\lambda/2)$ Then Z/Z_0 may be found on an impedance chart. For example, suppose $$V_{\rm min}/V_{\rm max} =$$ 0.60 and $\chi/\lambda =$ 0.40 Refer to the chart, such as the Smith chart reproduced in part here. Lay off with slider or dividers the distance on the vertical axis from the center point (marked 1.0) to 0.60. Pass around the circumference of the chart in a counterclockwise direction from the starting point 0 to the position 0.40, toward the load. Read off the resistance and reactance components of the normalized load impedance \mathbb{Z}/\mathbb{Z}_0 at the point of the dividers. Then it is found that $$Z = Z_0(0.77 + j0.39)$$ Similarly, there may be found the admittance of the load. Determine $$Y_1/Y_0 = V_{max}/V_{min} = 1.67$$ # Measurement of impedance with slotted line continued in the above example. Now pass around the chart counterclockwise through $\chi/\lambda=0.40$, starting at 0.25 and ending at 0.15. Read off the components of the normalized admittance. Smith chart—center portion. $$Y = \frac{1}{Z} = \frac{1}{Z_0} (1.03 - j0.53)$$ Alternatively, these results may be computed as follows: $$Z = R_{\bullet} + jX_{\bullet} = Z_0 \frac{1 - j(\text{swr}) \tan \theta}{(\text{swr}) - j \tan \theta} = Z_0 \frac{2(\text{swr}) - j[(\text{swr})^2 - 1] \sin 2\theta}{[(\text{swr})^2 + 1] + [(\text{swr})^2 - 1] \cos 2\theta}$$ $$Y = G + jB = \frac{1}{Z} = \frac{1}{R_p} - j\frac{1}{X_p} = Y_0 \frac{2(swr) + j[(swr)^2 - 1]\sin 2\theta}{[(swr)^2 + 1] - [(swr)^2 - 1]\cos 2\theta}$$ where R_a and X_a are the series components of Z, while R_p and X_p are the parallel components. ## 0 to 220 ohms ## 0 to 700 ohms $Z_0 = 120 \cosh^{-1} \frac{D}{d}$ For $D \gg d$ $Z_0 \approx 276 \log_{10} \frac{2D}{d}$ $Z_0 = \frac{138}{\sqrt{\epsilon}} \log_{10} \frac{D}{A}$ Curve is for $\epsilon = 1.00$ parallel wires in air coaxial continued # type of line A. Single coaxial line $$Z_0 = \frac{138}{\sqrt{\epsilon}} \log_{10} \frac{D}{d}$$ $$= \frac{60}{\sqrt{\epsilon}} \log_e \frac{D}{d}$$ ϵ = dielectric constant = 1 in air # B. Balanced shielded line For $$D \gg d$$, $h \gg d$, $$Z_0 = \frac{276}{\sqrt{\epsilon}} \log_{10} \left[2v \frac{1 - \sigma^2}{1 + \sigma^2} \right]$$ $$= \frac{120}{\sqrt{\epsilon}} \log_{\epsilon} \left[2v \frac{1 - \sigma^2}{1 + \sigma^2} \right]$$ $$v = \frac{h}{d} \qquad \sigma = \frac{h}{D}$$ # C. Beads—dielectric ϵ_1 # For cases (A) and (B), if insulating beads are used at frequent intervals—call new characteristic impedance Z_0 $$Z_0' = \frac{Z_0}{\sqrt{1 + \left(\frac{\epsilon_1}{\epsilon} - 1\right) \frac{W}{S}}}$$ $W\ll S\ll \lambda/4$ # **D.** Open two-wire line in air $$Z_0 = 120 \cosh^{-1} \frac{D}{d}$$ $$\approx 276 \log_{10} \frac{2D}{d}$$ $$\approx 120 \log_e \frac{2D}{d}$$ continued #### type of line characteristic impedance # E. Wires in parallel, near ground For $d \ll D$, h, $$Z_0 = \frac{69}{\sqrt{\varepsilon}} \log_{10} \left[\frac{4h}{d} \sqrt{1 + \left(\frac{2h}{D}\right)^2} \right]$$ # F. Balanced, near ground For $d \ll D$, h, $$Z_0 = rac{276}{\sqrt{\epsilon}} \log_{10} \left[rac{2D}{d} rac{1}{\sqrt{1 + (D/2h)^2}} ight]$$ ## G. Single wire, near ground For $d \ll h$, $$Z_0 = \frac{138}{\sqrt{\epsilon}} \log_{10} \frac{4h}{d}$$ # H. Single wire, square enclosure $$Z_0 \approx [138 \log_{10} \rho + 6.48 - 2.34A - 0.48B - 0.12C]_{e^{-3/2}}$$ where $\rho = D/d$ where $$\rho = D/d$$ $$A = \frac{1 + 0.405\rho^{-4}}{1 - 0.405\rho^{-4}}$$ $$B = \frac{1 + 0.163\rho^{-8}}{1 + 0.163\rho^{-8}}$$ $$C = \frac{1 + 0.067\rho^{-12}}{1 - 0.067\rho^{-12}}$$ $$B = \frac{1 + 0.163 \rho^{-8}}{1 + 0.163 \rho^{-8}}$$ $$C = \frac{1 + 0.067 \rho^{-15}}{1 - 0.067 \rho^{-15}}$$ ## I. Balanced 4-wire For $d \ll D_1$, D_2 $$Z_0 = \frac{138}{\sqrt{\epsilon}} \log_{10} \frac{2D_2}{d\sqrt{1 + (D_2/D_1)^2}}$$ continued ## type of line characteristic impedance J. Parallel-strip line $$\frac{w}{1} < 0.1$$ $$Z_0 \approx 377 \frac{w}{1}$$ K. Five-wire line For $d \ll D$. $$Z_0 = \frac{173}{\sqrt{\epsilon}} \log_{10} \frac{D}{0.933d}$$ L. Wires in parallel—sheath return For $d \ll D$, h, $$Z_0 = \frac{69}{\sqrt{\epsilon}} \log_{10} \left[\frac{\nu}{2\sigma^2} (1 - \sigma^4) \right]$$ $$\sigma = h/D$$ $$\nu = h/c$$ M. Air coaxial with dielectric supporting wedge $$Z_0 \approx \frac{138 \log_{10} (D/d)}{\sqrt{1 + (\epsilon - 1)(\theta/360)}}$$ $\epsilon = \text{dielectric constant of wedge}$ $\theta = \text{wedge angle in degrees}$ continued #### type of line #### characteristic impedance # N. Balanced 2-wire — unequal diameters For d_1 , $d_2 \ll D$, $$Z_0 = \frac{276}{\sqrt{\epsilon}} \log_{10} \frac{2D}{\sqrt{d_1 d_2}}$$ O. Balanced 2-wire near ground For $d \ll D$, h_1 , h_2 , $$Z_0 = \frac{276}{\sqrt{\epsilon}} \log_{10} \left[\frac{2D}{d} \frac{1}{\sqrt{1 + \frac{D^2}{4b_1b_2}}} \right]$$ Holds also in either of the following special cases: $$D=\pm(h_2-h_1)$$
or $h_1=h_2$ (see F above) P. Single wire between grounded parallel planes—ground return For $\frac{d}{h}$ < 0.75, $$Z_0 = \frac{138}{\sqrt{\epsilon}} \log_{10} \frac{4h}{\pi d}$$ Q. Balanced line between grounded parallel planes For $d \ll D$, h, $$Z_0 = \frac{276}{\sqrt{\epsilon}} \log_{10} \left(\frac{4h \tanh \frac{\pi D}{2h}}{\pi d} \right)$$ characteristic impedance # Characteristic impedance of lines continued ## type of line R. Balanced line between grounded parallel planes For $d \ll h$, $$Z_0 = \frac{276}{\sqrt{\epsilon}} \log_{10} \frac{2h}{\pi d}$$ S. Single wire in trough For $d \ll h$, w, $$\mathbf{Z}_0 = \frac{138}{\sqrt{\epsilon}} \log_{10} \left[\frac{4 w \tanh \frac{\pi h}{w}}{\pi d} \right]$$ T. Balanced 2-wire line in rectangular enclosure For $d \ll D$, w, h. $$Z_{0} = \frac{276}{\sqrt{\epsilon}} \left\{ \log_{10} \left[\frac{4h \tanh \frac{\pi D}{2h}}{\pi d} \right] - \sum_{m=1}^{\infty} \log_{10} \left[\frac{1 + u_{m}^{2}}{1 - v_{m}^{2}} \right] \right\}$$ where $$u_m = \frac{\sinh \frac{\pi D}{2h}}{\cosh \frac{m\pi w}{2h}} \qquad v_m = \frac{\sinh \frac{\pi D}{2h}}{\sinh \frac{m\pi w}{2h}}$$ U. Eccentric line For $d \ll D$, $$Z_0 = \frac{138}{\sqrt{\varepsilon}} \log_{10} \left\{ \frac{D}{d} \left[1 - \left(\frac{2c}{D} \right)^2 \right] \right\}$$ For $c/D \ll 1$ this is the Z_0 of type A diminished by approximately $$\frac{240}{\sqrt{\epsilon}} \left(\frac{c}{D}\right)^2$$ ohm continued ## type of line #### characteristic impedance V. Balanced 2-wire line in semiinfinite enclosure For $d \ll D$, w, h, $$Z_0 = rac{276}{\sqrt{\epsilon}} \log_{10} rac{2w}{\pi d \sqrt{A}}$$ where $$A = \csc^2\left(\frac{\pi D}{w}\right) + \operatorname{cosech}^2\left(\frac{2\pi h}{w}\right)$$ W. Outer wires grounded, inner wires balanced to ground $$Z_0 \approx \frac{276}{\sqrt{\epsilon}} \left\{ \log_{10} \frac{2D_2}{d} - \frac{\left[\log_{10} \frac{1 + (1 + D_2/D_1)^2}{1 + (1 - D_2/D_1)^2} \right]^2}{\log_{10} \frac{2D_1\sqrt{2}}{d}} \right\}$$ X. Split thin-walled cylinder $$Z_0 \approx \frac{129}{\log_{10} \left[\cot \frac{\theta}{2} + \left(\cot^2 \frac{\theta}{2} - 1 \right)^{\frac{1}{2}} \right]}$$ For θ small: $$Z_0 \approx 129/\log_{10} (4D/d)$$ Courtesy of Electronic Engineering Y. Slotted air line When a slot is introduced into an air coaxial line for measuring purposes, the increase in characteristic impedance in ohms, compared with a normal coaxial line, is less than $$\Delta Z = 0.03\theta^2$$ where θ is the angular opening of the slot in radians ## Voltage gradient in a coaxial line C' = capacitance in micromicrofarads/foot D = diameter of inner surface of outer conductor in same units as d. d = diameter of inner conductor E= total voltage across line (E and ΔE both rms or both peak) r = radius (r and Δr both in same units) ϵ = net effective dielectric constant (= 1 for air); $1/\epsilon^{1/2}$ = velocity factor $$\frac{\Delta E}{\Delta r} = \frac{0.434E}{r \log_{10} (D/d)} = \frac{0.059EC'}{r\epsilon} = \frac{60E}{rZ_0\epsilon^{1/2}} = \frac{6.10 \times 10^4E}{rZ_0^2C'}$$ At the voltage standing-wave maximum: (gradient at surface of inner conductor) = $$\frac{5.37}{d} \left(\frac{SP_{kw}}{Z_{0}\epsilon} \right)^{\frac{7}{2}}$$ = $\frac{5450}{d} \frac{(SP_{kw})^{\frac{1}{2}}}{(SP_{kw})^{\frac{1}{2}}} \frac{1}{2} \frac{1}{2}$ where d is in inches (1 mil = 0.001 inch). For amplitude or pulse modulation, let $P_{\mathbf{k}\mathbf{w}}$ be the power in kilowatts at the crest of the modulation cycle. Thus, if the carrier is 1 kilowatt and modulation 100 percent, set $$P_{kw} = 4 \text{ kilowatts}$$ **Example:** What is the voltage gradient at inner conductor of a δ_8^1 -inch rigid 50-ohm line with 500 kilowatts continuous-wave power, unity swr? Let $\epsilon = 1.00$ and d = 2.60 inches. (gradient) = $$\frac{5.37}{2.60} \left(\frac{500}{50}\right)^{1/2} = 6.55 \text{ peak volts/mil}$$ The breakdown strength of air at atmospheric pressure is 29,000 peak volts/centimeter, or 74 peak volts/mil (experimental value, before derating). # Microstrip* Microstrip consists of a wire above a ground plane, being analogous to a two-wire line in which one of the wires is represented by the image in ^{*} See, D. D. Grieg and H. F. Engelmann, "Microstrip—A New Transmission Technique for the Kilomegacycle Range," and two accompanying papers in Proceedings of the IRE, vol. 40, pp. 1644–1663; December, 1952; also in Electrical Communication, vol. 30, pp. 26–54; March, 1953. ## Microstrip continued the ground plane of the wire that is physically present. On p. 595 is illustrated a short length of microstrip line, showing the metallic-strip conductor bonded to a dielectric sheet, to the other side of which is bonded a metallic ground plate. #### Phase velocity Theoretically, for the TEM mode with conductors completely immersed in the dielectric, the velocity of propagation is $$v = c/(\epsilon_r)^{1/2}$$ where c = velocity of light in vacuum $\epsilon_r =$ dielectric constant relative to air For Teflon-impregnated Fibreglas dielectric, this gives 604 feet per microsecond. Experimental measurements on a line with 7/32-inch strip width and dielectric sheet 1/16-inch thick give v = 655 feet/microsecond. Typical measurements together with the theoretical TEM wavelength are plotted in Fig. 10. ## Characteristic impedance If it were not for fringing and leakage flux, the theoretical characteristic Fig. 10—Wavelength in microstrip versus width of strip conductor. The dimensions in the sketch at right are in millimeters. Dielectric was Fibreglas G-6. Measurements were taken at 4770 megacycles. # Microstrip continued impedance would be $$Z_0 = (h/w) (\mu/\epsilon)^{1/2}$$ = 377 (h/w) (1/\epsilon_r)^{1/2} where h =thickness of dielectric w = width of strip conductor ϵ = dielectric constant in farads/ $\mu = \text{permeability in henries/meter}$ Fig. 11 shows the experimentally determined Z_0 for typical microstrip lines. Fig. 11—Characteristic impedance for microstrip with Fibreglas G-6 dielectric. Dimensions in sketch are in millimeters. C is the measured electrostatic capacitance in farads per unit length and v is the phase velocity in units of length per second. #### **Attenuation** Conductor loss for copper, in decibels/foot: $$\alpha_{cu} = 7.25 \times 10^{-5} (1/h) (f_{mc}\epsilon_r)^{1/2}$$ Dielectric loss in decibels/foot: $$\alpha_d = 2.78 \times 10^{-2} f_{mc} F_p (\epsilon_r)^{1/2}$$ where F_p = power factor or loss angle h = dielectric thickness in inches A correction factor for conductor attenuation is shown in Fig. 12 for use in the formula: $$\alpha_c = \alpha_0 \times \Delta$$ where α_0 is, for copper conductors, given by $\alpha_{\rm eu}$ above. $$\alpha_0 = \alpha_{\rm cu} (\mu_r \rho / \rho_{\rm cu})^{1/2}$$ where $\mu_r = \text{relative permeability}$ $\rho/\rho_{\rm cu}$ = resistivity relative to copper. The measured attenuation of a typical microstrip line is shown on the chart on p. 615. The relatively high attenuation is due to the small physical size of the line. # Microstrip continued # Power-handling capacity attenuation (case of wide strip of small thickness above infinite ground plane). For a microstrip line composed of a strip 7/32-inch wide on a Teflon-impregnated Fibreglas base 1/16-inch thick: - **a.** At 3000 megacycles with 300 watts cw, the temperature under the strip conductor has been measured at 50° centigrade rise above 20° centigrade ambient. - **b.** Under pulse conditions, corona effects appear at the edge of the strip conductor for pulse power of roughly 10 kilowatts at 9000 megacycles. # Strip transmission lines* Strip transmission lines differ from microstrip in that a second ground plane is placed above the conductor strip (see sketch below). The characteristic impedance is shown in Fig. 13 and the attenuation in Fig. 14. #### **Attenuation** Dielectric loss in decibels/unit length: $$\alpha_d = 27.3 F_p \epsilon_r^{1/2} / \lambda_0$$ where λ_0 = free-space wavelength. ^{*} See, S. B. Cohn, "Problems in Strip Transmission Lines," Transactions of the IRE Professional Group on Microwave Theory and Techniques, vol. MTT3, pp. 119–126; March 1955. Other papers on strip-type lines also appear in that issue of the journal. Fig. 13—Plot of strip-transmission-line Z_0 versus w/b for various values of t/b. For lower-left family of curves, refer to left-hand ordinate values; for upper-right curves, use right-hand scale. Courtesy of Transactions of the IRE Professional Group on Microwave Theory and Techniques. Fig. 14—Theoretical attenuation of copper-shielded strip transmission line in dielectric medium er. Courtesy of Transactions of the IRE Professional Group on Microwave Theory and Techniques. # Strip transmission lines continued Conductor loss in decibels/unit length: $$\alpha_c = (y/b) (f_{kmc} \epsilon_r \mu_r \rho / \rho_{cu})^{1/2}$$ where y = ordinate from Fig. 14 ρ/ρ_{cu} = resistivity relative to copper The unit of length in α_d is that of λ_0 and in α_c it is that of b. # Lines and resonators with helical inner conductor #### Spiral delay line For a transmission line with helical inner conductor (spiral delay line) where axial wavelength and length of line are both long compared to line diameter (similar to Fig. 15 in dimensional symbols): $$L' = 0.30 n^2 d^2 [1 - (d/D)^2]$$ microhenries/axial foot where d is in inches and $$n = 1/\tau = turns/inch.$$ $$C' = 7.4 \epsilon_r/\log_{10} (D/d)$$ micromicrofarads/axial foot. $$Z_0 = (L'/C')^{1/2} \times 10^3 \text{ ohms}$$ $$T = (L'C')^{1/2} \times 10^{-3}$$ microseconds/axial foot $$\alpha_{\rm db} = 4.34R/Z_0 + 27.3 F_p fT$$ decibels/axial foot where R = total conductor resistance in ohms/axial foot f = frequency in megacycles $F_p = power factor$ ϵ_r = relative dielectric constant of medium between spiral and outer conductor Fig. 15—Resonator with helical inner conductor. One end of the helix is
grounded solidly to the shield; other end is open-circuited. #### Resonator In a quarter-wavelength resonator (Fig. 15), the mode of the fields is somewhat different from the above. $$L = 0.025 n^2 d^2 [1 - (d/D)^2]$$ microhenries/axial inch where d is in inches and $$n = 1/\tau = turns/inch$$ Empirically, for air dielectric (and b/d = 1.5), $$C = 0.75/\log_{10} (D/d)$$ micromicrofarads/axial inch. These equations and all those below are good roughly for $$0.4 < d_0/\tau < 0.6$$ at $b/d = 1.5$ 0.5 $$< d_0/\tau <$$ 0.7 at $b/d = 4.0$ $\tau < d/2$ where d_0 = diameter of conductor The axial length of the coil is approximately a quarter wavelength, but much shorter than that length in free space. $$b = 250/f (LC)^{1/2}$$ inches where f is the resonance frequency in megacycles. $$n = \frac{1000}{fd^2 (b/d)} \left[\frac{2.5/C}{1 - (d/D)^2} \right]^{1/2}$$ $$= \frac{1830}{fD^2 \text{ (b/d) } (d/D)^2} \left[\frac{\log_{10} (D/d)}{1 - (d/D)^2} \right]^{1/2} \text{ turns/inch}$$ $$Z_0 = 1000 (L/C)^{1/2} = 0.25 \times 10^6/bfC$$ $$= \frac{10^6 \log_{10} (D/d)}{3 \text{ fD (b/d) (d/D)}}$$ = 183 nd $$\{[1 - (d/D)^2]\log_{10}(D/d)\}^{1/2}$$ ohms # Lines and resonators with helical inner conductor continued A practical working formula for the unloaded Q (not the theoretical maximum), for copper winding and shield, and negligible dielectric loss, is $$Q_u \approx 220 \frac{(d/D) - (d/D)^3}{1.5 + (d/D)^3} Df^{1/2}$$ \approx 50 Df^{1/2} (with D in inches) provided d_0 exceeds 5 times the skin depth (page 128). **Example:** A resonator is required for 10.0 megacycles with unloaded $Q_u = 1000$. The generator impedance is 10,000 ohms and the load is 50 ohms. They are matched through the resonator and provide a doubly loaded $Q_d = 100$. The power capability of the generator is 200 watts. Suppose the proportions are set at b/d = 1.5 and d/D = 0.55. Then using the formulas and referring to Fig. 15, the following results are found. f = 10.0 megacycles $Q_u = 1000$ D = 6.3 inches d = 3.5 inches b = 5.25 inches L = b + D/2 = 8.4 inches n = 6 turns per inch nb = 31.5 turns total $\tau = 0.167$ inch $d_0 = 0.067$ to 0.100 inch $\delta = 0.0008$ -inch skin depth (page 129) $Z_0 = 1700 \text{ ohms}$ Referring to the section on "Resonant lines" (pp. 574-582): # Lines and resonators with helical inner conductor continued $$R_b/Z_0 = (\pi/4) (1/Q_d - 1/Q_u) = 0.0071$$ which is to be divided equally between generator and load and used in the formula in Fig. 6A. $\theta_1 = 8.4$ degrees for 10,000-ohm generator $(tap) = nb\theta_1/90 \text{ degrees} = 2.9 \text{ turns from short-circuited end}$ $\theta_1 = 0.6$ degrees for 50-ohm load (tap) = 0.2 turn from short-circuited end S = 1.2 on generator impedance (dissipation loss) = 0.9 decibel = (insertion loss) since (mismatch loss) ≈ zero $P_m = 200$ watts $P_c = 36 \text{ watts}$ $I_{sc} = 5.3$ amperes $E_{oc} = 9000 \text{ volts}$ The envelope area of the coil is approximately 50 square inches, so the average dissipation is $P_c/(\text{area}) = 0.72$ watts per square inch. The power dissipation per unit area at the grounded end is twice the average value, due to the cosine distribution of current. Cooling is accomplished by radiation to the shield, and convection around the surface of the turns and from the coil supporting structure. In many applications, the loaded Q required is much lower than 100, in which case the resonator will handle a proportionately higher generator power. On the other hand, suppose the generator power remains at 200 watts, but the loaded Q is allowed to be 12.5 (one-eighth its former value). Then the dimensions can be reduced to about one-half of those found in the example. The same values will result for power dissipation per unit area and voltage gradient between the open-circuited end and the shield. #### Surface-wave transmission line* The surface-wave transmission line is a single-conductor line having a relatively thick dielectric sheath (Fig. 16). The sheath diameter is often 3 or more times the conductor diameter. A mode of propagation that is practically nonradiating is excited on the line by means of a conical horn at each end as shown in Fig. 17. The mouth of the horn is roughly one-quarter to one wavelength in diameter. Losses are about half those of a two-wire line, but the surface-wave line has a practical lower frequency limit of about 50 megacycles. Fig. 16—Cross-section of surface-wave transmission line. Design charts are given in Figs. 18–20 together with formulas herewith for attenuation losses. The losses in the two launchers combined vary from less than 0.5 decibel to a little more than 1.0 decibel, according to their design. Fig. 17—Surface-wave transmission line with launchers at each end. These form transitions to coaxial line. Courtesy of Electronics Conductor loss L_c by the formula below is 5 percent over the theoretical value for pure copper. Dielectric loss L_p for polyethylene at 100 megacycles is shown in Fig. 19. For other dielectrics and frequencies, find L_i by the formula. $L_c = 0.455 \, f^{1/2}/Zd_i \, \text{decibels/100 feet}$ $L_i = 26 fF_p L_p / (\epsilon_r - 1) decibels/100 feet$ $L_i = L_p f / 100$ for brown polyethylene (Fig. 19). ^{*} Georg Goubau, "Designing Surface-Wave Transmission Lines," Electronics, vol. 27, pp. 180-184; April, 1954. Fig. 18—Relationship among wire diameter, dielectric layer, phase-velocity reduction, and Impedance (for brown polyethylene). Courtesy of Electronics #### Surface-wave transmission line continued Fig. 19—Dielectric loss at 100 megacycles for brown polyethylene ($\epsilon r = 2.3$ and $F_p = 5 \times 10^{-4}$). Courtesy of Electronics Symbols used in formulas and figures are: c = velocity of propagation in free space d_i = diameter of the conductor (inches in formula for L_c) $d_a = \text{outside diameter of the dielectric coating}$ f = frequency in megacycles $F_n = power factor of dielectric$ $L_c = \text{conductor loss in decibels/100 feet}$ L_i = dielectric loss in decibels/100 feet L_p = dielectric loss shown in Fig. 19. Z = waveguide impedance in ohms $\delta v = \text{reduction in phase velocity}$ $\epsilon_r =$ dielectric constant relative to air λ = free-space wavelength **Example:** At 900 megacycles ($\lambda = 0.333$ meter), a 200-foot line is required having a permissible loss of 1.0 decibel/100 feet (not including the launcher losses). What are its dimensions? Allowing 20 percent for dielectric loss, the conductor loss would be $L_c=0.8$ decibel/100 feet. Assuming Z=250 ohms as a first approximation, the formula for L_c gives $d_i=0.068$ inch. Use no. 14 AWG wire ($d_i=0.064$ and $\lambda/d_i=204$). Now going to Fig. 18 and assuming that 100 $\delta v/c=6$ percent is adequate, we find that $d_o/d_i=3$ and Z=270 ohms. Recomputing, $L_{\rm c}=0.79$ decibel/100 feet. By Fig. 19, $L_{\rm p}=0.017$ at 100 #### Surface-wave transmission line continued megacycles for brown polyethylene. Using the same material at 900 megacycles, the loss is $L_i = 0.15$ decibel/100 feet. For 200 feet, the combined conductor and dielectric loss is 1.9 decibels, to which must be added the loss of 0.5 to 1.0 decibel total for the two launchers. #### Dielectric other than polyethylene (Fig. 20) Determine Z and $\delta v/c$ for polyethylene ($\epsilon_r=2.3$) from Fig. 18. Then use Fig. 20 to find the value of d_o/d_i required for the same performance with actual dielectric constant ϵ_r . Make computation of new dielectric loss, using Fig. 19 and formula for L_i . Fig. 20—Conversion chart for dielectric other than polyethylene. Courtesy of Electronics # Army-Navy list of standard radio-frequency cables* The following notes apply to the table on pages 608-611: * From "Guide to Selection of Standard RF Cables," Armed Services Electro-Standards Agency, Fort Monmouth, New Jersey, publication 49-2B, 1 November 1955 supplement. \dagger Diameter of strands given in inches. As, 7/0.0296 = 7 strands, each 0.0296-inch diameter. ‡ This value is the diameter over the outer layer of conducting or insulating synthetic rubber. Note 1—Dielectric materials and approximate velocity factors (v = velocity of propagation in cable, c = velocity of light in free space): A = Solid stabilized polyethylene ($v/c \approx 0.67$, except for RG-65A/U and RG-86/U). A2 = Air-spaced polyethylene ($v/c \approx 0.84$). D = layer of insulating synthetic rubber between thin layers of conducting rubber ($v/c \approx 0.41$). E = Inner layer conducting synthetic rubber, center layer insulating synthetic rubber, outer layer red insulating synthetic rubber ($v/c \approx 0.41$). F = Solid polytetrafluoroethylene (teflon) ($v/c \approx 0.695$). F2 = Taped polytetrafluoroethylene (teflon). F3 = Air-spaced polytetrafluoroethylene (teflon). Note 2—Composition of protective covering: Y = Noncontaminating synthetic resin. Z1 = Polytetrafluoroethylene- (teflon-) tape moisture seal, single Fiberglas braid, siliconevarnish impregnated. Z2 = Polytetrafluoroethylene- (teflon-) tape moisture seal, double Fiberglas braid, siliconevarnish impregnated. Note 3—For RG-65A/U, delay = 0.042 microsecond per foot at 5 megacycles; dc resistance = 7.0 ohms/foot. | / cables* | |--| | Army-Navy list of standard radio-frequency cables* | | standard | | ě | | Army-Navy lis | | continued | | | | | | | | , | | | | | | | | |------------|--------------------|------------------------------|--------------------------------|---------------------------------|--|-----------------|------------------------------------|---------------------------------------|-----------------|------------------------|---------------------------------------|--|---| | eg eg | class of
cables | Army-
Navy
type
RG- | Inner |
dielect
material
(note 1) | nominal
diam of
dielectric
inches | shielding | protective
covering
(nate 2) | nominat
over-all
diam
Inches | weight
lb/ft | imped-
ance
ohms | nominal
capaci-
tance
µµf/ft | maximum
operating
voltage
rms | remarks | | 50
ohms | Single
braid | 8A/U | 7/0.0296
copper | ∢ | 0.285 | Copper | >- | 0.405 | 0.120 | 90.0 | 29.5 | 4,000 | General-purpose medium-
size flexible cable | | | | 10 A /U | 7 /0.0296
copper | ∢ | 0.285 | Copper | Armor | 0.475
(max) | 0,160 | 50.0 | 29.5 | 4,000 | Same as RG-8A/U, but armored | | | | 17 A /U | 0.195
copper | < | 0.680 | Соррег | > | 0.870 | 0.491 | 50.0 | 29.5 | 11,000 | Large high-power low-at-
tenuation transmission
cable | | | | 18 A /U | 0.195
copper | ∢ | 0.680 | Copper | Armor | 0.945
(max) | 0.603 | 90.0 | 29.5 | 11,000 | Same as RG-17A/U, but armored | | | | 19A/U | 0.260
copper | ∢ | 0.910 | Copper | >- | 1.120 | 0.745 | 20.0 | 29.5 | 14,000 | Very large high-power low-attenuation transmis- | | | | 204/N | 0.260
copper | ∢ | 0.910 | Copper | , Armor | 1.195
(max) | 0.925 | 90.0 | 29.5 | 14,000 | Same as RG-19A/U, but armored | | | | 38C/U | 19/0.0071
Ilnned
copper | < | 0.116 | Tinned copper | >- | 0.195 | 0.029 | 50.0 | 28.5 | 1,900 | Small-size flexible cable | | | | 122/0 | 27 /0.005
tinned
copper | ∢ | 960.0 | Tinned copper | Synthetic
resin | 0.160 | 1 | 50.0 | 29.3 | 1,900 | Small-size flexible light-
weight cable | | | Double
braid | 5B/U | 0.053
silvered
copper | < | 0.181 | Silvered | >- | 0.328 | 0.093 | 90.0 | 28.5 | 3,000 | Small microwave cable | | | | 98/U | 7/0.0296
silvered
copper | < | 0.280 | Silvered | >- | 0.420 | 0.158 | 20.0 | 30.0 | 4,000 | Special medium-size flex-
ible cable | | | | 14A/U | 0,106
copper | ∢ | 0.370 | Copper | >- | 0.545 | 0,236 | 50.0 | 29.5 | 5,500 | Medium-size power-trans-
mission cable | | | | 55 A /U | 0.035
silvered
copper | < | 0.116 | Silvered copper | >- | 0.216
(max) | 0.032 | 50.0 | 28.5 | 1,900 | Small-size flexible cable | | | | 74A/U | 0.106
copper | < | 0.370 | Copper | Y
Armor | 0.615
(max) | 0.282 | 90.0 | 29.5 | 5,500 | Same as RG-14A/U, but armored | | 75
ohms | Single
braid | 11 A /U | 7/0.0159
tinned
copper | < | 0.285 | Copper | > | 0.405 | 960:0 | 75.0 | 20.5 | 4,000 | Medium-size, flexible video and communication cable | | Same as RG-11A/U, but armored | large-size, high-power,
low-attenuation, flexible
cable | large-size, high-power,
low-attenuation video and
communication cable | General-purpose small-
size video cable | Same as RG-35A/U, but no armor; sheath for sub-terranean use | Same as RG-84A/U, with special armor | Same as RG-35A/U except without armor | Small-size video and com-
munication cable | Medium-size flexible video
and communication cable | Semiflexible cable for -55° to 250° C | Same as RG-117/U, but armored | Similar to RG-59A/U, but teflon Insulation | Similar to RG-58C/U, but teflon insulation | Similar to RG-11A/U, but teflon insulation | Special low-capacitance cable | |-------------------------------|---|---|--|--|--------------------------------------|---------------------------------------|---|---|---------------------------------------|-------------------------------|--|--|--|-------------------------------| | 4,000 | 5,200 | 10,000 | 2,300 | 10,000 | 10,000 | 10,000 | 2,700 | 4,000 | 5,000 | 5,000 | 2,300 | 1,900 | 4,000 | 1,000 | | 20.5 | 21.5 | 21.5 | 21.0 | 21.5 | 21.5 | 21.5 | 20.0 | 20.5 | 29.0 | 29.0 | 21.0 | 28.5 | 20.5 | 6.5 | | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 50.0 | 50.0 | 75.0 | 50.0 | 75.0 | 190.0 | | 0.141 | 0.231 | 0.480 | 0.032 | 1.325 | 2.910 | ı | 0.082 | 0.126 | 0.450 | 0.600 | 0.045 | 0:030 | 0.120 | ı | | 0.475
(max) | 0.625 | 0.945
(max) | 0.242 | 1.000 | 1.565
(max) | 0.870 | 0.332 | 0.420 | 0.730 | 0.780 | 0.241 | 0.195 | 0.405 | 0.375 | | Y
Armor | > | Y
Armor | > | Y
Lead sheath | Y
Lead sheath
and armor | > | > | > | 22 | Z2
Armor | ız | ZI | 22 | 17 | | Copper Inner-silver-
coated copper.
Outer-copper | Copper | Соррег | Copper | Silvered | Silvered | Silvered | Copper | | 0.285 | 0.455 | 0.680 | 0.146 | 0.680 | 0.680 | 0.680 | 0.185 | 0.280 | 0.620 | 0.620 | 0.146 | 0.116 | 0.285 | 0.285 | | ∢ | < | < | < | < | < | < | ∢ | ∢ | <u>.</u> | ш | L. | <u>-</u> | <u>.</u> | E. | | 7/0.0159
tinned
copper | 7/0.0249
copper | 0.1045
copper | 0.0230
copperweld | 0.1045
copper | 0.1045
copper | 0.1045
copper | 0.0285
copperweld | 7/0.0159
tinned
copper | 0.190
copper | 0.190
copper | 0.025
silvered
copperweld | 0.0359
silvered
copperweld | 7/0.0179
silvered
copperweld | 0.007
copperweld | | 12A/U | 34A/U | 3 5A /U | 59A/U | 84A/U | 85A/U | 164/0 | 0/V9 | 13 A /U | 0/211 | 118/U | 140/U | 141/U | 144/0 | 146/U | | | | | | | | | Double
braid | | Single
braid | | | | | | | | | | | | | | | | High
temper- | 91010 | | | | | | radio-frequ | | |------------------------------|--| | r list of standard radio-fre | | | / list of | | | Army-Navy | | | continued | | | | | | | | | | continued | Army | Navy | list of si | ondard | radio-fr | Army-Navy list of standard radio-frequency cables* | |-----------------|-----------------|------------------------------|----------------------------------|---------------------------------|--|--|------------------------------------|---------------------------------------|-----------------|-----------------------------------|-----------------------------|--|---| | 9 | class of | Army-
Navy
type
RG- | inner
conductor | dielect
material
(note 1) | nominal
diam of
dielectric
inches | shielding
braid | protective
covering
(note 2) | nominal
over-all
diam
inches | weight
ib/ft | naminal
Imped-
ance
ohms | rominal
capaci-
fance | maximum
operating
voltage
rms | remarks | | High
temper- | Double
braid | 87A/U | 7/0.0312
silvered
copper | L. | 0.280 | Silvered | 22 | 0.425 | 0.176 | 90.0 | 29.5 | 4,000 | Semiflexible cable for
-55° to 250° C | | | | 94A/U | 19/0.0254
silvered
copper | E . | 0.370 | Copper | 22 | 0.470 | 1 | 50.0 | 29.0 | 5,000 | For use where expansion and contraction are a | | | | U/\$11 | 7/0.028
silvered
copper | 22 | 0.250 | Silvered | 22 | 0.375 | 1 | 90.0 | 29.5 | 4,000 | For use where expansion and contraction are a major problem | | | i | 116/U | 7/0.0312
silvered
copper | <u>.</u> | 0.280 | Silvered | Z2
Armor | 0.475 | 0.224 | 50.0 | 29.5 | 4,000 | Same as RG-87A/U, but
armored | | | | 142/U | 0.0359
silvered
copperweld | L. | 0.116 | Silvered | ız | 0.206 | 0.045 | 50.0 | 28.5 | 1,900 | Similar to RG-55/U, but teflon insulation | | | %.
A. 2 | 143/D | 0.057
silvered
copperweld | <u>.</u> | 0.185 | Silvered | 72 | 0.322 | 0.102 | 50.0 | 28.5 | 3,000 | Similar to RG-58/U, but
teflon insulation | | Pulse | Single
braid | 26/U | 19/0.0117
tinned
copper | ۵ | 0.308 | Tinned | Chloroprene.
Armor | 0.525
(max) | 0.189 | 50.0 | 50.0 | 8,000
(peak) | Medium-size cable | | | | 26A/U | 19/0.0117
tinned
copper | m. | 0.288 | Tinned copper | Chloroprene.
Armor | 0.505 | 0.189 | 48.0 | 50.0 | 8,000
(peak) | High-voltage armored
pulse cable | | | | n/ <i>z</i> z | 19/0.0185
tinned
copper | ۵ | 0.455 | Tinned copper | Synthetic
resin.
Armor | 0.675
(moxi | 0.304 | 48.0 | \$0.0 | 15,000
(peak) | large-size armored pulse cable | | - | Double
braid | 25/U | 19/0.0117
tinned
copper | ۵ | 0.308 | Tinned copper | Chloroprene | 0.565 | 0.205 | 90.0 | 20.0 | 8,000
(peak) | Special cable for twisting applications | | | | 25 A /U | 19/0.0117
tinned
copper | ш | 0.308 | Tinned copper | Chloroprene | 0.505 | 0.205 | 48.0 | 50.0 | 8,000
(peak) | Medium-size pulse cable | | | | 28/U | 19/0.0185
tinned
copper | ۵ | 0.455 | Inner—tinned copper. Outer —galvanized | Chloroprene | 0.805 | 0.370 | 48.0 | 20.0 | 15,000
(peak) | large-size pulse cable | | Medium-size pulse cable | Replaces RG-77/U in air-
borne applications | Same as RG-71A/U except for braid | Same as RG-62A/U, but stranded center conductor | Medium-size low-capaci-
tance air-spaced cable | Same as RG-63B/U, but
armored | Small-size low-capaci-
tance air-spaced cable | High-attenuation cable | High-attenuation cable.
Small temperature coeffi-
cient of attenuation | High-impedence video
cable. High-delay line
(Note 3) | For rhombic and doublet receiving antennas | large-size balanced cable.
Inner conductors twisted
for flexibility | Same as RG-130/U, but
aluminum armored | Small-size balanced cable | Same as RG-22B/U, but
armored | |-------------------------------|--|-----------------------------------|---|---|----------------------------------|--|------------------------
--|--|--|---|---|-------------------------------|----------------------------------| | B,000
(peak) | B,000
(peak) | 750 | 750 | 1,000 | 1,000 | 750 | 3,000 | 2,700 | 1,000 | I | 8,000 | B,000 | 1,000 | 1,000 | | 20.0 | 20.0 | 13.5 | 13.5 | 10.0 | 10.0 | 13.5 | 29.0 | 29.0 | 44.0 | 7.8 | 17.0 | 17.0 | 16.0 | 16.0 | | 48.0 | 48.0 | 93.0 | 93.0 | 125.0 | 125.0 | 93.0 | 20.0 | 50.0 | 950.0 | 200.0 | 95.0 | 95.0 | 95.0 | 95.0 | | 0.205 | ı | 0.0382 | 0.040 | 0.082 | 0.138 | 0.046 | 0.076 | 0.093 | 960.0 | | 0.220 | 0.295 | 0.116 | 1.145 | | 0.475 | 0.565
(max) | 0.242 | 0.242 | 0.405 | 0.475
[max] | 0.250
(max) | 0.275 | 0.332 | 0.405 | 0.300
X.000 | 0.625 | 0.710 | 0.420 | 0.490
(max) | | Chloroprene | > | > | > | > | Y
Armor | Synthetic | 22 | > | > | None | Synthetic
resin | Synthetic
resin.
Al. armor | > | Y
Armor | | Tinned copper Chloroprene | Tinned copper | Соррег | Copper | Copper | Copper | Tinned copper | Karma wire | Silvered | Copper | None | Tinned copper | Tinned copper | Tinned copper | Tinned copper | | 0.288 | 0.288 | 0.146 | 0.146 | 0.285 | 0.285 | 0.146 | 0.180 | 0.185 | 0.285 | 0.830
×650 | 0.472 | 0.472 | 0.285 | 0.285 | | ш | ш | A 2 | A 2 | A 2 | V 2 | Y 5 | . | ∢ | < | < | ∢ | ∢ | < | < | | 19/0.0117
finned
copper | 19/0.0117
tinned
copper | 0.0253
copperweld | 7 /0.008
copperweld | 0.0253
copperweld | 0.0253
copperweld | 0.0253
copperweld | 7/0.0203
Karma wire | 0.053
resistance
wire | 0.008
Formex F. He-
lix diam 0.128 | 2 cond.
7/0.0285
copper | 2 cond.
7/0.0285
copper | 2 cond.
7/0.0285
copper | 2 cond.
7/0.0152
copper | 2 cond.
7/0.0152
copper | | 64A/U | 88B/U | 62A/U | 62B/U | 63B/U | 79B/U | 71A/U | 126/0 | 21 A /U | 65A/U | 0/98 | 130/0 | 131/0 | 22B/U | U/ 4 III | | | Four
braids | Single | | | | Double
braid | Single
braid | Double
braid | Single | No
braid | Single
braid | | Double
braid | | | | | low
capaci- | Tance | | | | High
affenu- | 5 | High
delay | Twin
con-
ductor | | | | | ## Attenuation and power rating of lines and cables Attenuation: On pp. 614 and 615 is a chart that illustrates the attenuation of general-purpose radio-frequency lines and cables up to their practical upper frequency limit. Most of these are coaxial-type lines, but waveguide and microstrip are included for comparison. The following notes are applicable to this table. **a.** For the RG-type cables, only the number is given (for instance, the curve for RG-14A/U is labeled only, 14). (See table on pages 607–611.) The data on RG-type cables taken mostly from, "Index of RF Lines and Fittings," Armed Services Electro-Standards Agency, Fort Monmouth, New Jersey, publication 49-2B, 1 November 1955 supplement, and from "Solid Dielectric Transmission Lines," Radio-Electronics-Television Manufacturer's Association Standard TR-143; February, 1956. Some approximation is involved in order to simplify the chart. Thus, where a single curve is labeled with several type numbers, the actual attenuation of each individual type may be slightly different from that shown by the curve. **b.** The curves for rigid copper coaxial lines are labeled with the diameter of the line only, as $\frac{7}{8}$ "C. These have been computed for the standard 50-ohm-size lines listed in Radio-Electronics-Television Manufacturer's Association Standard TR-134; March, 1953. The computations considered the copper losses only, on the basis of a resistivity $\rho=1.724$ microhm-centimeters; a derating of 20 percent has been applied to allow for imperfect surface, presence of fittings, etc., in long installed lengths. Relative attenuations of the different sizes are as follows: $$A_{636} \approx 0.13 A_{36}$$ $A_{336} \approx 0.26 A_{36}$ $A_{136} \approx 0.51 A_{36}$ - **c.** Curves for three sizes of 50-ohm Styroflex cable are copied from a brochure of the manufacturer. These are labeled by size in inches as, $\frac{\pi}{8}$ "S. The velocity factor of this type of cable is approximately v/c = 0.91. - **d.** The microstrip curve is for Teflon-impregnated Fiberglas dielectric 1/16-inch thick and conductor strip 7/32-inch wide. - **e.** Shown for comparison is the attenuation in the TE_{1,0} mode of 5 sizes of brass waveguide. The resistivity of brass was taken as $\rho = 6.9$ microhmcentimeters, and no derating was applied. For copper or silver, attenuation is about half that for brass. For aluminum, attenuation is about 2/3 that for brass. #### Attenuation and power rating of lines and cables continued Power rating: On p. 616 is a chart of the approximate power-transmitting capabilities of various coaxial-type lines. The following notes are applicable. - **f.** Identification of the curves for the RG-type cables is as in note a above. The data for these cables are from the sources indicated in that note. For polyethylene cables, an inner-conductor maximum temperature of 80 degrees centigrade is specified (See note 1). For high-temperature cables (types 87 and 116, the inner-conductor temperature is 250 degrees centigrade. - **g.** The curves for rigid coaxial line are labeled with the diameter of the line only, as $\frac{7}{8}$ C. These are rough estimates based largely on miscellaneous charts published in catalogs. - h. For Styroflex cables, see note c above. - i. The curves are for unity voltage standing-wave ratio. Safe operating power is inversely proportional to swr expressed as a numerical ratio greater than unity. Do not exceed maximum operating voltage (see pp. 595 and 607–611). - i. An ambient temperature of 40 degrees centigrade is assumed. - **k.** The 4 curves meeting the 100-watt abscissa may be extrapolated: at 3000 megacycles for RG-122, maximum average power is 20 watts; for 55,58, power is 28 watts; for 59, power is 44 watts; and for 5,6, power is 58 watts. - 1. The Radio-Electronics-Television Manufacturer's Association Standard TR-143 states that operation of a polyethylene dielectric cable at a center-conductor temperature in excess of 80 degrees centigrade is likely to cause permanent damage to the cable. Where practicable, and particularly where continuous flexing is required, it is recommended that a cable be selected which, in regular operation, will produce a center-conductor temperature not greater than 65 degrees centigrade. Rating factors for various operating temperatures are given in the following table. Multiply points on the power-rating curve by the factors in the table to determine power rating at operating conditions. | | | derating factor | | | | | |-----|---------------------------------|-----------------|----------------------------------|--------------------------------|----------|--| | ter | ambient
nperature
degrees | maximu | m allowable cente
degrees cen | r conductor tempe
itergrade | ature in | | | | ntigrade | 80 | 75 | 70 | 65 | | | | 40 | 1.0 | 0.86 | 0.72 | 0.59 | | | | 50 | 0.72 | 0.59 | 0.46 | 0.33 | | | | 60 | 0.46 | 0.33 | 0.22 | 0.10 | | | | 70 | 0.20 | 0.09 | 0 | _ | | | | 80 | 0 | | _ | _ | | # Attenuation of cables # Power rating of cables # Waveguides and resonators ## Propagation of electromagnetic waves in hollow waveguides For propagation of energy at microwave frequencies through a hollow metal tube under fixed conditions, a number of different types of waves are available, namely: **TE waves:** Transverse-electric waves, sometimes called H waves, characterized by the fact that the electric vector (*E* vector) is always perpendicular to the direction of propagation. This means that $E_{\bullet} \equiv 0$ where z is the direction of propagation. **TM** waves: Transverse-magnetic waves, also called E waves, characterized by the fact that the magnetic vector (*H* vector) is always perpendicular to the direction of propagation. This means that $H_z \equiv 0$ where z is the direction of propagation. Note—TEM waves: Transverse-electromagnetic waves. These waves are characterized by the fact that both the electric vector (E vector) and the magnetic vector (H vector) are perpendicular to the direction of propagation. This means that $$E_{\bullet} = H_{\bullet} = 0$$ where z is the direction of propagation. This is the mode commonly excited in coaxial and open-wire lines. It cannot be propagated in a waveguide. The solutions for the field configurations in waveguides are characterized by the presence of the integers m and n which can take on separate values from 0 or 1 to infinity. Only a limited number of these different m,n modes can be propagated, depending on the dimensions of the guide and the frequency of excitation. For each mode there is a definite lower limit or cutoff frequency below which the wave is incapable of being propagated. Thus, a waveguide is seen to exhibit definite properties of a high-pass filter. The propagation constant $\gamma_{m,n}$ determines the amplitude and phase of each component of the wave as it is propagated along the length of the guide. With z= (direction of propagation) and $\omega=2\,\pi$ X (frequency), the factor for each component is $$\exp[j\omega t - \gamma_{m,n}z]$$ ## Propagation of electromagnetic waves in hollow waveguides continued Thus, if $\gamma_{m,n}$ is real, the phase of each component is constant, but the amplitude decreases exponentially with z. When $\gamma_{m,n}$ is real, it is said that no propagation takes place. The frequency is considered below cutoff. Actually, propagation with high attenuation does take place for a small distance, and a short length of guide below cutoff is often used as a
calibrated off is often used as a calibrated attenuator. When $\gamma_{m,n}$ is imaginary, the amplitude of each component remains constant, but the phase varies with z. Hence, propagation takes place. $\gamma_{m,n}$ is a pure imaginary only in a lossless guide. In the practical case, $\gamma_{m,n}$ usually has both a real part $\alpha_{m,n}$, which is the attenuation constant, and an Fig. 1-Rectangular waveguide. imaginary part $eta_{m,n}$, which is the phase propagation constant. Then $\gamma_{m,n}=lpha_{m,n}+jeta_{m,n}$ #### Rectangular waveguides Fig. 1 shows a rectangular waveguide and a rectangular system of coordinates, disposed so that the origin falls on one of the corners of the waveguide; z is the direction of propagation along the guide, and the cross-sectional dimensions are y_0 and x_0 . For the case of perfect conductivity of the guide walls with a nonconducting interior dielectric (usually air), the equations for the $TM_{m,n}$ or $E_{m,n}$ waves in the dielectric are: $$E_{x} = -A \frac{\gamma_{m,n}}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{m\pi}{x_{o}}\right) \sin\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$E_{y} = -A \frac{\gamma_{m,n}}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{n\pi}{y_{o}}\right) \cos\left(\frac{n\pi}{y_{o}}y\right) \sin\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$E_{z} = A \sin\left(\frac{n\pi}{y_{o}}y\right) \sin\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$H_{z} = -A \frac{j\omega\epsilon}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{n\pi}{y_{o}}\right) \cos\left(\frac{n\pi}{y_{o}}y\right) \sin\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$H_{y} = A \frac{j\omega\epsilon}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{m\pi}{x_{o}}\right) \sin\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$H_{z} \equiv 0$$ where ϵ is the dielectric constant and μ the permeability of the dielectric material in meter-kilogram-second (rationalized) units. Constant A is determined solely by the exciting voltage. It has both amplitude and phase. Integers m and n may individually take values from 1 to infinity. No TM waves of the 0,0 type or 1,0 type are possible in a rectangular guide so that neither m nor n may be 0. Equations for the $TE_{m,n}$ waves or $H_{m,n}$ waves in a dielectric are: $$E_{x} = -B \frac{j\omega\mu}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{n\pi}{y_{o}}\right) \sin\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$E_{y} = B \frac{j\omega\mu}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{m\pi}{x_{o}}\right) \cos\left(\frac{n\pi}{y_{o}}y\right) \sin\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$E_{z} \equiv 0$$ $$H_{x} = B \frac{\gamma_{m,n}}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{m\pi}{x_{o}}\right) \cos\left(\frac{n\pi}{y_{o}}y\right) \sin\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$H_{y} = B \frac{\gamma_{m,n}}{\gamma^{2}_{m,n} + \omega^{2}\mu\epsilon} \left(\frac{n\pi}{y_{o}}\right) \sin\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ $$H_{z} = B \cos\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{x_{o}}x\right) e^{j\omega t - \gamma_{m,n}s}$$ where ϵ is the dielectric constant and μ the permeability of the dielectric material in meter-kilogram-second (rationalized) units. Constant B depends only on the original exciting voltage and has both magnitude and phase; m and n individually may assume any integer value from 0 to infinity. The 0,0 type of wave where both m and n are 0 is not possible, but all other combinations are. As stated previously, propagation only takes place when the propagation constant $\gamma_{m,n}$ is imaginary; $$\gamma_{m,n} = \sqrt{\left(\frac{m\pi}{x_o}\right)^2 + \left(\frac{n\pi}{y_o}\right)^2 - \omega^2 \mu \epsilon}$$ This means, for any m,n mode, propagation takes place when $$\omega^2 \mu \epsilon > \left(\frac{m\pi}{x_o}\right)^2 + \left(\frac{n\pi}{y_o}\right)^2$$ # Rectangular waveguides continued Fig. 2—Field configuration for TE_{1,0} wave. Fig. 3-Field configuration for a TE_{2,1} wave. Fig. 4-Characteristic E lines for TE waves. #### Rectangular waveguides continued or, in terms of frequency f and velocity of light c, when $$f > \frac{c}{2\pi\sqrt{\mu_1\epsilon_1}}\sqrt{\left(\frac{m\pi}{\kappa_o}\right)^2 + \left(\frac{n\pi}{\gamma_o}\right)^2}$$ where μ_1 and ϵ_1 are the relative permeability and relative dielectric constant, respectively, of the dielectric material with respect to free space. The wavelength in the air-filled waveguide is always greater than the wavelength in free space. The wavelength in the dielectric-filled wave guide may be less than the wavelength in free space. If λ is the wavelength in free space and the medium filling the waveguide has a relative dielectric constant ϵ . $$\lambda_{g(m,n)} = \frac{\lambda}{\sqrt{\epsilon - \left(\frac{m\lambda}{2x_o}\right)^2 - \left(\frac{n\lambda}{2y_o}\right)^2}} = \frac{\lambda}{\sqrt{\epsilon - \left(\frac{\lambda}{\lambda_o}\right)^2}}$$ where $$(1/\lambda_c)^2 = (m/2x_0)^2 + (n/2y_0)^2$$ The phase velocity within the guide is also always greater than in an unbounded medium. The phase velocity v and group velocity u are related by the following equation: $$v = c^2/v$$ where the phase velocity is given by $v=c\lambda_g/\lambda$ and the group velocity is the velocity of propagation of the energy. To couple energy into waveguides, it is necessary to understand the configuration of the characteristic electric and magnetic lines. Fig. 2 illustrates the field configuration for a $TE_{1,0}$ wave. Fig. 3 shows the instantaneous field configuration for a higher mode, a $TE_{2,1}$ wave. In Fig. 4 are shown only the characteristic E lines for the $TE_{1,0}$, $TE_{2,0}$, $TE_{1,1}$, and $TE_{2,1}$ waves. The arrows on the lines indicate their instantaneous relative directions. In order to excite a TE wave, it is necessary to insert a probe to coincide with the direction of the E lines. Thus, for a $TE_{1,0}$ wave, a single probe projecting from the side of the guide parallel to the E lines would be sufficient to couple into it. Several means of coupling from a coaxial line to a rectangular waveguide to excite the $TE_{1,0}$ mode are shown in Fig. 5. With structures such as these, it is possible to make the standing-wave ratio due to the junction less than 1.15 over a 10- to 15-percent frequency band. Fig. 6 shows the instantaneous configuration of a $TM_{1,1}$ wave; Fig. 7, the instantaneous field configuration for a $TM_{2,1}$ wave. Coupling to this type of wave may be accomplished by inserting a probe, which is parallel to the E lines, or by means of a loop so oriented as to link the lines of flux. ## Rectangular waveguides continued Fig. 5—Methods of coupling to $TE_{1,0}$ mode (a $\approx \lambda_{\sigma}/4$). Fig. 6-Instantaneous field configuration for a TM_{1, 1} wave. Fig. 7—Instantaneous field configuration for a TM2,1 wave. # Circular waveguides The usual coordinate system is ρ , θ , z, where ρ is in the radial direction; θ is the angle; z is in the longitudinal direction. TM waves (E waves): $H_z \equiv 0$ $$E_{\rho} = H_{\theta} \, \eta \, \frac{\lambda}{\lambda_{g(m,n)}}$$ 623 $$E_{\theta} = -H_{\rho} \eta \, \frac{\lambda}{\lambda_{\rho(m,n)}}$$ $$E_z = A J_n (k_{m,n} \rho) \cos n \theta e^{j\omega t - \gamma_{m,n} z}$$ $$H_{\rho} = -jA \frac{2\pi n}{\lambda k^2_{m,n} \eta_{\rho}} J_n (k_{m,n} \rho) \sin n \theta e^{j\omega t - \gamma_{m,n} z}$$ $$H_{\theta} = -jA \frac{2\pi}{\lambda k_{m,n} \eta} J'_{n} (k_{m,n} \rho) \cos n \theta e^{-j\omega l - \gamma_{m,n} s}$$ where $\eta = (\mu/\epsilon)^{\frac{1}{2}}$ with μ and ϵ in absolute units. By the boundary conditions, $E_z = 0$ when $\rho = a$, the radius of the guide. Thus, the only permissible values of k are those for which $J_n(k_{m,n}a) = 0$ because E_z must be zero at the boundary. The numbers m, n take on all integral values from zero to infinity. The waves are seen to be characterized by the numbers, m and n, where n gives the order of the bessel functions, and m gives the order of the root of J_n ($k_{m,n}$ a). The bessel function has an infinite number of roots, so that there are an infinite number of k's that make J_n ($k_{m,n}$ a) = 0. TE waves (H waves): $E_z \equiv 0$ $$E_{\rho} = jB \frac{2\pi n\eta}{\lambda k_{m,n}^2 \rho} J_n (k_{m,n}\rho) \sin n \theta e^{j\omega l - \gamma_{m,n} s}$$ $$E_{\theta} = jB \frac{2\pi\eta}{\lambda k_{m,n}} J'_{n} (k_{m,n}\rho) \cos n \theta e^{j\omega t - \gamma_{m,n} s}$$ $$H_{\rho} = -E_{\theta} \frac{\lambda_{g(m,n)}}{\eta \lambda}$$ $$H_{\theta} = E_{\rho} \frac{\lambda_{\sigma(m,n)}}{n\lambda}$$ $$H_z = BJ_n (k_{m,n} \rho) \cos n\theta e^{j\omega l - \gamma_{m,n^2}}$$ Again n takes on integral values from zero to infinity. The boundary condition $E_{\theta}=0$ when $\rho=a$ still applies. To satisfy this condition k must be such as to make J'_n $(k_{m,n} \ a)$ equal to zero [where the superscript indicates the derivative of J_n $(k_{m,n} \ a)$]. It is seen that m takes on values from 1 to infinity since there are an infinite number of roots of J'_n $(k_{m,n} \ a)$. ## Circular waveguides continued For circular waveguides, the cutoff frequency for the m,n mode is $$f_{c(m,n)} = c k_{m,n}/2 \pi$$ where $c = \text{velocity of light and } k_{m,n}$ is evaluated from the roots of the bessel functions $$k_{m,n} = U_{m,n}/a$$ or $U'_{m,n}/a$ where a = radius of guide or pipe and $U_{m,n}$ is the root of the particular bessel function of interest (or its derivative). The wavelength in any guide filled with a homogeneous dielectric ϵ (relative)
is $$\lambda_{a} = \lambda_{0}/[\epsilon - (\lambda_{0}/\lambda_{c})^{2}]^{\frac{1}{2}}$$ Fig. 8—Chart for determining guide wavelength. where λ_0 is the wavelength in free space, and λ_c is the free-space cutoff wavelength for any mode under consideration. The following tables are useful in determining the values of k. For TE waves the cutoff wavelengths are given in the following table. #### Values of λ_c/a (where a = radius of guide) | n ^m | 0 | 1 | 2 | |----------------|-------|-------|-------| | 1 | 1.640 | 3.414 | 2.057 | | 2 | 0.896 | 1.178 | 0.937 | | 3 | 0.618 | 0.736 | 0.631 | For TM waves the cutoff wavelengths are given in the following table. #### Values of λ_c/a | n m | 0 | 1 | 2 | |-----|-------|-------|-------| | 1 | 2.619 | 1.640 | 1.224 | | 2 | 1.139 | 0.896 | 0.747 | | 3 | 0.726 | 0.618 | 0.541 | #### Circular waveguides continued where n is the order of the bessel function and m is the order of the root. Fig. 8 shows λ_0/λ_σ as a function of λ_0/λ_σ . From this, λ_σ may be determined when λ_0 and λ_σ are known. The pattern of magnetic force of TM waves in a circular waveauide is shown in Fig. 9. Only the maximum lines are indicated. In order to excite this type of pattern, it is necessary to insert a probe along the length of the waveguide and concentric with the H lines. For instance, in the TM_{0.1} type of wave, a probe extending down the length of the waveguide at the very center of the guide would provide the proper excitation. This method of excitation is shown in Fig. 10. Corresponding methods of excitation may be used for the other types of TM waves shown in Fig. 9. Fig. 11 shows the patterns of electric force for TE waves. Again only the maximum lines are indicated. This type of wave may be excited by an antenna that is parallel to the electric lines of force. The TE_{1,1} wave may be excited by means of an antenna extending across the waveguide. This is illustrated in Fig. 12. Propagating E waves have a minimum attenuation at (3) $\frac{1}{2}$ f_e . The $H_{1,1}$ wave has minimum attenuation at the frequency 2.6 (3) $\frac{1}{2}$ f_c . Fig. 9—Patterns of magnetic force of TM waves in circular waveguides. Fig. 10—Method of coupling to circular waveguide for TM_{0.1} wave. Fig. 11—Patterns of electric force of TE waves in circular waveguides. ## Circular waveguides continued The $H_{0,1}$ wave has the interesting and useful property that attenuation decreases as the frequency increases. The fact that this is true for all frequencies makes this transmission mode unique. Fig. 12—Method of coupling to circular waveguide for TE_{1.1} wave. # Ridged waveguides* To lower the cutoff frequency of a waveguide for use over a wider-thannormal frequency band, ridges may be used. By proper choice of dimensions, it is possible to obtain as much as a four-to-one ratio between cutoff frequencies for the $TE_{2,0}$ and $TE_{1,0}$ modes. Fig. 13—Asymmetrical and symmetrical ridged waveguides. Fig. 13 pictures two forms of commonly used ridged waveguide. The value for the cutoff wavelength λ_c is $$\lambda_c = \left(\frac{90^{\circ}}{\theta_1 + \theta_2}\right) \lambda_{c0}$$ where $\lambda_{c0}=2a=$ cutoff wavelength without ridges and θ_1 and θ_2 satisfy the approximate equation $$\cot \theta_1 + (b_1/b_2) \cot \theta_2 = 0$$ The last equation is approximately true for small θ_1 and small b_1/b_2 , since it assumes no discontinuity susceptance at the ridge edges. ^{* &}quot;Very-High-Frequency Techniques," McGraw-Hill Book Company Incorporated, New York, N. Y., 1947: pp. 678–684. | Į | į | | |---|---|---| • | | | į | į | | | 1 | į | i | | i | E | | | 1 | c | • | | • | _ | | | | | i | | | _ | | | | Ë | | | • | į | | | | | | | Ì | Ē | | | | O | i | | : | | | | | | , | | | ï | | | | | | | | ŭ | i | | ٦ | | | | | ō | , | | 1 | 6 | i | | | 2 | | | | ė | į | | 1 | Ü | i | | 7 | | ı | | | | | | | | , | | 4 | | | | | Ë | • | | 4 | 9 | | | | > | | | | 5 | | | | • | | | | | | | | 5 | | | • | 7 | , | | : | ļ | | | • | - | • | | | | b | | i | ī | : | | | | | | Fig. 14—Cutoff w | vavelengths and attenua | Fig. 14—Cutoff wavelengths and attenuation factors; all dimensions are in meters. | are in meters. | Attenuc | Attenuation constants | |--|--|---|--|---|--| | Type of
guide | TEM TEM | Terangular pipe | | * *** | | | | 4-5P-4 | 0 | TM _{0.1} or E _{0,1} | TE _{1,1} or H _{1,1} | TE _{0,1} or H _{0,1} | | Cutoff
wavelength
λ_e | 0 | 20
E | 2.613a | 3.4120 | 1.640a | | Attenuation constant = α (nepers/meter) | $\alpha_{o} \sqrt{\frac{c}{\lambda}} \left(\frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a}} \right)$ (See also p. 574) | $\frac{4\alpha_o A}{\sigma} \left(\frac{\alpha}{2b} + \frac{\lambda^2}{\lambda_o^2} \right)$ | 2α _o A
α | $\frac{2\alpha_o}{\sigma} A \left(0.415 + \frac{\lambda^2}{\lambda_o^2} \right)$ | $\left(\frac{2}{\sigma}A\left(\frac{\lambda}{\lambda_c}\right)^2\right)$ | | Here $\lambda_c=\mathrm{cu}$ | where $\lambda_c={ m cutoff}$ wavelength $$ | $A = \frac{\sqrt{c/\lambda}}{\sqrt{1 - (\lambda/\lambda_c)^2}}$ | $\alpha_0 = \frac{1}{2} \sqrt{\frac{\mu_2}{\sigma_2}}$ | $\frac{\mu_2}{\sigma_2} \frac{\epsilon_1 \pi}{\mu_1}$ (M.K.S.) | | ## Attenuation constants continued All of the attenuation constants contain a common coefficient $$\alpha_0 = \frac{1}{2} (\mu_2 \epsilon_1 \pi / \sigma_2 \mu_1)^{1/2}$$ where ϵ_1 = dielectric constant of insulator μ_1 = magnetic permeability of insulator σ_2 = electric conductivity of metal μ_2 = magnetic permeability of metal For air and copper, $$\alpha_0 = 0.35 \times 10^{-9} \text{ nepers/meter} = 0.3 \times 10^{-5} \text{ decibels/kilometer}$$ To convert from nepers/meter to decibels/100 feet, multiply by 264. Fig. 14 summarizes some of the most important formulas. Dimensions a and b are measured in meters. ## Attenuation in a waveguide beyond cutoff When a waveguide is used at a wavelength greater than the cutoff wavelength, there is no real propagation and the fields are attenuated exponenially. The attenuation L in a length d is given by $$L = 54.5 \frac{d}{\lambda_c} \left[1 - \left(\frac{\lambda_c}{\lambda} \right)^2 \right]^{1/2}$$ decibels where $\lambda_c = \text{cutoff wavelength}$ λ = operating wavelength Note that for $\lambda \gg \lambda_c$, attenuation is essentially independent of frequency and $L = 54.5 \, d/\lambda_c$ decibels λ_c is a function of geometry. ## Standard waveguides Fig. 15 presents a list of rectangular waveguides that have been adopted as standard with some of their properties. | Radio-Electronics
Television | | | frequency range | cutoff wave- | cutoff frequency | theoretical
ottenuation, | theoretical power
rating in mega- | |---|----------------------------|---|---|---|---|--|---| | Monutacturers
Association
designation | Army-Navy
fype number * | outer dimensions
and
woll thickness | in kilomegacycles
for dominant
(TE1.0) mode | length λε in
centimeters
for TE1.0 mode | fc in kitomega-
cycles for TE1,0
mode | lowest to highest
frequency in
db/100 ft | watts for lowest
to highest
frequency ‡ | | 0051974 | | 15.000 × 7.500 ± | 0.47 - 0.75 | 76.3 | 0.393 | | | | WP1150 | | 11,500 X 5,750 t | 0.64 - 0.96 | 58.4 | 0.514 | | | | WR975 | | 10.000 X 5.125 X 0.125 | 0.75 - 1.12 | 49.6 | 0.605 | | | | WR770 | | 7.950 X 4.100 X 0.125 | 0.96 - 1.45 | 39.1 | 0.767 | | | | WR650 | RG-69/U | 6.660 × 3.410 × 0.080 | 1.12 - 1.70 | 33.0 | 0.908 | 0.317- 0.212 | 11.9 -17.2 | | WR510 | | 5.260 × 2.710 × 0.080 | 1.45 - 2.20 | 25.9 | 1.16 | | | | WR430 | RG-104/U | 4.460 X 2,310 X 0.080 | 1.70 - 2.60 | 21.8 | 1.375 | 0,588- 0.385 | 5.2 - 7.5 | | WR340 | | 3.560 × 1.860 × 0.080 | 2.20 - 3.30 | 17.3 | 1.735 | | | | WR284 | RG-48/U | 3.000 X 1.500 X 0.080 | 2.60 - 3.95 | 14.2 | 2.08 | 1.102- 0.752 | 2.2 - 3.2 | | WR229 | | 2.418 × 1.273 × 0.064 | 3.30 - 4.90 | 11.6 | 2.59 | | | | WR187 | RG-49/U | 2.000 X 1.000 X 0.064 | 3,95 - 5.85 | 9.50 | 3.16 | 2.08 - 1.44 | 1.4 - 2.0 | | WR159 | | 1.718 X 0.923 X 0.064 | 4.90 - 7.05 | 8.09 | 3.71 | | | | WR137 | RG-50/U | 1.500 × 0.750 × 0.064 | 5.85 - 8.20 | 86.9 | 4.29 | 2.87 - 2.30 | 0.56 - 0.71 | | WR112 | RG-51/U | 1.250 × 0.625 × 0.064 | 7.05 - 10.00 | 5.70 | 5.26 | 4.12 - 3.21 | 1 | | WR90 | RG-52/U | 1.000 X 0.500 X 0.050 | 8.20 - 12.40 | 4.57 | 6.56 | 6.45 - 4.48 | 0.20 - 0.29 | | WR75 | | 0.850 X 0.475 X 0.050 | 10.00 - 15.00 | 3.81 | 7.88 | | | | WR62 | RG-91/U | 0.702 X 0.391 X 0.040 | 12.4 - 18.00 | 3.16 | 9.49 | 9.51 - 8.31 | 0.12 - 0.16 | | WRSI | | 0.590 × 0.335 × 0.040 | 15.00 - 22.00 | 2.59 | 11.6 | | | | WR42 | RG-53/U | 0.500 × 0.250 × 0.040 | 18.00 - 26.50 | 2.13 | 14.1 | 20.7 -14.8 | 0.043 - 0.058 | | WR34 | | 0.420 × 0.250 × 0.040 | 22.00 - 33.00 | 1.73 | 17.3 | | | | WR28 | RG-96/U (*) | 0.360 X 0.220 X 0.040 | 26.50 - 40.00 | 1.42 | 21.1 | 21.9 -15.0 | 0.022 - 0.031 | | WR22 | RG-97/U (*) | 0.304 × 0.192 × 0.040 | 33.00 - 50.00 | 1.14 | 26.35 | 31.020.9 | 0.014 - 0.020 | | WR19 | |
0.268 × 0.174 × 0.040 | 40.00 - 60.00 | 0.955 | 31.4 | | | | WRIS | RG-98/U (*) | 0.228 × 0.154 × 0.040 | 50.00 - 75.00 | 0.753 | 39.9 | | 0.0063- 0.0090 | | WR12 | RG-99/U (*) | 0.202 X 0.141 X 0.040 | 60.00 - 90.00 | 0.620 | 48.4 | 93.3 -52.2 | 0.0042- 0.0060 | | WRIO | | 0.180 X 0.130 X 0.040 | 75.00 -110.00 | 0.509 | 69.0 | _ | • | ^{*} In this column, types marked with asterisk are sliver; unmarked types are brass. [†] Inner dimensions only are specified. [#] For these computations, the breakdown strength of alr was taken as 15,000 volts per centimeter. A safety factor of approximately 2 at sea level has been allowed. #### Waveguide circuit elements* Just as at low frequencies, it is possible to shape metallic or dielectric pieces to produce local concentrations of magnetic or electric energy within a waveguide and thus produce what are, essentially, lumped inductances capacitances over a limited frequency bandwidth. This behavior as a lumped element will be evident only at some distance from the obstacle in the quide, since the fields in the immediate vicinity are disturbed. Capacitive elements are formed from electric-field concentrating devices, such as screws or thin diaphragms inserted partially along electric-field lines. These are susceptible to breakdown under high power. Fig. 16 shows the relative susceptance B/Y_0 for symmetrical and Fig. 16 — Normalized susceptance of capacitive diaphragms. asymmetrical diaphragms for small b/λ_{σ} . A common form of shunted lumped inductance is the diaphragm. Figs. 17 and 18 show the relative susceptance B/Y_0 for symmetrical and asymmetrical diaphragms in rectangular waveguides. These are computed for infinitely thin diaphragms. Finite thicknesses result in an increase in B/Y_0 . Another form of shunt inductance that is useful because of mechanical simplicity is a round post completely across the narrow dimension of a rectangular guide (for $TE_{1,0}$ mode). Figs. 19 and 20 give the normalized values of the elements of the equivalent 4-terminal network for several post diameters. ^{*} For a more complete treatment, refer to C. G. Montgomery, R. H. Dicke, and E. M. Purcell, "Principles of Microwave Circuits," McGraw-Hill Book Company, Incorporated, New York, N. Y.; 1948: Chapters 1 and 6. Also N. Marcuvitz, "Waveguide Handbook," McGraw-Hill Book Company, Incorporated, New York, N. Y.; 1951. #### Waveguide circuit elements continued Frequency dependence of waveguide susceptances may be given approximately as follows: Reprinted from "Microwove Transmission Circuits," by George L. Ragan, 1st ed., 1948; by permission, McGraw-Hill Book Co., N. Y. Fig. 17—Normalized susceptance of a symmetrical inductive diaphragm. Reprinted from "Microwave Transmission Circuits," by George L. Rogan, Ist ed., 1948; by permission, McGraw-Hill Book Ca., N. Y. Fig. 18—Normalized susceptance of an asymmetrical Inductive diaphragm. ## Waveguide circuit elements continued Inductive = $B/Y_0 \propto \lambda_0$ Capacitative = $B/Y_0 \propto 1/\lambda_g$ (distributed) = $B/Y_0 \propto \lambda_g/\lambda^2$ (lumped) Distributed capacitances are found in junctions and slits, whereas tuning screws act as lumped capacitances. Fig. 19—Equivalent circuit for inductive cylindrical post. continued Fig. 20—Equivalent circuit for inductive cylindrical post. # Hybrid junctions* The hybrid junction is illustrated in various forms in Fig. 21. An ideal junction is characterized by the fact that there is no direct coupling between arms 1 and 4 or between 2 and 3. Power flows from 1 to 4 only by virtue of reflections in arms 2 and 3. Thus, if arm 1 is excited, the voltage arriving at arm 4 is $$E_4 = \frac{1}{2} E_1 \left(\Gamma_2 e^{j2\theta_2} - \Gamma_3 e^{j2\theta_3} \right)$$ ^{*}C. G. Montgomery, R. H. Dicke, and E. M. Purcell, "Principles of Microwave Circuits." McGraw-Hill Book Company, Incorporated, New York, N. Y.; 194& Chapter 9. #### Hybrid junctions continued and the reflected voltage in arm 1 is $$E_{r1} = \frac{1}{2} E_1 \left(\Gamma_{2} e^{j2\theta_2} + \Gamma_{3} e^{j2\theta_3} \right)$$ where E_1 is the amplitude of the incident wave, Γ_2 and Γ_3 are the reflection coefficients of the terminations of arms 2 and 3, and θ_2 and θ_3 are the respective distances of the terminations from the junctions. In the case of the rings, θ is the distance between the arm-and-ring junction and the termination. If the decoupled arms of the hybrid junction are independently matched Fig. 21—Hybrid junctions. 635 and the other arms are terminated in their characteristic impedances, then all four arms are matched at their inputs. ## Resonant cavities A cavity enclosed by metal walls will have an infinite number of natural frequencies at which resonance will occur. One of the more common types of cavity resonators is a length of transmission line (coaxial or waveguide) short-circuited at both ends. Resonance occurs when $$2h = I(\lambda_a/2)$$ where I is an integer and 2h = length of the resonator $\lambda_{\text{g}}=$ guide wavelength in resonator $$= \lambda/[\epsilon - (\lambda/\lambda_c)^2]^{\frac{1}{2}}$$ where $\lambda = \text{free-space wavelength}$ λ_c = guide cutoff wavelength $\epsilon =$ relative dielectric constant of medium in cavity For $TE_{m,n}$ or $TM_{m,n}$ waves in a rectangular cavity with cross section a, b, $$\lambda_c = 2/[(m/a)^2 + (n/b)^2]^{\frac{1}{2}}$$ where m and n are integers. For $TE_{m,n}$ waves in a cylindrical cavity $$\lambda_c = 2\pi a/U'_{m,n}$$ where a is the guide radius and $U'_{m,n}$ is the mth root of the equation $J'_{n}(U) = 0$. For $TM_{m,n}$ waves in a cylindrical cavity $$\lambda_c = 2\pi \alpha/U_{m,n}$$ where a is the guide radius and $U_{m,n}$ is the mth root of the equation $J_n(U)=0$. For TM waves l = 0, 1, 2... For TE waves I = 1, 2, ..., but not 0 # Rectangular cavity of dimensions a, b, 2h $$\lambda = 2/[(1/2h)^2 + (m/a)^2 + (n/b)^2]^{1/2}$$ where only one of l, m, n may be zero. # Cylindrical cavities of radius a and length 2h $$\lambda = 1/[(1/4h)^2 + (1/\lambda_c)^2]^{\frac{1}{2}}$$ where λ_c is the guide cutoff wavelength. # Spherical resonators of radius a $$\lambda = 2\pi a/U_{m,n}$$ for a TE wave $$\lambda = 2\pi a/U'_{m,n}$$ for a TM wave Values of $U_{m,n}$: $$U_{1,1} = 4.5$$, $U_{2,1} = 5.8$, $U_{1,2} = 7.64$ Values of $U'_{m,n}$: $$U'_{1,1} = 2.75 = lowest-order root$$ ## Additional cavity formulas Note that resonant modes are characterized by three subscripts in the mode designations of Figs. 22–24. Fig. 22—Formulas for a right-circular-cylindrical cavity. | mode | λ ₀ resonant
wavelength | Q
(all dimensions in same units) | |---------------------------------------|---|--| | TM _{0,1,1} (E ₀) | $\frac{4}{\sqrt{\left(\frac{1}{h}\right)^2 + \frac{2.35}{a^2}}}$ | $\frac{\lambda_0}{\delta} \frac{\alpha}{\lambda_0} \frac{1}{1 + \frac{\alpha}{2h}}$ | | TE _{0,1,1} (H ₀) | $\frac{4}{\sqrt{\left(\frac{1}{h}\right)^2 + \frac{5.93}{\sigma^2}}}$ | $\frac{\lambda_0}{\delta} \frac{\alpha}{\lambda_0} \left[\frac{1 + 0.168 \left(\frac{\alpha}{h}\right)^2}{1 + 0.168 \left(\frac{\alpha}{h}\right)^3} \right]$ | | TE _{1,1,1} (H ₁) | $\frac{4}{\sqrt{\left(\frac{1}{h}\right)^2 + \frac{1.37}{a^2}}}$ | $\frac{\lambda_0}{\delta} \frac{h}{\lambda_0} \left[\frac{2.39h^2 + 1.73a^2}{3.39 \frac{h^3}{a} + 0.73ah + 1.73a^2} \right]$ | ## Resonant cavities continued Fig. 23—Characteristics of various types of resonators. | | type resonator | resonant
wavelength, λ, | Q | |---|----------------|----------------------------|--| | Square
prism
TE _{1,0,1} | 2h 2h 2a 4- | 2√2̄α | $\frac{0.353\lambda}{\delta} \frac{1}{1 + \frac{0.177\lambda}{h}}$ | | Circular
cylinder
TM _{0,1,0} | | 2.61a | $\frac{0.383\lambda}{\delta} \frac{1}{1 + \frac{0.192\lambda}{h}}$ | | Sphere | ٠ | 2.28a | $0.318 \frac{\lambda}{\delta}$ | | Sphere
with
cones |) <u>E</u> | 4 a | Optimum Q for $\theta = 34^{\circ}$ 0.1095 $\frac{\lambda}{\delta}$ | | Coaxial
TEM | | 4h | Optimum Q
for $\frac{b}{a} = 3.6$
$\{Z_0 = 77 \text{ ohms}\}$
$\frac{\lambda}{4\delta + 7.2 \frac{h\delta}{b}}$ | Skin depth in meters = $\delta = \sqrt{10^7/2\pi\omega\sigma}$ where $\sigma = \text{conductivity of wall in mhos/meter}$ and $\omega = 2\pi \times \text{frequency}$ Fig. 24—Mode chart for right-circular-cylindrical cavity. Fig. 24 is a mode chart for a right-circular-cylindrical resonator, showing the distribution of resonant modes with frequency as a function of cavity shape. With the aid of such a chart, one can predict the various possible resonances as the length (2h) of the cavity is varied by means of a movable piston. #### Effect of temperature and humidity on cavity tuning The resonant frequency of a cavity will change with temperature and humidity, due to changes in dielectric constant of the atmosphere, and with thermal expansion of the cavity. A homogeneous cavity made of one kind of metal will have a thermal-tuning coefficient equal to the linear coefficient of expansion of the metal, since the frequency is inversely proportional to the linear dimension of the cavity. | metal | linear coefficient
of expansion/°C | |--------------|---------------------------------------| | Yellow brass | 20 | | Copper | 17.6 | | Mild steel | 12 | | Invar | 1.1 | The relative dielectric constant of air (vacuum = 1) is given by $$k_e = 1 + 210 \times 10^{-6} \frac{P_a}{T} + 180 \times 10^{-6} \left(1 + \frac{5580}{T}\right) \frac{P_w}{T}$$ where P_a and P_w are partial pressures of air and water vapor in millimeters
of mercury and T is the absolute temperature. Fig. 25 is a nomograph showing change of cavity tuning relative to conditions at 25 degrees centigrade and 60 percent relative humidity (expansion is not included). ## Coupling to cavities and loaded Q Near resonance, a cavity may be represented as a simple shunt-resonant circuit, characterized by a loaded Q $$\frac{1}{Q_{l}} = \frac{1}{Q_{0}} + \frac{1}{Q_{\text{ext}}}$$ where Q_0 is the unloaded Q characteristic of the cavity itself, and $1/Q_{\rm ext}$ Fig. 25-Effect of temperature and humidity on cavity tuning. #### Resonant cavities continued is the loading due to the external circuits. The variation of Q_{ext} with size of the coupling is approximately as follows: | coupling | 1/Q _{ext} is proportional to | |---------------------------------|---------------------------------------| | Small round hole | (diameter) ⁶ | | Symmetrical inductive diaphragm | {δ) ⁴ see Fig. 17 | | Small loop | (diameter) ⁴ | #### Summary of formulas for coupling through a cavity In Fig. 26 are summarized some of the useful relationships in a 4-terminal cavity (transmission type) for three conditions of coupling: matched input (input resistance at resonance equals Z_0 of input line), equal coupling $(1/Q_{\rm in}=1/Q_{\rm out})$, and matched output (resistance seen looking into output terminals at resonance equals output-load resistance). A matched generator is assumed. Fig. 26—Coupling through a cavity. | | matched input | equal coupling | matched output | |-------------------------------|----------------------------------|--|--| | input standing-
wave ratio | 1 | $1+g'_{\epsilon}=2\left(\frac{1}{\sqrt{\bar{r}}}-1\right)$ | $1+2g_e'$ | | Transmission ratio = T | $1-g_e'=1-2\rho$ | $(1+g_e'/2)^{-2}=(1-\rho)^2$ | $(1+g_c')^{-1}=1-2\rho$ | | $Q_l/Q_0 = \rho$ | $\frac{g_e'}{2} = \frac{1-7}{2}$ | $\frac{g_e'}{2+g_e'}=1-\sqrt{T}$ | $\frac{g_e'}{2(1+g_e')} = \frac{1-7}{2}$ | In Fig. 26, g'_e is the apparent conductance of the cavity at resonance, with no output load; the transmission T is the ratio of the actual output-circuit power delivered to the available power from the matched generator. The loaded Q is Q_t and unloaded Q is Q_0 . # Cavity coupling techniques* To couple power into or out of a resonant cavity, either waveguide or coaxial, loops, probes, or apertures may be used. The essentially inductive loop (a certain amount of electric-field coupling exists) is inserted in the resonator at a desired point where it can couple to a strong magnetic field. The degree of coupling may be controlled by rotating the loop so that more or less loop area links this field. For a fixed location of the loop, the loaded Q of a loop-coupled coaxial resonator ^{*} C. Montgomery, D. Dicke, and E. Purcell, "Principles of Microwave Circuits," McGraw-Hill Book Company, Incorporated, New York, N. Y.; 1948: chapter 7. varies as the square of the effective loop area and inversely as the square of the distance of the loop center from the resonator axis of revolution. The off-resonance input impedance of the loop is low, a feature that sometimes is helpful in series connections. The capacitative probe is inserted in the resonator at a point where it is parallel to and can couple to strong electric fields. The degree of coupling is controlled by varying the length of the probe relative to the electric field. The off-resonance input impedance of the probe-coupled resonator is high, which property is useful in parallel connections. Aperture coupling is suitable when coupling waveguides to resonators or in coupling resonators together. In this case, the aperture must be located and shaped so as to excite the proper propagating modes. For all means of coupling, the input impedance at resonance and the loaded Q may be adjusted by proper selection of the point of coupling and the degree of coupling. #### Simple waveguide cavity* A cavity may be made by enclosing a section of waveguide between a pair of large shunt susceptances, as shown in Fig. 27. Its loaded Q is given by $$Q_l = \frac{1}{4} (\lambda_g/\lambda)^2 (b^4 + 4b^2)^{\frac{1}{2}} \tan^{-1} (2/b)$$ Fig. 27—Waveguide cavity and equivalent circuit. and the resonant guide wavelength $\lambda_{\sigma 0}$ is obtained from $$2\pi l/\lambda_{g0} = \tan^{-1} (2/b)$$ ^{*} G. L. Ragan, "Microwove Transmission Circuits," McGraw-Hill Book Company, Incorporated, New York, N. Y.; 1948: chapter 10. #### Resonant cavities continued #### Resonant irises Resonant irises may be used to obtain low values of loaded Q(<30). The simplest type is shown in Fig. 28. It consists of an inductive diaphragm and a capacitive screw located in the same plane across the waveguide. For $Q_i < 50$, the losses in the resonant circuit may be ignored and $$1/Q_l \approx 1/Q_{\rm ext}$$ To a good approximation, the loaded ${\sf Q}$ (matched load and matched generator) is given by $$Q_l = (B_l/2Y_0) (\lambda_{g0}/\lambda)^2$$ where B_l is the susceptance of the inductive diaphragm. This value may be taken from charts such as Figs. 17 and 18 as a starting point, but because of the proximity of the elements, the susceptance value is modified. Exact Q's must be obtained experimentally. Other resonant structures are given in Figs. 29 and 30. These are often designed so that the capacitive gap will break down under high power levels for use as transmitreceive (tr) switches in radar systems. Fig. 28—Resonant iris in waveguide. The capacitive screw is tuned to resonance with the inductive diaphragm. Fig. 29—Resonant element consisting of an oblong aperture in a thin transverse diaphragm. Fig. 30—Resonant structure consisting of cones with capacitive gap between apexes with thin symmetrical inductive diaphragm. # **■** Scattering matrixes Microwave structures are characterized by dimensions that are of the order of the wavelength of the propagated signal. The notions of current, voltage, and impedance, useful at lower frequencies, have been successfully extended to these structures, but these quantities are not as directly available for measurement: there are no voltmeters or ammeters and no apparent "terminal pair" between which to connect them. The electromagnetic field itself, distributed throughout a region, becomes the relevant quantity. Within uniform structures, which are the usual form of waveguides, the power flow and the phase of the field at a cross section are the quantities of importance. The most usual form of measurement, that of the standing-wave pattern in a slotted section, is easily interpreted in terms of traveling waves and gives directly the reflection coefficient. The scattering description of waveguide junctions was introduced* to express this point of view. It is not, however, restricted to microwaves; a low-frequency network can be considered as a "waveguide junction" between transmission lines† connected to its terminal pairs and the scattering matrix is a useful complement to the impedance and admittance descriptions. #### Amplitude of a traveling wave In a uniform waveguide, a traveling wave is characterized, for a given mode and frequency, by the electromagnetic-field distribution in a transverse cross section and by a propagation constant h. The field in any other cross section, at a distance z in the direction of propagation, has the same pattern but is multiplied by $\exp(-jhz)$. A wave propagating in the opposite direction, for the same mode and frequency, varies with z as $\exp(jhz)$. When losses are negligible, h is real. The amplitude of a traveling wave, at a given cross section in the waveguide, is a complex number a defined as follows. The square $|a^2|$ of the magnitude of a is the power flow, ‡ that is, the integral of the Poynting vector over the waveguide cross section. The phase angle of a is that of the transverse field in the cross section. § ^{*} C. G. Montgomery, R. H. Dicke, E. M. Purcell, "Principles of Microwave Circuits," McGraw-Hill Book Company, Inc., New York, N. Y.: 1948. [†] Transmission lines are in fact considered as special cases of waveguides: see, "IRE Standards on Antennas and Waveguides: Definitions of Terms, 1953," The Institute of Radio Engineers, Inc.; New York, N. Y.: 1953. Published in Proceedings of the IRE, vol. 41, pp. 1721–1728; December, 1953. [‡] The amplitude is sometimes defined to make the power flow equal to $\frac{1}{2}|a|^2$ rather than to $|a|^2$. This would correspond to the use of peak values instead of root-mean-square values. § This phase is well defined for a pure mode, since the field has the same phase everywhere in the cross section. ## Amplitude of a traveling wave continued The amplitude of a given traveling wave varies with z as $\exp(-jhz)$. The wave amplitude has the dimensions of the square root of a power. The meter-kilogram-second unit is therefore the (watt) $^{1/2}$. #### Reflection coefficient #### Definition At a cross section in a waveguide, the reflection coefficient is the ratio of the amplitudes of the waves traveling respectively in the negative and the positive directions. The positive direction must be specified and is usually taken as toward the load. To give a definite phase to the reflection coefficient, a convention is necessary that describes how the phases of waves traveling in opposite directions are to be compared. The usual convention is to compare in the two waves the phases of the transverse electric-field vectors.* For a short-circuit, produced, for instance, by a perfect conducting plane placed across the waveguide, the reflection coefficient is W=-1. For an open-circuit, it is W=+1 and for a matched load, W=0. When the cross section is displaced by z in the positive direction, the reflection coefficient W becomes $$W' = W \exp(2jhz) \tag{1}$$ #### Measurement In a slotted waveguide equipped with a sliding voltage† probe, the position of a maximum is one where
the phase of the reflection coefficient is zero. The ratio of the maximum to the minimum (the standing-wave ratio or swr) is $$(swr) = (1 + |W|)/(1 - |W|)$$ Therefore, $$W = [(swr) - 1]/[(swr) + 1]$$ (2) is the value of W at the position of a maximum. At the position of a minimum, ^{*} The dual convention, based on the magnetic-field vector, would give the "current" reflection coefficient, equal to minus the "voltage" reflection coefficient. The latter is used almost exclusively and the "voltage" qualification is implicit. [†] A probe that gives a reading proportional to the electric field. #### Reflection coefficient continued which is easier to locate in practice, the reflection coefficient is [1 - (swr)]/[1 + (swr)]. At any other position, the value of W is obtained by applying (1). If the reflection coefficient is wanted in some waveguide connected to the slotted section, a good match must obtain at the transition or a correction must be applied as explained in problems a and b below, pages 654-655. #### Scattering matrix of a junction #### Definition To define accurately the waves incident on a waveguide junction and those reflected (or scattered) from it, some reference locations must be chosen in the waveguides. These locations are called the ports* of the junction. In a waveguide that can support several propagating modes, there should be as many ports as there are modes. (These ports may or may not have the same physical location in the multimode waveguide.) At each port i of a junction, consider the amplitude a_i of the incident wave, traveling toward the junction, and the amplitude b_i of the scattered wave, traveling away from it. As a consequence of Maxwell's equations, there exists a linear relation between the b_i and the a_i . Considering the a_i (where i varies from 1 to n) as the components of a vector \boldsymbol{a} and the b_i as the components of a vector \boldsymbol{b} , this relation can be expressed by $$b = Sa$$ where $S = (s_{ij})$ is an $n \times n$ matrix called the scattering matrix of the junction. The s_{ii} is the reflection coefficient looking into port i and s_{ij} is the transmission coefficient from j to i, all other ports being terminated in matching impedances. # **Properties** For a reciprocal junction, the transmission coefficient from i to j equals that from j to i; the matrix \bf{S} is symmetrical, $$S = \tilde{S}$$ where $\tilde{\mathbf{S}}$ denotes the transpose of \mathbf{S} . ^{*} At lower frequencies, for a network connecting transmission lines, a port is a terminal pair. ## Scattering matrix of a junction continued The total power incident on the junction is $$|\sigma|^2 = \sum_{i=1}^{i=n} |a_i|^2$$ The total power reflected is $$|b|^2 = \sum_{i=1}^{i=n} |b_i|^2$$ For a lossless junction, these two powers are equal, $$|a|^2 = |b|^2$$ This implies that the matrix **S** is unitary (see page 1092): $$S^{\dagger} = S^{-1}$$ For a passive junction with losses, $|\boldsymbol{b}|^2 < |\boldsymbol{a}|^2$ and hence the matrix $1 - \mathbf{SS}^{\dagger}$ is definite positive (see page 1094). #### Change of terminal plane If the port in arm i is moved away from the junction by ϕ_i electrical radians, the scattering matrix becomes $$\mathbf{S}' = \Phi \mathbf{S} \Phi \tag{5}$$ where $$\Phi = \begin{bmatrix} \exp(-j\phi_1) & 0 & 0 & 0 & \dots & \\ 0 & \exp(-j\phi_2) & 0 & 0 & \dots & \\ 0 & 0 & \exp(-j\phi_3) & 0 & \dots & \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \end{bmatrix}$$ (6) ## Two-port junctions The two-port junction includes the case of an obstacle or discontinuity placed in a waveguide as well as that of two essentially different waveguides connected to each other. # Two-port junctions continued If reciprocity applies, the scattering matrix $$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \tag{7}$$ is symmetrical: $$s_{21} = s_{12}$$ For a lossless junction, the scattering coefficients can be expressed by $$s_{11} = + \tanh (u/2) \exp (-2j\alpha)$$ $$s_{22} = - \tanh (u/2) \exp (-2j\beta)$$ $$s_{12} = + \operatorname{sech} (u/2) \exp [-j(\alpha + \beta)]$$ (8) in terms of three real parameters, v, α , and β . This corresponds to the representation of the junction by an ideal transformer with transformer ratio $n = \exp(-u/2)$, of hyperbolic amplitude u, placed between two sections of transmission line with electrical lengths α and β , respectively. The quantity $-20 \log_{10} |s_{12}|$ is the insertion loss. # Transformation matrix For the purpose of finding the effect of successive obstacles in a waveguide or of combining two-port junctions placed in cascade, it is convenient to introduce the wave transformation matrix **T**. This matrix T relates the traveling waves on one side of the junction to those on the other side. Using the notations of Fig. 1, $$\begin{bmatrix} A_1 \\ B_1 \end{bmatrix} = \mathbf{7} \begin{bmatrix} A_2 \\ B_2 \end{bmatrix}$$ (9) The 2×2 transformation matrix **T** may be deduced from the scattering matrix **S** Fig. 1—Convention for wave transformation matrix T. $$\mathbf{7} = \frac{1}{s_{21}} \begin{bmatrix} 1 & -s_{22} \\ s_{-} & -\det \mathbf{S} \end{bmatrix}$$ (10) ## Transformation matrix continued Conversely, if $T = (t_{cl})$, the scattering matrix is, $$\mathbf{S} = \frac{1}{t_{11}} \begin{bmatrix} t_{21} & \det \mathbf{T} \\ 1 & -t_{12} \end{bmatrix} \tag{11}$$ When reciprocity applies to the junction, $$\det \mathbf{T} = s_{12}/s_{21} \tag{12}$$ becomes unity. The input reflection coefficient $W' = B_1/A_1$ is related to the load reflection coefficient $W = B_2/A_2$ by $$W' = \frac{t_{21} + t_{22} W}{t_{11} + t_{12} W}$$ $$= s_{11} + \frac{s^{2}_{12} W}{1 - s_{22} W}$$ (13) $$= \frac{s_{11} + \frac{s^{2}_{12} W}{1 - s_{22} W}}{1 + \frac{s^{2}_{12} W}{1 - s_{22} W}}$$ (14) Fig. 2—Junctions in cascade. When a number of junctions 1, 2, 3, are placed in cascade (Fig. 2), the output port of each of them being the input port of the following one, the resulting junction has the transformation matrix #### $T = T_1T_2T_3$ If n similar junctions with transformation matrix \mathbf{T} are cascaded, the resulting transformation matrix is \mathbf{T}^n . Letting trace $T = t_{11} + t_{22} = 2 \cos \theta$ $$\mathbf{T}^{n} = \frac{\sin n \, \theta}{\sin \theta} \, \mathbf{T} - \frac{\sin (n-1) \, \theta}{\sin \theta} \tag{15}$$ (see page 1097). # Measurement of the scattering matrix * A slotted line is placed on side I of the junction (see Fig. 3). For any load with ^{*} G. A. Deschamps "Determination of the Reflection Coefficients and Insertion Loss of a Waveguide Junction," Journal of Applied Physics, vol. 24, pp. 1046–1050; August, 1953; Also, Electrical Communication, vol. 31, pp. 57–62; March, 1954. # Measurement of the scattering matrix continued reflection coefficient W, placed on side 2, the input reflection coefficient W' can be measured. W' is called the *image* of W. The images of various known loads can be plotted on a reflection chart and the scattering coefficients deduced by the following procedures. - **a.** With a matched load, one obtains directly s_{11} plotted as 0' on Fig. 4. O' is called the iconocenter. - **b.** With a sliding short-circuit on side 2, or any variable reactive load, the input reflection coefficient describes a circle Γ' , image of the unit circle Γ . This circle can be deduced from 3 or more measurements. Let C be its center and R its radius (Fig. 4). The magnitudes of the scattering coefficients result: $$\begin{vmatrix} |s_{11}|| = OO' \\ |s_{22}|| = O'C/R \\ |s_{12}|^2 = R (1 - |s_{22}|^2) \end{vmatrix}$$ (16) detector $$\begin{vmatrix} |s_{11}|| & |s_{12}|| |s_{12}$$ The phases of these coefficients all follow from one more measurement Fig. 3—Slotted-line set-up for scatteringmatrix measurement. **c.** The input reflection coefficient is measured with an open-circuit load placed at port 2, or for a short-circuit placed a quarter-wave away from it. This may be one of the measurements taken in step b. It gives the point P', image of the point P(W = +1.) A point P'' is constructed by projecting P' through O' onto Q on Γ' , then Q through C onto P'' on Γ' (Fig. 5). Then, Fig. 4—Construction for the magnitudes of the scattering coefficients. Fig. 5—Construction for the phases of the scattering coefficients. # Measurement of the scattering matrix continued Phase of $$s_{11} = \text{angle (OP, OO')}$$ Phase of $s_{22} = \text{angle (O'C, CP'')}$ Phase of $s_{12} = \frac{1}{2}$ angle (OP, CP'') **d.** When no matched load is available, as was assumed in a, the iconocenter O' may be obtained as follows. Let P_1 , P_2 , P_3 , P_4 represent the input reflection coefficients when a short-circuit is placed successively at port 2 and at distances $\lambda/8$, $\lambda/4$, and $3\lambda/8$ from it. These points define the circle Γ' (as in b) and the intersection I (the crossover point) of P_1P_3 and P_2P_4 may be used to find O': draw perpendiculars to CI at points C and I up to their intersections with Γ' at C' and I'; then O' is the intersection of CI and C'I' (see Fig. 6). Fig. 6—Determination of ${\cal O}'$ from 4 measurements. Fig. 7—Use of circles Γ'' and Γ' for determination of 0'. The point P_3 is identical to P' in c above, hence the 4 measurements give the complete scattering matrix by constructing P'' and applying (16) and (17). - **e.** The construction of 0' in d above is valid with any sliding load not necessarily reactive. Taking a load with small standing-wave ratio increases the accuracy of the construction. - **f.** When exact measurements of the displacements of the sliding load are difficult to make; for instance if the wavelength is very short; the point O' may be obtained as follows. Using a reactive load, construct the circle Γ' as in b
above, then using a sliding load as in e above, construct a circle Γ'' , (see Fig. 7). The iconocenter O' is the hyperbolic midpoint of the # Measurement of the scattering matrix continued diameter of Γ'' (through C) with respect to Γ' . It may be constructed by means of the hyperbolic protractor* (page 653), or by means of the dotted-line construction (Fig. 7). # Geometry of reflection charts The following brief outline is complemented by the section on hyperbolic trigonometry on pp. 1050 to 1055. ## Conformal chart A reflection coefficient can be represented by a point in a plane just as any complex number is represented on the Argand diagram. The passive loads, $|W| \leq 1$, are represented by points inside a unit circle Γ . Inside this circle, the lines of constant resistance and reactance may be drawn (Smith chart) or the lines of constant magnitude and phase of the impedance (Carter chart). The transformation from a load reflection coefficient W to its image W' through a two-port junction, is bilinear, formulas (13) or (14). On the reflection chart, this transformation maps circles into circles and preserves the angle between curves and the cross ratio of 4 points: if $$[W_1, W_2, W_3, W_4] = \frac{W_1 - W_3}{W_1 - W_4} : \frac{W_2 - W_3}{W_2 - W_4}$$ denotes the cross ratio of 4 reflection coefficients, W_1 , W_2 , W_3 , and W_4 , then $$[W'_{1}, W'_{2}, W'_{3}, W'_{4}] = [W_{1}, W_{2}, W_{3}, W_{4}]$$ The transformation through a lossless junction preserves also the unit circle Γ and therefore leaves invariant the hyperbolic distance defined on p. 1050. The hyperbolic distance to the origin of the chart is the mismatch, i.e., the standing-wave ratio expressed in decibels: it may be evaluated by means of the proper graduation on the radial arm of the Smith chart. For two arbitrary points W_1 , W_2 , the hyperbolic distance between them may be interpreted as the mismatch that results from the load W_2 seen through a lossless network that matches W_1 to the input waveguide. ^{*} G. A. Deschamps, "Hyperbolic Protractor for Microwave Impedance Measurements and Other Purposes," International Telephone and Telegraph Corporation, 67 Broad Street, New York 4, N. Y.; 1953. ## Geometry of reflection charts continued ## **Projective chart** The reflection coefficient W is represented by the point \overline{W} (Fig. 8) on the same radius of the circle Γ but at a distance $$O\overline{W} = \frac{2OW}{1 + OW^2} \tag{18}$$ from the origin. This is equivalent to using the standing-wave ratio squared instead of the direct ratio: $$\frac{\overline{W}J}{\overline{W}I} = \left(\frac{WJ}{WI}\right)^2 \tag{19}$$ Fig. 8—Representation of a reflection coefficient by W on a Smith chart and W on the projective chart. The transformation (13),(14), when the junction is lossless, is represented on this chart by a projective transformation; i.e., one that maps straight lines into straight lines and preserves the cross ratio of four points on a straight line. It therefore preserves the hyperbolic distance defined on p. 1050. # Evaluation of hyperbolic distance On the projective chart, the hyperbolic distance $\langle AB \rangle$ between two points A and B inside the circle Γ can be evaluated by means of a hyperbolic protractor as shown in Fig. 9. The line AB is extended to its intersections I and J with Γ . The protractor is placed so that the sides OX,OY of the right angle go through I and J. (This can be done in many ways but does not affect the result.) The numbers read on the radial lines of the protractor going through A and B respectively, are added if A and B are on opposite sides of the radial line marked O; subtracted otherwise: This result divided by A is the distance AB. In Fig. 9, for instance, $$\langle AB \rangle = \frac{1}{2} (12 + 4) = 8 \text{ decibels.}$$ # Evaluation of hyperbolic distance continued Fig. 9—Definition and evaluation of hyperbolic distance (AB) using hyperbolic protractor. # Problem a A slotted line with 100-ohm characteristic impedance is used to make measurements on a 60-ohm coaxial line. The transition acts as an ideal transformer. Find the reflection coefficient W of an obstacle placed in the # Problem a continued coaxial line, knowing that it produces a reflection coefficient $$W' = 0.5 \exp (j\pi/2)$$ in the slotted line. A match in the coaxial line appears in the slotted line as a normalized impedance of 0.6, hence the mismatch (standing-wave ratio in decibels) is 4.5 decibels. The corresponding point \overline{O}' is plotted on the projective chart as in Fig. 10 at the distance $\langle O\overline{O}' \rangle = 4.5$. (On the Smith chart drawn inside the same unit circle Γ , the point would be O'.) The point \overline{W}' representing the unknown load is plotted at the hyperbolic distance $$20 \log_{10} \frac{1 + 0.5}{1 - 0.5} = 9.5 \text{ decibels}$$ from the origin in the direction + 90°. The hyperbolic distance $$\langle \overline{O}' \overline{W}' \rangle = 11 \text{ decibels}$$ is measured with the protractor. This is the mismatch produced by the obstacle in the coaxial line. It corresponds to a magnitude of the reflection coefficient of 0.56. Fig. 10—Measurement of reflection coefficient with a mismatched slotted line. The phase of this reflection coefficient is the elliptic angle $\langle \overline{O}'P, \overline{O}\overline{W}' \rangle$ It is evaluated as explained on p. 1051: extend QO' up to R on $\,\Gamma\,$ and measure the arc $$PR = 56^{\circ}$$. The answer is: $$W = 0.56 / 56^{\circ}$$ # Problem b If the transition between the slotted line and the waveguide is not an ideal transformer as in problem a, its properties may be found by the method described on p. 650. In particular, if the transition has no losses (the circle ## Problem b continued Γ' coincides with Γ), the point O' may be found as in a, d, e, or f above, the point P' as in c or d above, and this completes the calibration. For any load placed in the waveguide and producing the reflection coefficient W' in the slotted line, the corrected standing-wave ratio in decibels is the hyperbolic distance [O'W']. This is evaluated by constructing $\overline{O',W'}$ on the projective chart and measuring $\langle \overline{O'W'} \rangle$ with the protractor. The phase angle is the elliptic angle $\langle \overline{O'P',\overline{O'W'}} \rangle$ (see page 1051). # Problem c A section of coaxial line 90 electrical degrees in length and with 100-ohm characteristic impedance is inserted between a 50-ohm coaxial line on one side and a 70-ohm coaxial line on the other (Fig. 11). Find the transformer ratio $n = \exp(-v/2)$ and the electrical lengths α , β of the representation (8), p. 648. The two discontinuities are assumed to act as ideal transformers with hyperbolic amplitudes $$20 \log_{10} \frac{100}{50} = 6 \text{ decibels} = 0.67 \text{ neper}$$ and $$20 \log_{10} \frac{70}{100} = -3.1 \text{ decibels} = -0.36 \text{ neper}$$ ## Problem c continued The characteristic polygon* on the projective chart is a triangle OAO' with right angle A; hence, $u = \langle OO' \rangle$ is given by $$\cosh u = \cosh 0.69 \cosh 0.36$$ $$u = 0.78$$ neper = 6.8 decibels $$n = \exp(-u/2) = 1/1.48$$ The length of line α and β can be deduced from evaluating the elliptic angles $\langle OA,OO'\rangle = a$ and $\langle O'A,O'O\rangle = b$ $$\tan a = \frac{\tanh 0.36}{\sinh 0.69} = 0.46$$ $$a = 24^{\circ}.7$$ Fig. 12-Equivalent circuit for Fig. 11. $$tan b = \frac{tanh 0.69}{sinh 0.36} = 1.62$$ $$b = 58^{\circ}.4$$ $$\alpha = \frac{1}{3} (360^{\circ} - 24^{\circ}.7) = 167.6^{\circ}$$ $$\beta = \frac{1}{2} (180^{\circ} - 58^{\circ}.4) = 60.8^{\circ}$$ The resulting equivalent network is shown in Fig. 12. It could also have been obtained by geometrical evaluation of the distance $\langle OO' \rangle$ with the hyperbolic protractor and of the elliptic angles a and b by constructions as described on pp. 653 and 1051. # Correspondances with current, voltage, and impedance viewpoint # Normalized current and voltage In a waveguide, at a point where the amplitudes of the waves traveling in the positive and negative directions are respectively a and b, the normalized voltage v and the normalized current i are defined by $$v = a + b$$ $$i = a - b$$ (20) ^{*} G. A. Deschamps, "Hyperbolic Protractor for Microwave Impedance Measurements and Other Purposes," International Telephone and Telegraph Corporation, New York 4, N. Y.; 1953; pp. 15–16 and p. 41. # Correspondances with current, voltage, # and impedance viewpoint continued The net power flow at that point in the positive direction is $$|a|^2 - |b|^2 = re vi^*$$ ## Current and voltage not normalized A more-general definition for current and voltage becomes possible when a meaning has been assigned to the characteristic impedance Z_0 of the waveguide $$V = vZ_0^{1/2}$$ $$I = iY_0^{1/2}$$ (22) where $Y_0 = 1/Z_0$ is the characteristic admittance and v and i are the normalized values defined above. Conversely, if by some convention the voltage (or the current) has been defined, a characteristic impedance will result from (22). This is the case for a two-conductor waveguide supporting the TEM mode: the characteristic impedance is the ratio of voltage to current in a traveling wave. If V and I are the voltage and the current at a point in a waveguide of characteristic impedance $Z_0 = 1/Y_0$, the amplitudes of the waves traveling in both directions at that point are $$\alpha = \frac{1}{2} (VY_0^{1/2} + IZ_0^{1/2})$$ $$b = \frac{1}{2} (VY_0^{1/2} - IZ_0^{1/2})$$ (23) # Normalized impedance and admittance At a point in a waveguide, the normalized impedance is Z = v/i and the normalized admittance is the inverse, Y = 1/Z. They are related to the reflection coefficient W = b/a by $$Z = (1 + W)/(1 - W)$$ $$Y = (1 - W)/(1 + W)$$ (24) hence $$W = (1 - Y)/(1 + Y) = (Z - 1)/(Z + 1)$$ (25) #
Correspondances with current, voltage, ## and impedance viewpoint continued ## Impedance and admittance matrix of a junction The \boldsymbol{Z} and \boldsymbol{Y} matrixes of a junction are defined in term of the scattering matrix \boldsymbol{S} by $$Y = (1 - S) (1 + S)^{-1}$$ $$Z = (1 + S) (1 - S)^{-1}$$ (26) The matrixes Y and Z do not always exist since S may have eigenvalues +1 or -1, which means that det (1 - S) or det (1 + S) may be zero. Conversely, $$S = (I - Y) (I + Y)^{-1} = (Z - I) (Z + I)^{-1}$$ (27) These formulas may be used as definitions for the scattering matrix of lumped-constant networks with n terminal pairs. This is equivalent to considering the network as a junction between n transmission lines of unit characteristic impedance. If the network or the junction is reciprocal, \boldsymbol{Y} and \boldsymbol{Z} are purely imaginary. For a two-port junction, (26) becomes $$\mathbf{Y} = \frac{1-\mathbf{S}}{1+\mathbf{S}} = \frac{1}{\det(1+\mathbf{S})} \begin{bmatrix} 1 - \det \mathbf{S} + (s_{22} - s_{11}) & -2s_{12} \\ -2s_{21} & 1 - \det \mathbf{S} - (s_{22} - s_{11}) \end{bmatrix}$$ (28) and $$Z = \frac{1+S}{1-S} = \frac{1}{\det(1-S)} \begin{bmatrix} 1 - \det S - (s_{22} - s_{11}) & 2s_{12} \\ 2s_{21} & 1 - \det S + (s_{22} - s_{11}) \end{bmatrix}$$ (29) $$\det (\mathbf{1} + \mathbf{S}) = 1 + \operatorname{tr} \mathbf{S} + \det \mathbf{S} = 1 + (s_{11} + s_{22}) + (s_{11}s_{22} - s_{12})$$ $$\det (\mathbf{1} - \mathbf{S}) = 1 - \operatorname{tr} \mathbf{S} + \det \mathbf{S} = 1 - (s_{11} + s_{22}) + (s_{11}s_{22} - s_{12}^2)$$ The matrixes Y and Z relate normalized voltages and currents at both ports (Fig. 13) as follows # Correspondances with current, voltage, # and impedance viewpoint continued $$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \mathbf{Z} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$ $$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \mathbf{Y} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$ Fig. 13—Sign convention for defining the impedance and admittance of a 2-port junction. ## **Transformation matrix** A transformation matrix useful for composing two-port junctions in cascade relates the voltage and current on one side of the junction to the same quantities on the other side. With the notation in Fig. 14, $$\begin{bmatrix} v' \\ i' \end{bmatrix} = U \begin{bmatrix} v \\ i \end{bmatrix}$$ The matrix **U** sometimes called the ABCD matrix, has the same properties as **T** described above. Fig. 14—Sign convention for voltages and currents related by the transformation matrix. For a series element with normalized impedance Z, $$\boldsymbol{U} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix}$$ and for a shunt element with normalized admittance Y, $$\boldsymbol{U} = \begin{bmatrix} 1 & 0 \\ & \\ Y & 1 \end{bmatrix}$$ A product of matrixes of these types gives the transformation matrix for any ladder network. For the shunt-element Y, the scattering matrix is $$\mathbf{S} = \frac{1}{2+Y} \begin{bmatrix} -Y & 2\\ 2 & -Y \end{bmatrix} \tag{31}$$ ## Transformation matrix continued hence, $$\begin{cases} s_{11} = s_{22} \\ s_{12} = 1 + s_{11} \end{cases}$$ (32) For the series-element Z, the scattering matrix is $$\mathbf{S} = \frac{1}{2+Z} \begin{bmatrix} Z & 2 \\ 2 & Z \end{bmatrix} \tag{33}$$ hence, $$\begin{vmatrix} s_{11} = s_{22} \\ s_{12} = 1 - s_{11} \end{vmatrix}$$ (34) Relations (32) and (34) are characteristic, respectively, of a shunt and a series obstacle in a waveguide. The matrix 7 can be deduced from U and vice versa: $$7 = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} U \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$ $$= \frac{1}{2} \begin{bmatrix} u_{11} + u_{12} + u_{21} + u_{22} & u_{11} - u_{12} + u_{21} - u_{22} \\ u_{11} + u_{12} - u_{21} - u_{22} & u_{11} - u_{12} - u_{21} + u_{22} \end{bmatrix}$$ (35) A similar formula will transform T into U, since $$U = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{T} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$ $$(36)$$ # The elementary dipole ## Field intensity* The elementary dipole forms the basis for many antenna computations. Since dipole theory assumes an antenna with current of constant magnitude and phase throughout its length, approximations to the elementary dipole are realized in practice only for antennas shorter than one-tenth wavelength. The theory can be applied directly to a loop whose circumference is less than one-tenth wavelength, thus forming a magnetic dipole. For larger antennas, the theory is applied by assuming the antenna to consist of a large number of infinitesimal dipoles with differences between individual dipoles of space position, polarization, current magnitude, and phase corresponding to the distribution of these parameters in the actual antenna. Field-intensity equations for large antennas are then developed by integrating or otherwise summing the field vectors of the many elementary dipoles. The outline below concerns electric dipoles. It also can be applied to magnetic dipoles by installing the loop perpendicular to the PO line at the center of the sphere in Fig. 1. In this case, vector h becomes ϵ , the electric field; ϵ_t becomes the magnetic tangential field; and ϵ_r becomes the radial magnetic field. Fig. 1 — Electric and magnetic components in spherical coordinates for electric dipoles. In the case of a magnetic dipole, the table, Fig. 2, showing variations of the field in the vicinity of the dipole, can also be used. For electric dipoles, Fig. 1 indicates the electric and magnetic field components in spherical coordinates with positive values shown by the arrows. ^{*} Based on R. Mesny, "Radio-Electricité Générale," Etienne Chiron, Paris, France; 1935. # The elementary dipole continued $$r=$$ distance OM $\omega=2\pi f$ $\theta=$ angle POM measured from P toward M $\alpha=\frac{2\pi}{\lambda}$ $I=$ current in dipole $\alpha=0$ c = velocity of light (see page 35) $\alpha=0$ The following equations expressed in meter-kilogram-second units (in vacuum) result: $$\epsilon_{r} = -\frac{30l\lambda I}{\pi} \frac{\cos \theta}{r^{8}} (\cos v - \alpha r \sin v)$$ $$\epsilon_{t} = +\frac{30l\lambda I}{2\pi} \frac{\sin \theta}{r^{3}} (\cos v - \alpha r \sin v - \alpha^{2} r^{2} \cos v)$$ $$h = +\frac{1}{4\pi} II \frac{\sin \theta}{r^{2}} (\sin v - \alpha r \cos v)$$ (1) Fig. 2-Variations of field in the vicinity of a dipole. | r/\lambda | 1/α r | A, | φr | A ₁ | φι | Ah | ϕ_{h} | |-----------|--------------|-------|-------|----------------|-------------|-------|------------| | 0.01 | 150 | 4.000 | 00. | 4010 | 60 4 | 250 | 200 4 | | 0.01 | 15.9 | 4,028 | 3°.6 | 4,012 | 3°.6 | 253 | 93°.6 | | 0.02 | 7.96 | 508 | 7°.2 | 500 | 7°.3 | 64.2 | 97°.2 | | 0.04 | 3.98 | 65 | 14°.1 | 61 | 15°.0 | 16.4 | 104°.1 | | 0.06 | 2.65 | 19.9 | 20°.7 | 17.5 | 23°.8 | 7.67 | 110°.7 | | 0.08 | 1.99 | 8.86 | 26°.7 | 7.12 | 33°.9 | 4.45 | 116°.7 | | 0.10 | 1.59 | 4.76 | 32°.1 | 3.52 | 45°.1 | 2.99 | 122°.1 | | 0.15 | 1.06 | 1.66 | 42°.3 | 1.14 | 83°.1 | 1.56 | 132°.3 | | 0.20 | 0.80 | 0.81 | 51°.5 | 0.70 | 114°.0 | 1.02 | 141°.5 | | 0.25 | 0.64 | 0.47 | 57°.5 | 0.55 | 133°.1 | 0.75 | 147°.5 | | 0.30 | 0.56 | 0.32 | 62°.0 | 0.48 | 143°.0 | 0.60 | 152°.0 | | 0.35 | 0.45 | 0.23 | 65°.3 | 0.42 | 150°.1 | 0.50 | 155°.3 | | 0.40 | 0.40 | 0.17 | 68°.3 | 0.37 | 154°.7 | 0.43 | 158°.3 | | 0.45 | 0.35 | 0.134 | 70°.5 | 0.34 | 158°.0 | 0.38 | 160°.5 | | 0.50 | 0.33 | 0.106 | 72°.3 | 0.30 | 160°.4 | 0.334 | 162°.3 | | 0.60 | 0.265 | 0.073 | 75°.1 | 0.26 | 164°.1 | 0.275 | 165°.1 | | 0.70 | 0.228 | 0.053 | 77°.1 | 0.22 | 166°.5 | 0.234 | 167°.1 | | 0.80 | 0.199 | 0.041 | 78°.7 | 0.196 | 168°.3 | 0.203 | 168°.7 | | 0.90 | 0.177 | 0.032 | 80°.0 | 0.175 | 169°.7 | 0.180 | 170°.0 | | 1.00 | 0.159 | 0.026 | 80°.9 | 0.157 | 170°.7 | 0.161 | 170°.9 | | 1.20 | 0.133 | 0.018 | 82°.4 | 0.132 | 172°.3 | 0.134 | 172°.4 | | 1.40 | 0.114 | 0.013 | 83°.5 | 0.114 | 173°.5 | 0.114 | 173°.5 | | 1.60 | 0.100 | 0.010 | 84°.3 | 0.100 | 174°.3 | 0.100 | 174°.3 | | 1.80 | 0.088 | 0.008 | 84°.9 | 0.088 | 174°.9 | 0.088 | 174°.9 | | 2.00 | 0.080 | 0.006 | 85°.4 | 0.080 | 175°.4 | 0.080 | 175°.4 | | 2.50 | 0.064 | 0.004 | 86°.4 | 0.064 | 176°.4 | 0.064 | 176°.4 | | 5.00 | 0.032 | 0.001 | 88°.2 | 0.032 | 178°.2 | 0.032 | 178°.2 | A_r = coefficient for radial electric field A_t = coefficient for tangential electric $A_{\hbar}=$ coefficient for magnetic field- ϕ_{r} , ϕ_{t} , $\phi_{\hbar}=$ phase angles corresponding to coefficients # The elementary dipole continued These formulas are valid for the elementary dipole at distances that are large compared with the dimensions of the dipole. Length of the dipole must be small with respect to the wavelength, say $l/\lambda < 0.1$. The formulas are for a dipole in free space. If the dipole is placed vertically on a plane of infinite conductivity, its image should be taken into account, thus doubling the above values. ### Field at areat distance When distance r exceeds five wavelengths, as is generally the case in radio applications, the radial electric field ϵ_r becomes negligible with respect to the tangential field and $$\epsilon_{r} = 0$$ $$\epsilon_{t} = -\frac{60\pi II}{\lambda r} \sin \theta \cos (\omega t - \alpha r)$$ $$h = +\frac{\epsilon_{t}}{120\pi}$$ (2) #### Field at short distance In the vicinity of the dipole $(r/\lambda < 0.01)$, αr is very small and only the first terms between parentheses in (1) remain. The ratio of the radial and tangential field is then $$\frac{\epsilon_r}{\epsilon_t} = -2 \cot \theta$$ Hence, the radial field at short distance has a magnitude of the same order as the tangential field. These two fields are in opposition. Further, the ratio of the magnetic and electric tangential field is $$\frac{h}{\epsilon_t} = \frac{r \tan v}{60\lambda}$$ The magnitude of the magnetic field at short distances is, therefore, extremely small with respect to that of the tangential electric
field, relative to their relationship at great distances. The two fields are in quadrature. Thus, at short distances, the effect of the dipole on an open circuit is much greater than on a closed circuit as compared with the effect at remote points. # The elementary dipole continued #### Field at intermediate distance At intermediate distance, say between 0.01 and 5.0 wavelengths, one should take into account all the terms of the equations (1). This case occurs, for instance, when studying reactions between adjacent antennas. To calculate the fields, it is convenient to transform the equations as follows: $$\begin{aligned} \epsilon_r &= -60\alpha^2 I \cos\theta \, A_r \cos(v + \phi_r) \\ \epsilon_t &= +30\alpha^2 I \sin\theta \, A_t \cos(v + \phi_t) \\ h &= -(1/4\pi)\alpha^2 I \sin\theta \, A_h \cos(v + \phi_h) \end{aligned} \tag{3}$$ whara $$A_{r} = \frac{\sqrt{1 + (\alpha r)^{2}}}{(\alpha r)^{3}} \qquad \text{tan } \phi_{r} = \alpha r$$ $$A_{t} = \frac{\sqrt{1 - (\alpha r)^{2} + (\alpha r)^{4}}}{(\alpha r)^{3}} \qquad \text{cot } \phi_{t} = \frac{1}{\alpha r} - \alpha r$$ $$A_{h} = \frac{\sqrt{1 + (\alpha r)^{2}}}{(\alpha r)^{2}} \qquad \text{cot } \phi_{h} = -\alpha r$$ $$(4)$$ Values of A's and ϕ 's are given in Fig. 2 as a function of the ratio between the distance r and the wavelength λ . The second column contains values of $1/\alpha r$ that would apply if the fields ϵ_t and h behaved as at great distances. # Linear polarization An electromagnetic wave is linearly polarized when the electric field lies wholly in one plane containing the direction of propagation. **Horizontal polarization:** Is the case where the electric field lies in a plane parallel to the earth's surface. **Vertical polarization:** Is the case where the electric field lies in a plane perpendicular to the earth's surface. E plane: Of an antenna is the plane in which the electric field lies. The principal E plane of an antenna is the E plane that also contains the direction of maximum radiation. H plane: Of an antenna is the plane in which the magnetic field lies. The H plane is normal to the E plane. The principal H plane of an antenna is the H plane that also contains the direction of maximum radiation. # Elliptical and circular polarization #### Definitions A plane electromagnetic wave, at a given frequency, is elliptically polarized when the extremity of the electric vector describes an ellipse in a plane perpendicular to the direction of propagation, making one complete revolution during one period of the wave. More generally, any field vector, electric, magnetic, or other, is elliptically polarized if it's extemity describes an ellipse. Two perpendicular axes OX and OY are chosen for reference in the plane of the polarization ellipse, Fig. 3A. This plane is usually perpendicular to the direction of propagation. At a given frequency, the field components along these axes are represented by two complex numbers $$X = |X| \exp j\varphi_1$$ $$Y = |Y| \exp j\varphi_2$$ (5) Amplitude of elliptically polarized field: $E^2 = |X|^2 + |Y|^2$, so that the power density in free space for a plane wave is $E^2/240\pi$. **Axial ratio:** The ratio r of the minor to the major axis of the polarization ellipse = OB/OA. Ellipticity angle: $\alpha = \pm \tan^{-1} r$, where the sign is taken according to the sense of rotation. Orientation angle: The angle β between OX and the major axis of the polarization ellipse (indeterminate for circular polarization). **Polarization of receiving antenna:** For plane waves incident in a given direction, the polarization of the incident wave that, for a given amplitude, induces the maximum voltage across the antenna terminals. If this voltage is expressed as hE, then h is the effective length of the antenna for the given direction. **Polarization ratio:** The ratio P=Y/X, a complex number with phase $\varphi=\varphi_2-\varphi_1$ and magnitude tan $\gamma=\mid Y\mid /\mid X\mid$. Relative power received by an elliptically polarized receiving antenna as it is rotated in a plane normal to the direction of propagation of an elliptically polarized wave is given by $$P_r = K \frac{(1 \pm r_1 r_2)^2 + (r_1 \pm r_2)^2 + (1 - r_1^2) (1 - r_2^2) \cos 2\theta}{(1 + r_2^2) (1 + r_2^2)}$$ (6) #### where K = constant r_1 = axial ratio of elliptically polarized wave r_2 = axial ratio of elliptically polarized antenna heta= angle between the direction of maximum amplitude in the incident wave and the direction of maximum amplitude of the elliptically polarized antenna The + sign is to be used if both the receiving and transmitting antennas produce the same hand of polarization. The (-) sign is to be used when one is left-handed and the other right-handed. **State of polarization** is specified either by the polarization ratio P (angles γ and φ) or by the shape, orientation, and sense of the polarization ellipse (angles α and β). #### Polarization charts Problems on polarization can be solved by means of charts similar to those used for reflection coefficients and impedances.* These charts may be Fig. 3—Polarization ellipse at A and representation at B of a state of polarization by a point on a sphere. related to the representation introduced in optics by H. Poincaré: The angles 2α and 2β are taken as the latitude and longitude of a point on a ^{*} V. H. Rumsey, G. A. Deschamps, M. L. Kales, and J. I. Bohnert, "Techniques for Handling Elliptically Polarized Waves with Special Reference to Antennas," Proceedings of the IRE, vol. 39, pp. 533–552; May, 1951. sphere, Fig. 3B. Each state of polarization is thus represented by a single point on the sphere and vice versa. Linear polarizations correspond to points on the equator and the two circular polarizations respectively to the poles C and C'. If X represents linear polarization along the reference axis, M some arbitrary polarization, and L the linear polarization along the major axis of the ellipse, the spherical triangle XLM has the following properties $$XL = 2\beta$$ $$LM = 2\alpha$$ $$XM = 2\gamma$$ $$L = 90^{\circ}$$ $$X = \omega$$ From these come the following relations which convert from γ, φ (polarization ratio) to α, β (ellipse parameters) or vice versa. These relations can be solved graphically on a chart (Fig. 4) that is a map of the sphere obtained by projection from pole C' on the plane of the equator.* The circles for constant φ and constant γ are shown. β is read on the rim and α can be obtained by rotating the point about the center of the chart to bring it on the γ scale on the vertical diameter. A radial arm bearing the same graduations (standing-wave ratio and decibels) as on the Smith chart can also be used. Fig. 4 shows only the map of one hemisphere. Polarizations of the opposite sense can be plotted by considering the projection as taken from the pole C. **Example:** Assume an axial ratio of 0.5 is measured with an angle of 15 degrees between the maximum field and the reference axis. The intersection M of the radial line $\beta=15^{\circ}$ and a circle corresponding to $\alpha=26.5^{\circ}$ (since tan $26.5^{\circ}=0.5$) represents the measured polarization. This polarization ^{*} This is a standard geographic projection. Chart H.O. Misc., No. 7736-1 having a 20-centimeter radius, may be obtained at nominal charge from the United States Navy Department Hydrographic Office, Washington 25, D. C. tion can be considered to be produced by two similar radiators normal to each other, the ratio of whose currents is tan $\gamma=0.56$ (since the point lies on the $\gamma=29^{\circ}$ arc); the current in the radiator along the reference axis is larger and $\varphi=69^{\circ}$ ahead of the current in the other radiator. Voltage induced by wave of arbitrary polarization: If the polarization of Fig. 4—Projection used in solving polarization problems. The dashed lines and point M are the construction for the example given in the text. the antenna is represented by the point M on the Poincaré sphere and that of the incident wave by N, the voltage induced is $$hE\cos\delta$$ (8) where 2δ is the angular distance MN. On Fig. 4, the angle 2δ can be obtained by the following construction. Plot the points M and N on a transparent overlay, rotate the overlay about the center 0 until the points M and N fall on the same φ circle, and read the difference between the γ 's. ## Measurement of wave polarization By comparing the signals received by a dipole oriented successively in the directions X and Y, the ratio |Y|/|X| representing the polarization of the wave is found. On Fig. 4, the point M is on a known γ circle. To obtain another locus, compare the signals received with the same dipole oriented at 45° then 135° from OX. This gives a second circle that can be constructed as the first one with respect to points XY, then rotated by 90° by means of an overlay. If many measurements are to be taken, the two systems of γ circles could be drawn in advance. This measurement leaves a sense ambiguity that can be resolved only by using receiving antennas with nonlinear polarization.* # **Vertical radiators** # Field intensity from a vertically polarized antenna with base close to ground The following formula is obtained from elementary-dipole theory and is applicable to low-frequency antennas. It assumes that the earth is a perfect reflector, the antenna dimensions are small compared with λ , and the actual height does not exceed $\lambda/4$. The vertical component of electric field radiated in the ground plane, at distances so short that ground attenuation may be neglected (usually when $D < 10 \, \lambda$), is given by $$E = \frac{377 \ I \ H_e}{\lambda \ D}$$ (9) where E =field intensity in millivolts/meter ^{*}Other methods using the projective chart are described by G. A. Deschamps in "Hyperbolic
Protractor for Microwave Impedance Measurements and other Purposes," International Telephone and Telegraph Corporation, 67 Broad Street, New York 4, New York; 1953. ## Vertical radiators continued I = current at base of antenna in amperes H_e = effective height of antenna λ = wavelength in same units as H D = distance in kilometers The effective height of a grounded vertical antenna is equivalent to the height of a vertical wire producing the same field along the horizontal as the actual antenna, provided the vertical wire carries a current that is constant along its entire length and of the same value as at the base of the actual antenna. Effective height depends upon the geometry of the antenna and varies slowly with λ . For types of antennas normally used at low and medium frequencies, it is roughly one-half to two-thirds the actual height of the antenna. For certain antenna configurations effective height can be calculated by the following formulas Straight vertical antenna: $h \leq \lambda/4$ $$H_e = \frac{\lambda}{\pi \sin (2\pi h/\lambda)} \sin^2 \left(\frac{\pi h}{\lambda}\right)$$ where h = actual height Loop antenna: $A < 0.001 \lambda^2$ $H_e = 2\pi nA/\lambda$ where A = mean area per turn of loop n = number of turns #### Adcock antenna $H_e = 2\pi ab/\lambda$ where a = height of antenna b = spacing between antennas In the above formulas, if H_e is desired in meters or feet, all dimensions h, A, a, b, and λ must be in meters or feet, respectively. ## Practical vertical-tower antennas The field intensity from a single vertical tower insulated from ground and either of self-supporting or guyed construction, such as is commonly used # Vertical radiators continued for medium-frequency broadcasting, may be calculated by the following equation. This is more accurate than equation (9). Near ground level the formula is valid within the range $2\lambda < D < 10\lambda$. $$E = \frac{60 I}{D \sin (2\pi h/\lambda)} \left[\frac{\cos (2\pi \frac{h}{\lambda} \cos \theta) - \cos 2\pi \frac{h}{\lambda}}{\sin \theta} \right]$$ (10) where E = field intensity in millivolts/meter I = current at base of antenna in amperes h = height of antenna λ = wavelengths in same units as h D = distance in kilometers $\theta =$ angle from the vertical Fig. 5—Field strength as a function of angle of elevation for vertical radiators of different heights. Radiation patterns in the vertical plane for antennas of various heights are shown in Fig. 5. Field intensity along the horizontal as a function of antenna height for one kilowatt radiated is shown in Fig. 6. Both Figs. 5 and 6 assume sinusoidal distribution of current along the antenna and perfect ground conductivity. Current magnitudes for one-kilowatt power used in calculating Fig. 6 are also based on the assumption that the only resistance is the theoretical radiation resistance of a vertical wire with sinusoidal current. Since inductance and capacitance are not uniformly distributed along the tower and since current is attenuated in traversing the tower, it is impossible to obtain sinusoidal current distribution in practice. Consequently actual radiation patterns and field intensities differ from Figs. 5 and 6.* The closest approximation to sinusoidal current is found on constant-cross-section towers. Fig. 6—Field strength along the horizontal as a function of antenna height for a vertical grounded radiator with one kilowatt radiated power. In addition, antenna efficiencies vary from about 70 percent for 0.15 wavelength physical height to over 95 percent for 0.6 wavelength height. The input power must be multiplied by the efficiency to obtain the power radiated. ^{*} For information on the effect of some practical current distributions on field intensities see H. E. Gihring and G. H. Brown, "General Considerations of Tower Antennas for Broadcast Use," Proceedings of the IRE., vol. 23, pp. 311–356; April, 1935. # Vertical radiators continued Average results of measurements of impedance at the base of several actual vertical radiators, as given by Chamberlain and Lodge*, are shown in Fig. 7. * A. B. Chomberlain and W. B. Lodge, "The Broadcast Antenna," *Proceedings of the IRE*, vol. 24, pp. 11–35; January, 1936. Fig. 7—Resistance and reactance components of impedance between tower base and ground of vertical radiators as given by Chamberlain and Lodge. Solid lines show average results for 5 guyed towers; dashed lines show average results for 3 self-supporting towers. ## Vertical radiators continued For design purposes when actual resistance and current of the projected radiator are unknown, resistance values may be selected from Fig. 7 and the resulting effective current obtained from $$I_e = (W\eta/R)^{\frac{1}{2}} \tag{11}$$ where I_e = current effective in producing radiation in amperes W = watts input $\eta=$ antenna efficiency, varying from 0.70 at $h/\lambda=0.15$ to 0.95 at $h/\lambda=0.6$ R = resistance at base of antenna in ohms If I_e from (11) is substituted in (10), reasonable approximations to the field intensity at unit distances, such as one kilometer or one mile, will be obtained. The practical equivalent of a higher tower may be secured by adding a capacitance "hat" with or without tuning inductance at the top of a lower tower.* A good ground system is important with vertical-radiator antennas. It should consist of at least 120 radial wires, each one-half wavelength or longer, buried 6 to 12 inches below the surface of the soil. A ground screen of high-conductivity metal mesh, bonded to the ground system, should be used on or above the surface of the ground adjacent to the tower. # Field intensity and radiated power from antennas in free space # Isotropic radiator The power density P at a point due to the power P_t radiated by an isotropic radiator is $$P = P_t/4\pi R^2 \text{ watts/meter}^2$$ (12) ^{*} For additional information see G. H. Brown, "A Critical Study of the Characteristics of Broadcost Antennas as Affected by Antenna Current Distribution," Proceedings of the IRE, vol. 24, pp. 48–81; January, 1936. G. H. Brown and J. G. Leitch, "The Fading Characteristics of the Top-Loaded WCAU Antenna." Proceedings of the IRE, vol. 25, pp. 583–611; May, 1937. Also, C. E. Smith and E. M. Johnson, "Performance of Short Antennas," Proceedings of the IRE, vol. 35, pp. 1026–1038; October, 1947. # Field intensity and radiated power continued where R = distance in meters P_t = transmitted power in watts The electric-field intensity E in volts/meter and power density P in watts/meter² at any point are related by $$P = E^2/120\pi$$ where 120π is known as the resistance of free space. From this $$E = (120\pi P)^{\frac{1}{2}} = (30P_t)^{\frac{1}{2}}/R \text{ volts/meter}$$ (13) # Half-wave dipole For a half-wave dipole in the direction of maximum radiation $$P = 1.64 P_t / 4\pi R^2 \tag{14}$$ $$E = (49.2 \text{ Ps})^{\frac{1}{2}}/R \tag{15}$$ These relations are shown in Fig. 8. # Received power To determine the power intercepted by a receiving antenna, multiply the power density from Fig. 8 by the receiving area. The receiving area is Area = $$G \lambda^2/4\pi$$ where G = gain of receiving antenna $\lambda = \text{wavelength in meters}$ The receiving areas and gains of common antennas are given in Fig. 36. Equation (16) can be used to determine the power received by an antenna of gain G_r when the transmitted power P_t is radiated by an antenna of gain G_t . $$P_r = \frac{P_t G_r G_t \lambda^2}{(4\pi R)^2} \tag{16}$$ G_t and G_r are the gains over an isotropic radiator. If the gains over a dipole are known, instead of gain over isotropic radiator, multiply each gain by 1.64 before inserting in (16). # Field intensity and radiated power continued Fig. 8—Power density at various distances from a half-wave dipole. # Radiation from an end-fed conductor of any length | configuration
(length of radiator) | expression for intensity $F(\theta)$ | |--|---| | A. Half-wave, resonant | $F(\theta) = \frac{\cos\left(90^{\circ} \sin \theta\right)}{\cos \theta}$ | | B. Any odd number of half waves, resonant | $F(\theta) = \frac{\cos\left(\frac{l^{\circ}}{2}\sin\theta\right)}{\cos\theta}$ | | C. Any even number of half waves, resonant | $F(\theta) = \frac{\sin\left(\frac{l^{\circ}}{2}\sin\theta\right)}{\cos\theta}$ | | D. Any length, resonant | $F(\theta) = \frac{1}{\cos \theta} \left[1 + \cos^2 l^\circ + \sin^2 \theta \sin^2 l^\circ - 2 \cos (l^\circ \sin \theta) \cos l^\circ - 2 \sin \theta \sin l^\circ \sin \theta \right]^{\frac{1}{2}}$ | | E. Any length, nonresonant | $F(\theta) = \tan \frac{\theta}{2} \sin \frac{I^{\circ}}{2} (1 - \sin \theta)$ | where $$I^{\circ} = 360I/\lambda$$ - = length of radiator in electrical degrees, energy to flow from left-hand end of radiator. - l = length of radiator in same units as λ - $\theta = \text{angle from the normal to the}$ radiator - $\lambda = wavelength$ See also Fig. 9. Fig. 9—Directions of maximum (solid lines) and minimum (dotted lines) radiation from a single-wire radiator. Direction given here is (90° $-\theta$). # Rhombic antennas Linear radiators may be combined in various ways to form antennas such as the horizontal vee, inverted vee, etc. The type most commonly used at high frequencies is the horizontal terminated rhombic shown in Fig. 10. Fig. 10-Dimensions and radiation angles for rhombic antenna. In designing rhombic antennas* for high-frequency radio circuits, the desired vertical angle Δ of radiation above the horizon must be known or assumed. When the antenna is to operate over a wide range of radiation angles or is to aperate on several frequencies, compromise values of H, L, and ϕ must ^{*} For more complete
information see A. E. Harper, "Rhombic Antenna Design," D. Van Nostrand Company, New York, New York; 1941. #### Rhombic antennas continued be selected. Gain of the antenna increases as the length L of each side is increased; however, to avoid too-sharp directivity in the vertical plane, it is usual to limit L to less than six wavelengths. Fig. 11-Rhombic-antenna design chart. Knowing the side length and radiation angle desired, the height H above ground and the tilt angle ϕ can be obtained from Fig. 11. **Example:** Find H and ϕ if $\Delta = 20$ degrees and $L = 4\lambda$. On Fig. 11 draw a vertical line from $\Delta = 20$ degrees to meet $L/\lambda = 4$ curve and H/λ curves. From intersection at $L/\lambda = 4$, read on the right-hand scale $\phi = 71.5$ degrees. From intersection on H/λ curves, there are two possible values on the left-hand scale **a.** $$H/\lambda = 0.74$$ or $H = 0.74\lambda$ **a.** $$H/\lambda = 0.74$$ or $H = 0.74\lambda$ **b.** $H/\lambda = 2.19$ or $H = 2.19\lambda$ ## Rhombic antennas continued Similarly, with an antenna 4 λ on the side and a tilt angle $\phi=71.5^{\circ}$, working backwards, it is found that the angle of maximum radiation Δ is 20°, if the antenna is 0.74 λ or 2.19 λ above ground. Fig. 12 gives useful information for the calculation of the terminating resistance of rhombic antennas. Fig. 12—Attenuation of balanced 600ohm transmission lines for use as terminating networks for rhombic antennas. # Discones The discone is a radiator whose impedance can be directly matched to a 50-ohm coaxial transmission line over a wide frequency band. The outer conductor of the transmission line is connected to the cone at the gap and the inner conductor to the center of the disc. The dimensions shown in Fig. 13 give the best impedance match over a wide band.* Since the bandwidth is inversely proportional to C_{\min} , that dimension is usually made only slightly larger than the diameter of the coaxial transmission line. Dimensions S and D are determined from $S = 0.3 C_{\min}$ and $D = 0.7 C_{\max}$. L and ϕ determine how the standing-wave ratio varies with frequency at the low edge of the band, as shown in Fig. 14. A discone with $\phi = 60^{\circ}$ and C(I = 1/20) had a standing wave Courtesy of Electronics Fig. 13—Optimum discone dimensions. and C/L = 1/22 had a standing-wave ratio of less than 1.5 over at least ^{*} J. J. Nail, "Designing Discone Antennas," Electronics, vol. 26, pp. 167–169; August, 1953. # Discones continued a 7/1 frequency range and a standing-wave ratio of less than 2 over at least a 9/1 range in frequency. The pattern is omnidirectional in the H plane, while the E-plane pattern varies somewhat with frequency as shown in Fig. 15. Fig. 14—At right, standing-wave ratio versus ratio of frequency to the frequency at which slant height is $\lambda/4$. Fig. 15-Discone E-plane patterns. Courtesy of Electronics # Helical antennas Helical antennas can be classified either as to shape (such as cylindrical, flat, or conical) or as to type of pattern produced (such as normal or axial mode). Data will be given here only for the cylindrical helix radiating in the normal or axial mode. #### Normal-mode helix When the diameter is considerably less than a wavelength and the electrical length less than a wavelength, the helix radiates in the normal mode (peak of the pattern normal to the helix axis). In contrast with the ordinary dipole, where the radiating electromagnetic wave appears to travel on the dipole with the velocity of light in the surrounding medium, the velocity of the wave along the axis of the helix is lower and depends on the frequency, diameter, and number of turns per unit length. The velocity can be de- # Helical antennas continued creased by large factors with a corresponding decrease in axial length \mathfrak{f}_{21} quarter-wave or half-wave resonance. Velocity of propagation: The phase velocity along the helix axis is $$(c/v)^2 = 1 + (M\lambda/\pi D)^2$$ (17) where c = velocity of light in surrounding medium v = axial velocity λ = wavelength in surrounding medium $D = \text{mean helix diameter (same units as } \lambda)$ M =value obtained from Fig. 16. Fig. 16—Chart giving M for (17) and (18) and also showing apparent phase velocity V_{ω}/c . The apparent phase velocity in the direction of the wire is equal to the axial velocity divided by the sine of the pitch angle, or $$\left(\frac{V_w}{c}\right)^2 = \frac{1 + (N\pi D)^2}{1 + (M\lambda/\pi D)^2} \tag{18}$$ Where N is the number of turns per unit length. Fig. 16 shows the variation of V_w/c when the terms in (18) are much greater than unity. Fig. 17 shows, for a particular case, how the frequency for quarter-wave resonance varies with the number of turns per unit length for constant wire length. When $ND \geq 1$ and $ND^2/\lambda \leq 1/5$, this reduces to $$V_w/c \approx (1.25) (h/D)^{\frac{1}{2}}$$ (18A) where h = height of the quarter-wavelength helix. Fig. 17—Resonant frequency for various helix configurations with same length of wire. To obtain a real input impedance (resonance), each half of the helical antenna must be a quarter-wavelength long at the velocity given above or for $ND^2/\lambda < 1/5$ $$\frac{h}{\lambda} = \frac{1}{4 \, c/V} = \frac{1}{4 \, [1 + 20 \, (ND)^{5/2} \, (D/\lambda)^{1/2}]^{1/2}} \tag{19}$$ where h is the length of each half. Effective Height: The effective height of a resonant helix above a perfect ground plane is $2 h/\pi$ because the current distribution is similar to that of a quarter-wave monopole. A short monopole has an effective height of h/2 due to its triangular current distribution. **Radiation resistance:** The radiation resistance of a resonant helix above a perfect ground plane is $(25.3 \ h/\lambda)^2$, while the radiation resistance of a short monopole is $(20 \ h/\lambda)^2$. **Polarization:** The radiated field is elliptically polarized and the ratio of the horizontally polarized field E_h to the vertically polarized field E_v is $$\frac{E_h}{E_v} = \frac{(N\pi D) J_1 (\pi D/\lambda)}{J_0 (\pi D/\lambda)} \approx \frac{5 ND^2}{\lambda}$$ (20) where $J_0J_1 = \text{Bessel functions}^*$ of the first kind. The approximation is valid for diameters less than 0.1 wavelength. Circular polarization is obtained with a resonant helix when the height is about 0.9 times the diameter. The horizontal polarization is decreased considerably when the helix is used with a ground plane. The vertical pattern of the horizontally polarized field then varies as 2 (h/λ) sin θ cos θ , while the vertical pattern of the vertically polarized field varies as cos θ . **Losses:** For short resonant helixes, the loss may be appreciable because the wire diameter must be much smaller than the diameter of a dipole of the same height. Neglecting proximity effects, the ratio of the power dissipated P_I to the power radiated P_r is $$\frac{P_l}{P_r} = \frac{2 \times 10^{-4} \ (V_w/c)}{d \ (b/\lambda)^2 \ F_{ro}^{\frac{1}{12}}} \tag{21}$$ where d = diameter of copper wire in inches $F_{ m mc}=$ frequency in megacycles/second The efficiency is thus $1/(1 + P_l/P_r)$. Fig. 18 is a plot of height versus resonant frequency for three wire diameters for 50-percent efficiency, assuming that $V_w/c = 1$. Q and tap point: The Q factor† can be calculated‡ approximately: ^{*} Table of Bessel functions is given on p. 1118. [†] Unloaded Q. When the antenna is driven by a zero-resistance generator, the 3-db bandwidth is f_0/Q . When driven by a generator whose resistance matches the resonant resistance of the antenna, the 3-db bandwidth is $2 f_0/Q$. [‡] A. G. Kandoian and W. Sichak, "Wide-Frequency-Range Tuned Helical Antennas and Circuits," Electrical Communication, vol. 30, pp. 294–299; December, 1953: also, Convention Record of the IRE 1953 National Convention, Part 2—Antennas and Communication; pp. 42–47. $$Q = \pi Z_0 / 4R_{\text{base}} \tag{22}$$ where Z_0 = characteristic impedance = 60 (c/V) [In (4h/D) - 1] R_{base} = radiation resistance plus wire resistance = $(25.3 h/\lambda)^2 + 0.125 (V_w/c)/dF_{mc}^{\frac{1}{2}}$ where d = wire diameter in inches. The input resonant resistance $R_{\rm tap}$ with one end of the resonant helix connected to a perfectly conducting ground plane is $$R_{\rm tap} = (4/\pi) \ Q \ Z_0 \sin^2 \theta \tag{23}$$ where θ = angular distance between tap point and the ground plane. Fig. 18—Helix height versus frequency for 50-percent efficiency assuming V_w/c = 1. #### Axial-mode helix When the helix circumference is of the order of a wavelength, an end-fire circularly polarized pattern (axial ratio less than 6 decibels) is obtained.* Equations (24) give approximately the properties when the diameter in wavelengths is between 1/4 and 4/9, the pitch angle is between 12 and 15 degrees, the total number of turns is greater than 3, and the ground-plane diameter greater than a half-wavelength. Half-power beamwidth = $$17\lambda^{3/2}/D \ h^{1/2}$$ degrees Gain = $150 \ d^2h/\lambda^3$ (24) Input resistance = $440 \ D/\lambda$ ohms #### Slot antennas The properties of many slot antennas can be deduced from the properties of the complementary metallic antenna. The impedance Z_s of the slot antenna is related to the impedance Z_m of the metallic antenna by $$Z_m Z_s = (60\pi)^2$$ The magnitude of the electric field E. produced by the slot is proportional * J. D. Kraus, "Antennas," McGraw-Hill Book Company, Incorporated, New York, New York; 1950: see p. 213. Fig. 19—Slot antenna and its metallic counterpart. # Slot antennas continued to the magnitude of the magnetic field H_m of the metallic antenna and H_s is proportional to E_m . The electric- and magnetic-plane patterns of the slot are similar to the magnetic- and electric-plane patterns, respectively, of the metallic antenna. **Example:** Slot antenna in an infinite
metallic plane, Fig. 19. The complementary metallic antenna is a dipole. For a narrow slot a half-wavelength long, fed at the center, the impedance is $(60\pi)^2/73 = 494$ ohms if the slot radiates on both sides. (If a cavity is added to suppress radiation on one side, the impedance doubles.) The *E*-plane pattern of the slot and the *H*-plane pattern of the dipole are omnidirectional, while the slot *H*-plane pattern is the same as the dipole *E*-plane pattern. Impedance of small annular slots: The annular-slot antenna. the complement of a loop, is often used as flush-mounted antenna to produce a pattern and polarization similar to that of a short dipole mounted on a large ground plane. When the outer diameter is less than about a tenth of a wavelength, the impedance* is given by Fig. 20. ^{*} H. Levine and C. H. Papas, "Theory of the Circular Diffraction Antenna," Journal of Applied Physics, vol. 22, pp. 29–43; January, 1951. Fig. 20—Impedance of annular-slot antenna. $R = A (b/\lambda)^2$ and $X = B (\lambda/b)$ (capacitive). #### continued Axial slots on cylinders: Fig. 21 shows how the E-plane pattern* of an axial slot in the surface of a cylinder varies with diameter and wavelength. Courtesy of Proceedings of the fRE Fig. 21—Radiation pattern for single axially slotted cylindrical antenna of diameter D. # Antenna arrays The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed ^{*} G. Sinclair, "Patterns of Slotted-Cylinder Antennas," Proceedings of the IRE, vol. 36, pp. 1487-1492; December, 1948. # Antenna arrays continued amount of power greatly to reinforce radiation in a desired direction while suppressing the radiation in undesired directions. The individual sources may be any type of antenna. #### Individual elements Expressions for the radiation pattern of several common types of individual elements are shown in Fig. 22, but the array expressions are not limited to these. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for A, the radiation pattern of the individual antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by A, the result of combining it with similar antennas is obtained by multiplying A by a suitable array factor, thus obtaining an A' for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups or, for instance, of placing the group above ground, is obtained by multiplying A' by another of the array factors given. #### Linear array One of the most important arrays is the linear multielement array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Fig. 23 gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements. In this type of array, a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present and they may be undesirable under some conditions, in which case a type of array, called the binomial array, may be used. # **Binomial array** Here again all the radiators are fed in phase but the current is not distributed equally among the array elements, the center radiators in the array being fed more current than the outer ones. Fig. 24 shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop antennas in order to obtain single-lobe directivity continued Fig. 22—Radiation patterns of several common types of antennas. | _ 1 | current
distribution | directivity | | |------------------------------|--|---|---------------------------| | type of
radiator | | horizontal E plane
A(θ) | vertical H plane
A(β) | | A
Half-wave
dipole | | $A(\theta) = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$ $\approx K \cos\theta$ | $A(\beta) = K(1)$ | | B
Shortened
dipole | → | $A(\theta) \approx K \cos \theta$ | $A(\beta) = K(1)$ | | C
Lengthened
dipole | TIP | $A(\theta) = \left[\cos \left(\frac{\pi l}{\lambda} \sin \theta \right) - \cos \frac{\pi l}{\lambda} \right]$ | $A(\beta) = K(1)$ | | D
Horizontal
loop | | A(θ) ≈ K(1) | $A(\beta) = K \cos \beta$ | | E
Horizontal
turnstile | i ₁ and i ₂ phased 90° | A(θ) ≈ K'(1) | $A(\beta) \approx K'(1)$ | $heta = ext{horizontal}$ angle measured from perpendicular bisecting plane β = vertical angle measured from horizon K and K' are constants and $K' \approx 0.7K$ # Antenna arrays continued in the vertical plane. If such an array were desired in the horizontal plane, say n dipoles end to end, with the specified current distribution the expression would be $$F(\theta) = 2^{n-1} \left[\frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \right] \cos^{n-1}\left(\frac{1}{2}S^{\circ}\sin\theta\right)$$ (25) The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the numerical coefficients of the terms in the binomial expansion $(a + b)^{n-1}$ where n is the number of elements in the array. This is shown in Fig. 24. Fig. 23—Linear-multielement-array broadside directivity. See Fig. 22 to compare A for common antenna types. | | configuration of array | expression for intensity $F(\theta)$ | |---|---|---| | A | A | $F(\theta) = A[1]$ | | В | A A • • • • • • • • • • • • • • • • • • | $F(\theta) = 2A \left[\cos \left(\frac{S^{\circ}}{2} \sin \theta \right) \right]$ | | С | A A A A A S° -> | $F(\theta) = A + 2A \left[\cos (S^{\circ} \sin \theta)\right]$ | | D | A A A A A | $F(\theta) = \frac{4A \left[\cos(S^{\circ}\sin\theta)\cos\left(\frac{S^{\circ}}{2}\sin\theta\right)\right]}{\left[\sin(\theta)\cos\left(\frac{S^{\circ}}{2}\sin\theta\right)\right]}$ | | E | m radiators
(general case) | $F(\theta) = A \frac{\sin\left(m \frac{S^{\circ}}{2} \sin \theta\right)}{\sin\left(\frac{S^{\circ}}{2} \sin \theta\right)}$ | # Antenna arrays continued Fig. 24—Development of the binomial array. The expression for the general case is given in ${\sf E}.$ | configuration of array | expression for intensity $F(\beta)$ | | |
--|---|--|--| | Α 1 Φ | $F(\beta) = \cos \beta[1]$ | | | | β φ ₁ φ ₁ | $F(\beta) = 2 \cos \beta \left[\cos \left(\frac{S^{\circ}}{2} \sin \beta \right) \right]$ | | | | $ \begin{array}{ccc} & & & & & & & \downarrow \\ & & & \downarrow & & & & \downarrow \\ & & & & \downarrow & & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \\ & & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ \downarrow & & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & $ | $F(\beta) = 2^2 \cos \beta \left[\cos^2 \left(\frac{S^{\circ}}{2} \sin \beta \right) \right]$ | | | | D $ \begin{array}{c} 1 & & & & \downarrow 1 \\ \downarrow & & & \downarrow 1 \\ \downarrow & & \downarrow & \downarrow $ | $F(\beta) = 2^3 \cos \beta \left[\cos^3 \left(\frac{S^{\circ}}{2} \sin \beta \right) \right]$ | | | | E 1 \diamondsuit \diamondsuit 1 \diamondsuit \diamondsuit 1 \diamondsuit \diamondsuit 1 \diamondsuit \diamondsuit 1 \diamondsuit 1 \diamondsuit 3 \diamondsuit 6 etc 1 \diamondsuit 3 \diamondsuit 4 | $F(\beta) = 2^4 \cos \beta \left[\cos^4 \left(\frac{S^{\circ}}{2} \sin \beta \right) \right]$ and in general: $F(\beta) = 2^{n-1} \cos \beta \left[\cos^{n-1} \left(\frac{S^{\circ}}{2} \sin \beta \right) \right]$ where $n = \text{number of loops in the array}$ | | | # Optimum current
distribution for broadside arrays* continued It is the purpose here to give design equations and to illustrate a method of calculating the optimum current distribution in broadside arrays. The resulting current distribution is optimum in the sense that (a) if the side-lobe level is specified, the beam width is as narrow as possible, and (b) if the first null is specified, the side-lobe level is minimized. The current distribution for 4- through 12-; and 16-, 20-, and 24-element arrays can be calculated after either the side-lobe level or the position of the first null is specified. **Parameter Z:** All design equations are given in terms of the parameter Z. To determine Z if the side-lobe level is specified, let $r = \frac{\text{(maximum amplitude of main lobe)}}{\text{(maximum amplitude of side lobe)}}$ then $$Z = \frac{1}{2} \left[\left(r + \sqrt{r^2 - 1} \right)^{1/M} + \left(r - \sqrt{r^2 - 1} \right)^{1/M} \right] = \cosh \rho / M$$ (26) where M = (number of elements in the array) - 1 $$\rho = \cosh^{-1} r$$ To determine Z if the position of the first null is specified (Fig. 25), let θ_0 = position of first null. Then $$Z = \frac{\cos(\pi/2M)}{\cos\left(\frac{\pi S}{\lambda}\sin\theta_0\right)}$$ (27) Fig. 25—Beam pattern for broadside array, showing first null at θ_0 . where S =spacing between elements. **Design equations:** The following are in Z. It is assumed that all elements are isotropic, are fed in phase, and are symmetrically arranged about the center. See Fig. 26 for designation of the respective elements to which the following currents I apply. ^{*} C. L. Dolph, "A Current Distribution for Broodside Arrays Which Optimizes the Relationship Between Beam Width and Side-Lobe Level," *Proceedings of the IRE*, vol. 34, pp. 335–348; June, 1946. See also discussion on subject paper by H. J. Riblet and C. L. Dolph, *Proceedings of the IRE*, vol. 35, pp. 489–492; May, 1947. continued #### 4-element array $$I_2 = Z^3$$ $I_1 = 3(I_2 - Z)$ #### 8-element array $$I_4 = Z^7$$ $I_3 = 7(I_4 - Z^5)$ $I_2 = 5I_3 - 14I_4 + 14Z^3$ $I_1 = 3I_2 - 5I_3 + 7I_4 - 7Z$ # 12-element array $$\begin{array}{lll} I_6 = Z^{11} & \text{num} \\ I_5 = 11 (I_6 - Z^9) & \text{med} \\ I_4 = 9I_5 - 44I_6 + 44Z^7 \\ I_3 = 7I_4 - 27I_5 + 77I_6 - 77Z^5 \\ I_2 = 5I_3 - 14I_4 + 30I_5 - 55I_6 + 55Z^3 \\ I_1 = 3I_2 - 5I_3 + 7I_4 - 9I_5 + 11I_6 - 11Z \end{array}$$ # Fig. 26—Broadside array of even and odd number of elements showing nomenclature of radiators, spacing S, and beam-angular measurement θ . # 16-element array $$I_{8} = Z^{15}$$ $$I_{7} = 15I_{8} - 15Z^{13}$$ $$I_{6} = 13I_{7} - 90I_{8} + 90Z^{11}$$ $$I_{5} = 11I_{6} - 65I_{7} + 275I_{8} - 275Z^{9}$$ $$I_{4} = 9I_{5} - 44I_{6} + 156I_{7} - 450I_{8}$$ $$+ 450Z^{7}$$ $$I_{3} = 7I_{4} - 27I_{5} + 77I_{6} - 182I_{7}$$ $$+ 378I_{8} - 378Z^{5}$$ $$I_{2} = 5I_{3} - 14I_{4} + 30I_{5} - 55I_{6}$$ $$+ 91I_{6} - 140I_{8} + 140Z^{3}$$ $$I_{1} = 3I_{2} - 5I_{3} + 7I_{4} - 9I_{5}$$ $$+ 11I_{6} - 13I_{7} + 15I_{8} - 15Z$$ The relative current values necessary for optimum current distribution are plotted as a function of side-lobe level in decibels for 8-, 12-, and 16-element arrays (Figs. 27–29). Courtesy of Proceedings of the IRE Fig. 27—The relative current values for an 8-element array necessary for "the optimum current distribution" as a function of side-lobe level in decibels. continued Solution of the IRE Fig. 28—The relative current values for a 12-element array necessary for "the optimum current distribution" as a function of side-lobe level in decibels. Fig. 29—The relative current values for a 16-element array necessary for "the optimum current distribution" as a function of side-lobe level in decibels. # Effect of ground on antenna radiation at very-high and ultra-high frequencies The behavior of the earth as a reflecting surface is considerably different for horizontal than for vertical polarization. For horizontal polarization the earth may be considered a perfect conductor, i.e., the reflected wave at all vertical angles β is substantially equal to the incident wave and 180 degrees out of phase with it. $F(\beta)$ in Fig. 30B was derived on this basis. The approximation is good for practically all types of ground. For vertical polarization, however, the problem is much more complex as both the relative amplitude K and relative phase ϕ change with vertical angle β , and vary considerably with different types of ground. Fig. 31 is a set of curves that illustrate the problem. The subscripts to the amplitude and phase coefficients K and ϕ refer to the type of polarization. It is to be noted particularly that at grazing incidence ($\beta = 0$) the reflection coefficient is the same for vertical and horizontal polarization. This is substantially true for practically all ground conditions. # Directivity of several miscellaneous arrays Fig. 30—Directivity of several array problems that do not fall into any of the preceding classes. # configuration of array #### expression for intensity # A. Two radiators any phase ϕ $$F(\theta) = [A_1^2 + A_2^2 + 2A_1A_2 \cos (S^2 \sin \theta + \phi)]^{\frac{1}{2}}$$ When $$A_1 = A_2$$, $$F(\theta) = 2A \cos \left(\frac{S^{\circ}}{2} \sin \theta + \frac{\phi}{2} \right)$$ # B. Radiator above ground (horizontal polarization) $$F(\beta) = 2A \sin (h_1^{\circ} \sin \beta)$$ # C. Radiator parallel to screen $$F(\beta) = 2A \sin (d^{\circ} \cos \beta)$$ or $$F(\theta) = 2A \sin (d^{\circ} \cos \theta)$$ S° = spacing in electrical degrees h_1° = height of radiator in electrical degrees d° = spacing of radiator from screen in electrical degrees # Antenna arrays continued Fig. 31—Typical ground-reflection coefficients for horizontal and vertical polarizations. # Electromagnetic horns and parabolic reflectors Radiation from a waveguide may be obtained by placing an electromagnetic horn of a particular size at the end of the waveguide. Fig. 32 gives data for designing a horn to have a specified gain with the shortest length possible. The length $L_{\rm I}$ is given by $$L_1 = L\left(1 - \frac{\sigma}{2A} - \frac{b}{2B}\right) \tag{28}$$ where a = wide dimension of waveguide in the H plane b = narrow dimension of waveguide in E plane If $L\geqslant A^2/\lambda$, where A= longer dimension of aperture, the gain is given by $$G = 10AB/\lambda^2 \tag{29}$$ The half-power width in the E plane is given by 51 $$\lambda/B$$ degrees (30) and the half-power width in the H plane is given by $$70 \,\lambda/A \, degrees$$ (31) where E = electric vector H = magnetic vector Fig. 33 shows how the angle between 10-decibel points varies with aperture. # Electromagnetic horns and parabolic reflectors continued Fig. 32—Design of electromagnetic-horn radiator. # Electromagnetic horns and parabolic reflectors continued Fig. 33—10-decibel widths of horns. $L \geqslant A^2/\lambda$. #### Parabolas If the intensity across the aperture of the parabola is of constant phase and tapers smoothly from the center to the edges so that the intensity at the edges is 10 decibels down from that at the center, the gain is given by $$G = 7A/\lambda^2 \tag{32}$$ where A = area of aperture. The half-power width is given by 70 $$\lambda/D$$ degrees (33) where D = diameter of parabola. See nomograph, p. 754. # Passive reflectors In some applications, an antenna and plane reflector are used instead of a directional antenna fed through a long transmission line. The main application is in microwave line-of-sight radio links where the antenna may be mounted up to 300 feet above the associated radio equipment. In some cases, the loss is less than that of a long transmission line. In addition, long-line effects, such as "pulling" of frequency-modulated oscillators, are minimized. Fig. 34—Gain of antenna system incorporating a passive reflector. Diameter D of the parabolic antenna equals projected diameter D of the reflector. # Passive reflectors continued Fig. 34 shows the gain relative to an antenna whose area is equal to the projected area of the reflector. (To obtain the gain relative to the antenna, add 20 $\log (D/d)$ to the gains shown.) The plane reflector is assumed to be of elliptical shape and the amplitude tapers parabolically across the aperture of the antenna so that the edge illumination is 10 decibels below the center.* Slightly more gain can be obtained if a rectangular reflector is used.† **Example:** Compared to a 6-foot-diameter antenna, a reflector 6 feet in diameter mounted on a 200-foot tower has a loss of 3.5 decibels when fed with a 6-foot-diameter antenna at 6000 megacycles and a loss of 2.5 decibels when fed with an 8.5-foot-diameter antenna. The over-all system gain is larger if the transmission-line loss exceeds 3.5 or 2.5 decibels, respectively. #### Corner reflectors The corner reflector \ddagger is a simple directive antenna. The dimensions given in Fig. 35 will give a gain of 8 to 10 decibels over a dipole alone. If λ = wavelength, $0.25 \lambda \leqslant S \leqslant 0.7 \lambda$ length of reflector $\geqslant \lambda$ height of reflector $\geq 5 \lambda/8$ Fig. 35—Corner-reflector antenna. # Antenna gain and effective area The gain of an antenna is a measure of how well the antenna concentrates its radiated power in a given direction. It is the ratio of the power radiated in a given direction to the power radiated in the same direction by a standard antenna (a dipole or isotropic radiator), keeping the input power constant. If the pattern of the antenna is known and there are no ohmic losses in the system, the gain G is defined by ^{*} W. C. Jakes, Jr., "Theoretical Study of An Antenna—Reflector Problem," Proceedings of the IRE, vol. 41, pp. 272–274; February, 1953. [†] R. E. Greenquist and A. J. Orlando, "Analysis of Passive Reflector Antenna Systems," Proceedings of the IRE, vol. 42, pp. 1173–1178; July, 1954. [‡] J. D. Kraus, "The Corner Reflector Antenna," Proceedings of the IRE, vol. 28, pp. 513-519;
November, 1940. # Antenna gain and effective area continued $$G = \left(\frac{\text{maximum power intensity}}{\text{average power intensity}}\right) = \frac{4\pi |E_0|^2}{\int \int |E|^2 d\Omega}$$ all angles where $|E_0|$ = magnitude of the field at the maximum of the radiation pattern |E| = magnitude of the field in any direction The effective area A_r of an antenna is defined by $$A_r = \frac{G\lambda^2}{4\pi} \tag{35}$$ where G = gain of the antenna $\lambda = wavelength$ The power delivered by a matched antenna to a matched load connected to its terminals is PA_r , where P is the power density in watts/meter² at the antenna and A_r is the effective area in meters². The gains and receiving areas of some typical antennas are given in Fig. 36. Fig. 36-Power gain G and effective area A of several common antennas. | radiator | gain above
isotropic radiator | effective area | |---|----------------------------------|-----------------------| | Isotropic radiator | 1 | $\lambda^2/4\pi$ | | Infinitesimal dipole or loop | 1.5 | 1.5 $\lambda^2/4\pi$ | | Half-wave dipole | 1.64 | 1.64 $\lambda^2/4\pi$ | | Optimum horn (mouth area = A) | 10 A/λ² | 0.81 A | | Horn (maximum gain for fixed length—see Fig. 33, mouth area = A) | 5.6 A/λ² | 0.45 A | | Parabola or metal lens | 6.3 to 7.5 A/λ² | 0.5 to 0.6 A | | Broadside array (area = A) | $4\pi \ A/\lambda^2 \ (max)$ | A (max) | | Omnidirectional stacked array (length = L, stack interval $\leqslant \lambda$) | ≈2L/\ | ≈L λ/2π | | Turnstile | 1.15 | $1.15 \lambda^2/4\pi$ | # Antenna gain and effective area continued The gains and effective areas given in Fig. 36 apply in the receiving case only; when the polarizations are not the same, the gain is given by $$G_{\theta} = G \cos^2 \theta \tag{36}$$ where G = gain of the antenna heta= angle between plane of polarization of the antenna and the incident field Equation (36) applies only to linear polarization. Equation (6) gives the variation for circular or elliptical polarization. If a circularly polarized antenna is used to receive power from an incident wave of the same screw sense, the gains and receiving areas in Fig. 36 are correct. If a circularly polarized antenna is used to receive power from a linearly polarized wave (or vice-versa) the gain or receiving area will be one-half those of Fig. 36. If the half-power widths of a narrow-beam antenna are known, the approximate gain above an isotropic radiator may be computed from $$G = \frac{30,000}{W_E W_H} \tag{37}$$ where $W_B = E$ -plane half-power width in degrees $W_H = H$ -plane half-power width in degrees Equation (37) is not accurate if the half-power widths are greater than about 20 degrees, or if there are many large side lobes. # Vertically stacked horizontal loops Radiation pattern for array of Fig. 37 is $$F(\beta) = \frac{\sin\left(\frac{nS^{\circ}}{2}\sin\beta\right)}{\sin\left(\frac{S^{\circ}}{2}\sin\beta\right)}\cos\beta \tag{38}$$ where n = number of loops $S^{\circ} = \text{spacing in electrical degrees}$ Fig. 37—Stacked loops. # Vertically stacked horizontal loops continued If S =spacing in radians, the gain is $$gain = \left\{ \frac{1}{n} + \frac{6}{n^2} \sum_{k=1}^{n-1} (n-k) \left[\frac{\sin kS^{\circ}}{(kS)^3} - \frac{\cos kS^{\circ}}{(kS)^2} \right] \right\}^{-1}$$ (39) The gain as a function of the number of loops and the electrical spacing s given in Fig. 38. Fig. 38—Gain of linear array of horizontal loops vertically stacked. # Vertically stacked horizontal loops continued The data are also directly applicable to stacked dipoles, discones, tripoles, etc., and all other antenna systems that have vertical directivity but are omnidirectional in the horizontal plane. Such antennas are widely used for frequency-modulation, television, and radio-beacon applications. # Examples in the solution of antenna-array problems **Problem 1:** Find horizontal radiation pattern of four colinear horizontal dipoles, spaced successively $\lambda/2$, or 180 degrees. Solution: From Fig. 23D, radiation from four radiators spaced 180 degrees is given by $$F(\theta) = 4A \cos (180^{\circ} \sin \theta) \cos (90^{\circ} \sin \theta)$$ From Fig. 22A, the horizontal radiation of a half-wave dipole is given by $$A = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$$ therefore, the total radiation $$F(\theta) = K \left[\frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \right] \cos(180^{\circ}\sin\theta) \cos(90^{\circ}\sin\theta)$$ **Problem 2:** Find vertical radiation pattern of four horizontal dipoles, stacked one above the other, spaced 180 degrees successively. **Solution:** From Fig. 23D we obtain the general equation of four radiators, but since the spacing is vertical, the expression should be in terms of vertical angle β . $$F(\beta) = 4A \cos (180^{\circ} \sin \beta) \cos (90^{\circ} \sin \beta)$$ From Fig. 22A we find that the vertical radiation from a horizontal dipole lin the perpendicular bisecting planel is nondirectional. Therefore the vertical pattern is # Examples in the solution of antenna-array problems continued $$F(\beta) = K(1) \cos (180^{\circ} \sin \beta) \cos (90^{\circ} \sin \beta)$$ **Problem 3:** Find horizontal radiation pattern of group of dipoles in problem 2. Solution: From Fig. 22A. $$F(\theta) = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \approx K\cos\theta$$ **Problem 4:** Find the vertical radiation pattern of stack of five loops spaced $2\lambda/3$, or 240 degrees, one above the other, all currents equal in phase and amplitude. Solution: From Fig. 23E, using vertical angle because of vertical stacking, $$F(\beta) = A \frac{\sin [5(120^\circ) \sin \beta]}{\sin (120^\circ \sin \beta)}$$ From Fig. 22D, we find A for a horizontal loop in the vertical plane $$A = F(\beta) = K \cos \beta$$ Total radiation pattern $$F(\beta) = K \cos \beta \frac{\sin [5(120^\circ) \sin \beta]}{\sin (120^\circ \sin \beta)}$$ **Problem 5:** Find radiation pattern (vertical directivity) of the five loops in problem 4, if they are used in binomial array. Find also current intensities in the various loops. Solution: From Fig. 24E $$F(\beta) = K \cos \beta \left[\cos^4(120^\circ \sin \beta) \right]$$ (all terms not functions of vertical angle β are combined in constant K) Current distribution $(1 + 1)^4 = 1 + 4 + 6 + 4 + 1$, which represent the current intensities of successive loops in the array. #### Examples in the solution of antenna-array problems continued Problem 6: Find horizontal radiation pattern from two vertical dipoles spaced one-quarter wavelength apart when their currents differ in phase by 90 degrees. Solution: From Fig. 30A $$s^{\circ} = \lambda/4 = 90^{\circ} = \text{spacing}$$ $\phi = 90^{\circ} = \text{phase difference}$ Then. $$F(\theta) = 2A \cos (45 \sin \theta + 45^{\circ})$$ Problem 7: Find the vertical radiation pattern and the number of nulls in the vertical pattern (0 \leq β \leq 90) from a horizontal loop placed three wavelengths above ground. #### Solution $$h_1^{\circ} = 3(360) = 1080^{\circ}$$ $$F(\beta) = 2A \sin (1080 \sin \beta)$$ From Fig. 22D for loop antennas $$A = K \cos \beta$$ A null occurs wherever $F(\beta) = 0$. The first term, $\cos \beta$, becomes 0 when $\beta = 90$ degrees. The second term, $\sin (1080 \sin \beta)$, becomes 0 whenever the value inside the parenthesis becomes a multiple of 180 degrees. Therefore, number of nulls equals $$1 + \frac{h_1^{\circ}}{180} = 1 + \frac{1080}{180} = 7$$ Problem 8: Find the vertical and horizontal patterns from a horizontal half-wave dipole spaced $\lambda/8$ in front of a vertical screen. Solution: $$d^{\circ} = \frac{\lambda}{8} = 45^{\circ}$$ # Examples in the solution of antenna-array problems continued From Fig. 30C $$F(\beta) = 2A \sin (45^{\circ} \cos \beta)$$ $$F(\theta) = 2A \sin (45^{\circ} \cos \theta)$$ From Fig. 22A for horizontal half-wave dipole Vertical pattern $$A = K(1)$$ Horizontal pattern $$A = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$$ Total radiation patterns are Vertical: $$F(\beta) = K \sin (45^{\circ} \cos \beta)$$ Horizontal: $$F(\theta) = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \sin(45^{\circ}\cos\theta)$$ # STEWART EW # ■ Radio-wave propagation # Very-low frequencies—up to 60 kilocycles The received field intensity in microvolts/meter has been experimentally found to follow the Austin-Cohen equation for distances between 500 and 10,000 kilometers: $$E = \frac{298 \times 10^3 (P)^{\frac{1}{2}}}{D} \left(\frac{\theta}{\sin \theta}\right)^{\frac{1}{2}} \exp\left(-\alpha \frac{D}{\lambda^{\frac{1}{2}}}\right)$$ (1) where D = kilometers between transmitter and receiver E = received field intensity in microvolts/meter P = radiated power from the transmitter antenna in kilowatts R = effective radius of earth in kilometers = 6380 $\alpha = \text{attenuation constant}$ exp = 2.718 to the exponent shown within parentheses θ = angular distance in radians = D/R λ = wavelength of radiation in kilometers = 300/(frequency in kilocycles) The two nomograms, Figs. 1 and 2,* give solutions for the most important problems related to very-long-wave propagation. The first nomogram solves the following equations $$(P)^{\frac{1}{2}} = \frac{HI}{\lambda} \cdot \frac{377}{298} \tag{2}$$ $$M = \frac{E^{\frac{3}{2}}}{298 \times 10^{3} (P)^{\frac{1}{2}}} \tag{3}$$ where H = radiation height (effective height) in meters I = antenna current in amperes M = quantity used in Fig. 2 # Example To effect a solution of the above equations: **a.** On Fig. 1, draw two straight lines, the first connecting a value of H with a value of I, the second connecting a value of λ with a value of P; if both ^{*} The nomograms, Figs. 1 and 2, are due to Mrs. M. Lindeman Phillips of the Central Radio Propagation Laboratory, National Bureau of Standards, Washington, D. C. # Very-low
frequencies continued Fig. 1—First nomogram for the solution of very-long-wave field strength. For the solution of P and M, equations (2) and (3). # Very-low frequencies continued lines intersect on the central M line of the nomogram, the values present a solution of (2). Note: This does not give a solution of (3), i.e., a solution for M. Fig. 2—Second nomogram for the determination of very-long-wave field strength by the Austin-Cohen equation (1). Value M is first determined from Fig. 1. # Very-low frequencies continued **b.** Draw a straight line connecting values of P and E. The intersection of this line with the central nomographic scale M gives the corresponding value of M, as indicated in (3). Fig. 2 represents the Austin-Cohen equation, affording the possibility of either determining or using various values for the attenuation constant α . To use, - **c.** Draw a straight line connecting points located on the two distance scales for the proper transmission distance. - **d.** Draw a second straight line connecting the proper values of wavelength (or frequency) and M; its intersection with the straight line in (c) above must lie at the proper value of α among the family of curves represented. The values of M, λ , D, and α thus indicated represent a solution of (1). # Low and medium frequencies—100 to 3000 kilocycles* For low and medium frequencies, of approximately 100 to 3000 kilocycles, with a theoretical short vertical antenna over perfectly reflecting ground: $E = 186 (P_r)^{\frac{1}{2}}$ millivolts/meter at 1 mile or, $E = 300 (P_r)^{\frac{1}{2}}$ millivolts/meter at 1 kilometer where P_r = radiated power in kilowatts. Actual inverse-distance fields at one mile for a given transmitter output power depend on the height and efficiency of the antenna and the efficiency of coupling devices. Typical values found in practice for well-designed stations are: Small L or T antennas as on ships: 25 $(P_t)^{\frac{1}{12}}$ millivolts/meter at 1 mile Vertical radiators 0.15 to 0.25 λ high: 150 $(P_t)^{\frac{1}{12}}$ millivolts/meter at 1 mile Vertical radiators 0.25 to 0.40 λ high: 175 $(P_t)^{\frac{1}{12}}$ millivolts/meter at 1 mile Vertical radiators 0.40 to 0.60 λ high or top-loaded vertical radiators: 220 $(P_t)^{\frac{14}{2}}$ millivolts/meter at 1 mile where P_t = transmitter output power in kilowatts. These values can be increased by directive arrangements. ^{*} For more exact methods of computation see F. E. Terman, "Radio Engineers' Handbook," 1st edition, McGraw-Hill Book Company, New York, New York, 1943; Section 10. Also, K. A. Norton, "The Calculation of Ground-Wave Field Intensities Over a Finitely Conducting Spherical Earth," Proceedings of the IRE, vol. 29, pp. 623-639; December, 1941. The surface-wave field (commonly called ground wave) at greater distances can be found from Figs. 3–6.* Figs. 4–6 are based on a field strength of 186 millivolts/meter at one mile. The ordinates should be multiplied by the ratio of the actual field at 1 mile to 186 millivolts/meter. Fig. 3—Ground conductivity and dielectric constant for medium- and long-wave propagation to be used with Norton's, van der Pol's, Eckersley's, or other developments of Sommerfeld propagation formulas. | terrain | conductivity a
In emu | dielectric
constant e
in esu | |---|--------------------------|------------------------------------| | Sea water | 4 × 10 ⁻¹¹ | 80 | | Fresh water | 5 × 10 ⁻¹⁴ | 80 | | Dry, sandy flat coastal land | 2×10^{-14} | 10 | | Marshy, forested flat land | 8 × 10 ⁻¹⁴ | 12 | | Rich agricultural land, low hills | 1 × 10 ⁻¹⁸ | 15 | | Pastoral land, medium hills and forestation | 5×10^{-14} | 13 | | Rocky land, steep hills | 2×10^{-14} | 10 | | Mountainous (hills up to 3000 feet) | 1×10^{-14} | 5 | | Cities, residential areas | 2×10^{-14} | 5 | | Cities, industrial areas | 1×10^{-15} | 3 | Fig. 4—Strength of surface waves as a function of distance with a vertical antenna for good earth ($\sigma=10^{-13}$ emu and $\epsilon=15$ esu). ^{*} For additional curves of ground-wave field intensity versus distance, see chapter 22, "Broadcasting." Fig. 5—As Fig. 4, for poor earth ($\sigma=2\times 10^{-14}$ emu and $\epsilon=5$ esu). Fig. 6—As Fig. 4, for sea water ($\sigma=4\times10^{-11}$ emu and $\epsilon=80$ esu). Fig. 7—Sky-wave signal range at medium frequencies for 1939 (typical of sunspot maximum). Shown are the values exceeded by field intensities (hourly median values) for various percentages of the nights per year per 100 millivolts/meter radiated at 1 mile. Annual average is also shown. For latitudes of 35, 40, and 45 degrees. # Low and medium frequencies continued Fig. 8—Sky-wave signal range at medium frequencies for 1944 (sunspot minimum). Shown are the values exceeded by field intensities (hourly median values) for various percentages of the nights per year per 100 millivolts/meter radiated at 1 mile. Annual average is also shown. Values are given for latitudes of 35, 40, and 45 degrees. Figs. 4, 5, and 6 do not include the effect of sky waves reflected from the ionosphere. Sky waves cause fading at medium distances and produce higher field intensities than the surface wave at longer distances, particularly at night and on the lower frequencies during the day. Sky-wave field intensity is subject to diurnal, seasonal, and irregular variations due to changing properties of the ionosphere. The annual median field strengths are functions of the latitude, the frequency on which the transmission takes place, and the phase of the solar sunspot cycle at a given time. The dependence of the annual median field for transmissions on frequencies around the middle of the United States standard broadcast band is shown on Fig. 7 for a period (1939) near sunspot maximum* and on Fig. 8, for a period of sunspot minimum (1944). The curves are given for 35, 40, and 45 degrees latitude. The latitude used to characterize a path is that of a control point on the path. The control point is taken to be the midpoint of a path less than 1000 miles long; and for a longer path, the reflection point (for two-reflection transmission) that is at the higher latitude. The curves are extracted from a report of the Federal Communications Commission in 1946.† # High frequencies—3 to 30 megacycles At frequencies between about 3 and 25 megacycles and distances greater than about 100 miles, transmission depends entirely on sky waves reflected from the ionosphere. This is a region high above the earth's surface where the rarefied air is sufficiently ionized (primarily by ultraviolet sunlight) to reflect or absorb radio waves, such effects being controlled almost exclusively by the free-electron density. The ionosphere is usually considered as consisting of the following layers. **D layer:** At heights from about 50 to 90 kilometers, ‡ it exists only during daylight hours, and ionization density corresponds with the altitude of the sun. This layer reflects very-low- and low-frequency waves, absorbs medium-frequency waves, and weakens high-frequency waves through partial absorption. ^{*} Sunspot maximums occurred in 1938 and 1948; the next is expected in 1958. Sunspot minimums occurred in 1944 and 1954; the next is expected in 1964. [†] Committee III—Docket 6,741, "Skywave Signal Range at Medium Frequencies," Federal Communications Commission, Washington, D. C.; 1946. ¹¹ kilometer = 0.621 mile. # High frequencies continued E layer: At height of about 110 kilometers, this layer is of importance for high-frequency daytime propagation at distances less than 1000 miles, and for medium-frequency nighttime propagation at distances in excess of about 100 miles. Ionization density corresponds closely with the altitude of the sun. Irregular cloud-like areas of unusually high ionization, called sporadic E may occur up to more than 50 percent of the time on certain days or nights. Sporadic E occasionally prevents frequencies that normally penetrate the E layer from reaching higher layers and also causes occasional long-distance transmission at very high frequencies. Some portion (perhaps the major part) of the sporadic-E ionization is ascribable to visible- and subvisible-wavelength bombardment of the atmosphere. F_1 layer: At heights of about 175 to 250 kilometers, it exists only during daylight. This layer occasionally is the reflecting region for high-frequency transmission, but usually oblique-incidence waves that penetrate the E layer also penetrate the F_1 layer to be reflected by the F_2 layer. The F_1 layer introduces additional absorption of such waves. F_2 layer: At heights of about 250 to 400 kilometers, F_2 is the principal reflecting region for long-distance high-frequency communication. Height and ionization density vary diurnally, seasonally, and over the sunspot cycle. Ionization does not follow the altitude of the sun in any simple fashion, since (at such extremely low air densities and molecular-collision rates) the medium can store received solar energy for many hours, and, by energy transformation, can even detach electrons during the night. At night, the F_1 layer merges with the F_2 layer at a height of about 300 kilometers. The absence of the F_1 layer, and reduction in absorption of the E layer, causes nighttime field intensities and noise to be generally higher than during daylight hours. As indicated to the right on Fig. 10, these layers are contained in a thick region throughout which ionization generally increases with height. The layers are said to exist where the ionization gradient is capable of refracting waves back to earth. Obliquely incident waves follow a curved path through the ionosphere due to gradual refraction or bending of the wave front. When attention need be given only to the end result, the process can be assimilated to a reflection.
Depending on the ionization density at each layer, there is a *critical* or highest frequency f_c at which the layer reflects a vertically incident wave. Frequencies higher than f_c pass through the layer at vertical incidence. At oblique incidence, and distances such that the curvature of the earth and ionosphere can be neglected, the maximum usable frequency is given by $(muf) = f_c \sec \phi$ Fig. 9—Single- and two-hop transmission paths due to E and F_2 layers. Fig. 10-Schematic explanation of skip-signal zones. where (muf) = maximum usable frequency for the particular layer and distance $\phi = \text{angle of incidence at reflecting layer}$ At greater distances, curvature is taken into account by the modification ${\rm lmufl} \ = k f_e \, \sec \, \phi$ where k is a correction factor that is a function of distance and vertical distribution of ionization. f_c and height, and hence ϕ for a given distance, vary for each layer with local time of day, season, latitude, and throughout the eleven-year sunspot cycle. The various layers change in different ways with these parameters. In addition, ionization is subject to frequent abnormal variations. The loss at reflection for each layer is a minimum at the maximum usable frequency and increases rapidly for frequencies lower than maximum usable frequency. High frequencies travel from the transmitter to the receiver by reflection from the ionosphere and earth in one or more hops as indicated in Figs. 9 and 10. Additional reflections may occur along the path between the bottom edge of a higher layer and the top edge of a lower layer, the wave finally returning to earth near the receiver. Fig. 9 illustrates single-hop transmission, Washington to Chicago, via the E layer (ϕ_1) . At higher frequencies over the same distance, single-hop transmission would be obtained via the F_2 layer (ϕ_2) . Fig. 9 also shows two-hop transmission, Washington to San Francisco, via the F_2 layer (ϕ_3). Fig. 10 indicates transmission on a common frequency, (1) single-hop via E layer, Denver to Chicago, and, (2) single-hop via F_2 , Denver to Washington, with, (3) the wave failing to reflect at higher angles, thus producing a skip region of no signal between Denver and Chicago. Actual transmission over long distances is more complex than indicated by Figs. 9 and 10, because the layer heights and critical frequencies differ with time (and hence longitude) and with latitude. Further, scattered reflections occur at the various surfaces. Flg. 11—Single-hop transmission at various frequencies. Maximum usable frequencies (muf) for single-hop transmission at various distances throughout the day are given in Fig. 11. These approximate values apply to latitude 39° N for the minimum years (1944 and 1954) and maximum years (1948 and 1958) of the sunspot cycle. Since the maximum usable frequency and layer heights change from month to month, the latest predictions should be obtained whenever available. This information is published (in the form of contour diagrams, similar to Fig. 15, supplemented by nomograms) by the National Bureau of Standards in the U. S. A., and equivalent predictions are supplied by similar organizations in other countries. Preferably, operating frequencies should be selected from a specific frequency band that is bounded above and below by limits that are systematically determinable for the transmission path under consideration. The recommended upper limit is called the optimum working frequency (owf) and is defined as 85 percent of the maximum usable frequency (muf). The 85-percent limit provides some margin for ionospheric irregularities and turbulence, as well as statistical deviation of day-to-day ionospheric characteristics from the predicted monthly median value. So far as may be consistent with available frequency assignments, operation in reasonable proximity to the upper frequency limit is preferable, in order to reduce absorption loss. The lower limit of the normally available band of frequencies is called the lowest useful high frequency (luhf). Below this limit ionospheric absorption is likely to be excessive, and radiated-power requirements quite uneconomical. For a given path, season, and time, the (luhf) may be predicted by a systematic graphical procedure. Unlike the (muf), the predicted (luhf) has to be corrected by a series of factors dependent on radiated power, directivity of transmitting and receiving antennas in azimuth and elevation, class of service, and presence of local noise sources. Available data include atmospheric-noise maps, field-intensity charts, contour diagrams for absorption factors, and nomograms facilitating the computation. The procedure is formidable but worth while. The upper and lower frequency limits change continuously throughout the day, whereas it is ordinarily impractical to change operating frequencies correspondingly. Each operating frequency, therefore, should be selected to fall within the above limits for a substantial portion of the daily operating period. If the operating frequency already has been dictated by outside considerations, and if this frequency has been found to be safely below the maximum usable frequency, then the same noise maps, absorption contours, nomograms, and correction factors (mentioned above) may be applied to the systematic statistical determination of a lowest required radiated power (Irrp), which will just suffice to maintain the specified grade of service. For single-hop transmission, frequencies should be selected on the basis of local time and other conditions existing at the midpoint of the path. In view of the layer heights and the fact that practical antennas do not operate effectively below angles of about three degrees, single-hop transmission cannot be achieved for distances in excess of about 2500 miles (4000 kilometers) via F_2 layer, or in excess of about 1250 miles (2000 kilometers) via the E layer. Multiple-hop transmission must occur for longer distances and, even at distances of less than 2500 miles, the major part of the received signal frequently arrives over a two- or more-hop path. In analyzing two-hop paths, each hop is treated separately and the lowest frequency required on either hop becomes the maximum usable frequency for the circuit. It is usually impossible to predict accurately the course of radio waves on circuits involving more than two hops because of the large number of possible paths and the scattering that occurs at each reflection. When investigating F_2 -layer transmission for such long-distance circuits, it is customary to consider the conditions existing at points 2000 kilometers (1250 miles) along the path from each end as the points at which the maximum usable frequencies should be calculated. When investigating E-layer transmission, the corresponding control points are 1000 kilometers (620 miles) from each end. For practical purposes, F_1 -layer transmission (usually of minor importance) is lumped with E-layer transmission and evaluated at the same control points. ## Angles of departure and arrival Angles of departure and arrival are of importance in the design of high-frequency antenna systems. These angles, for single-hop transmission, are obtained from the geometry of a triangular path over a curved earth with the apex of the triangle placed at the virtual height assumed for the altitude of the reflection. Fig. 12 is a family of curves showing radiation angle for different distances. D = great-circle distance in statute miles H = virtual height of ionosphere layer in kilometers Δ = radiation angle in degrees $\phi=$ semiangle of reflection at ionosphere Fig. 12—Single-reflection radiation angle and great-circle distance. # Forecasts of high-frequency propagation In addition to forecasts for ionospheric disturbances, the Central Radio Propagation Laboratories of the National Bureau of Standards issues monthly Basic Radio Propagation Predictions 3 months in advance used to determine the optimum working frequencies for shortwave communication. Indication of the general nature of the CRPL data and a much abbreviated example of their use follows: ## Example To determine working frequencies for use between San Francisco and Wellington, $N.\ Z.$ #### Method - **a.** Place a transparent sheet over Fig. 13 and mark thereon the equator, a line across the equator showing the meridian of time desired (viz., GCT or PST), and locations of San Francisco and Wellington. - **b.** Transfer sheet to Fig. 14, keeping equator lines of chart and transparency aligned. Slide from left to right until terminal points marked fall along a щпоз изоп Fig. 13—World map showing zones covered by predicted charts and auroral zones. Zones shown are E = east, I = intermediate, and W ₩ west. Fig. 14—Great circle chart centered on equator. Solid lines represent great circles. Dot-dash lines indicate distances in thousands of kilometers. Fig. 15—F₂ 4000-kilometer maximum usablo frequency in megacycles. Zone I (see Fig. 13) predicted for July, 1955. ## Forecasts of high-frequency propagation continued Great Circle line. Sketch in this Great Circle between terminals and mark "control points" 2000 kilometers along this line from each end. **c.** Transfer sheet to Fig. 15, showing muf for transmission via the F_2 layer. Align equator as before. Slide sheet from left to right placing meridian line on time desired and record frequency contours at control points. This illustration assumes that radio waves are propagated over this path via the F_2 layer. Eliminating all other considerations, 2 sets of frequencies, corresponding to the control points, are found as listed below, the lower of which is the (muft). The (muft), decreased by 15 percent, gives the optimum working frequency (Fig. 16). Fig. 16-Maximum usable frequency. | GCT | at San Francisco
control point
(2000km from
San Francisco) | at Wellington, N. Z.
control point
(2000
km from
Wellington) | optimum working frequency = lower of (muf) × 0.85 | | |------|---|---|---|--| | 0000 | 27.0 | 22.0 | 18.7 | | | 0400 | 25.6 | 22.0 | 18.7 | | | 0800 | 16.6 | 9.7 | 8.3 | | | 1200 | 13.5 | 9.1 | 7.7 | | | 1600 | 16.5 | 8.5 | 7.2 | | | 2000 | 17.7 | 20.8 | 15.0 | | Transmission may also take place via other layers. For the purpose of illustration only and without reference to the problem above, Figs. 17 and 18 have been reproduced to show characteristics of the *E* and sporadic-*E* layers. The complete detailed step-by-step procedure, including special considerations in the use of this method, are contained in the complete CRPL forecasts. kilometer maximum usable frequency in megacycles predicted for July, 1955. Fig. 17-E-layer 2000- Fig. 18—Median fEs in megacycles (sporadic-E layer) predicted for July, 1955. continued #### Forecasts of high-frequency propagation Fig. 19—Field-intensity contours in microvolts/meter for 1 kilowatt radiated at 6 megacycles. Azimuthal equidistant projection centered on station at 40 degrees south latitude. Time is noon of a June day during a sunspot-minimum year. ## Contour charts of field intensity* World-coverage field-intensity contours are useful for determining the strength of an interfering signal from a given transmitter, as compared with the wanted signal from another transmitter. A sample instance of such a field-intensity-contour chart is shown in Figs. 19 and 20. The field is given in microvolts/meter for a 1-kilowatt station at 6 megacycles. Fig. 19 is an azimuthal equidistant projection centered on the transmitter (periphery of figure represents antipodes). Fig. 20, at twice the scale, is centered on ^{*} For sets of field-intensity contour charts, see "High-Frequency Radio Propagation Charts for Sunspot Minimum and Sunspot Maximum," Report CRPL—1-2, 3-1, National Bureau of Standards, Washington 25, D. C.; December 23, 1947. ## Forecasts of high-frequency propagation continued Fig. 20—Field intensity at antipodes, drawn to twice the scale of Fig. 19. antipodes, but for a half-sphere only. These diagrams are useful in determining the point on the surface of the earth where the field intensity is a minimum, the so-called dark spot. # **Great-circle calculations** #### Mathematical method Referring to Fig. 21, A and B are two places on the earth's surface the latitudes and longitudes of which are known. The angles X and Y at A and B of the great circle passing through the two places and the distance Z between A and B along the great circle can be calculated as follows: #### Great-circle calculations continued B= place of greater latitude, i.e., nearer the pole, $L_A=$ latitude of A, $L_B=$ latitude of B, and C= difference of longitude between A and B, Then, $$\tan \frac{Y - X}{2} = \cot \frac{C}{2} \frac{\sin \frac{L_B - L_A}{2}}{\cos \frac{L_B + L_A}{2}} \quad \text{and} \quad \tan \frac{Y + X}{2} = \cot \frac{C}{2} \frac{\cos \frac{L_B - L_A}{2}}{\sin \frac{L_B + L_A}{2}}$$ give the values of $\frac{Y-X}{2}$ and $\frac{Y+X}{2}$, #### Great-circle calculations continued from which $$\frac{Y+X}{2} + \frac{Y-X}{2} = Y \qquad \text{and} \qquad \frac{Y+X}{2} - \frac{Y-X}{2} = X$$ In the above formulas, north latitudes are taken as positive and south latitudes as negative. For example, if B is latitude 60° N and A is latitude 20° S, $$\frac{L_B + L_A}{2} = \frac{60 + (-20)}{2} = \frac{60 - 20}{2} = \frac{40}{2} = 20^{\circ}$$ $$\frac{L_B - L_A}{2} = \frac{60 - (-20)}{2} = \frac{60 + 20}{2} = \frac{80}{2} = 40^{\circ}$$ If both places are in the southern hemisphere and $L_B + L_A$ is negative, it is simpler to call the place of greater south latitude B and to use the above method for calculating bearings from true south and to convert the results afterwards to bearings east of north. The distance Z (in degrees) along the great circle between A and B is given by the following: $$\tan \frac{Z}{2} = \tan \frac{L_B - L_A}{2} \left(\sin \frac{Y + X}{2} \right) / \left(\sin \frac{Y - X}{2} \right)$$ The angular distance Z (in degrees) between A and B may be converted to linear distance as follows: Z (in degrees) \times 111.12 = kilometers Z (in degrees) \times 69.05 = statute miles Z (in degrees) \times 60.00 = nautical miles In multiplying, the minutes and seconds of arc must be expressed in decimals of a degree. For example, $Z=37^{\circ}~45'~36''$ becomes 37.755° . **Example:** Find the great-circle bearings at Brentwood, Long Island, Longitude 73° 15′ 10″ W, Latitude 40° 48′ 40″ N, and at Rio de Janeiro, Brazil Longitude 43° 22′ 07″ W, Latitude 22° 57′ 09″ S; and the great-circle distance in statute miles between the two points. 735 #### Great-circle calcu'ations | co | nti | πu | ed | |----|-----|----|----| | | longitude | latitude | 1 | |-----------------------------|--------------------------------|-----------------------------------|---------------------------------| | Brentwood
Rio de Janeiro | 73° 15′ 10″ W
43° 22′ 07″ W | 40° 48′ 40″ N
(-)22° 57′ 09″ S | L _s | | C | 29° 53′ 03″ | 17° 51′ 31″ | L _B + L _A | | C | 27 33 03 | 63° 45′ 49″ | $L_B - L_A$ | $$\frac{C}{2} = 14^{\circ} 56' 31''$$ $$\frac{L_B + L_A}{2} = 8^{\circ} 55' 45''$$ $$\frac{L_{\rm B}-L_{\rm A}}{2}=31^{\circ}\ 52'\ 54''$$ plus log cos 31° 52′ 54″ = $$\frac{9.92898}{0.50269}$$ minus log sin 8° 55′ 45″ = $$\frac{9.19093}{1.31176}$$ log tan $\frac{Y + X}{2}$ = $\frac{1.31176}{1.31176}$ $$\frac{Y+X}{2} = 87^{\circ} 12' 26''$$ plus log sin 31° 52′ 54″ = $$9.72277$$ 0.29648 minus log cos 8° 55′ 45″ = $$9.99471$$ log tan $\frac{Y - X}{2}$ = 0.30177 $$\frac{Y-X}{2} = 63^{\circ} 28' 26''$$ Bearing at Brentwood = $$\frac{Y + X}{2} + \frac{Y - X}{2} = Y = 150^{\circ} 40' 52''$$ East of North Bearing at Rio de Janeiro = $$\frac{Y + X}{2} - \frac{Y - X}{2} = X = 23^{\circ} 44' 00''$$ West of North $$\frac{L_B - L_A}{2} = 31^\circ 52' 54''$$ $$\frac{Y + X}{2} = 87^{\circ} 12' 26''$$ $$\frac{Y-X}{2} = 63^{\circ} 28' 26''$$ $$\log \tan 31^{\circ} 52' 54'' = 9.79379$$ plus log sin 87° 12′ 26″ = $$\frac{9.99948}{9.79327}$$ minus log sin 63° 28′ 26″ = $$9.95170$$ log tan $\frac{Z}{2}$ = 9.84157 $$\frac{Z}{2} = 34^{\circ} 46' 24''$$ $Z = 69^{\circ} 32' 48''$ #### **Great-circle calculations** continued ## Use of nomogram, Fig. 23* Note: Values near the ends of the nomogram scales of Fig. 23 are subject to error because the scales are compressed. If exact values are required in those regions, they should be calculated by means of the trigonometric formulas of the preceding section. **Method:** In Fig. 22, Z and S are the locations of the transmitting and receiving stations, where Z is the west and S the east end of the path. If a point lies in the southern hemisphere, its angle of latitude is always taken as negative. Northern-hemisphere latitudes are taken as positive. - a. To obtain from Fig. 23 the great-circle distance ZS (short route): - 1. Draw a slant line from (lat Z- lat S) measured up from the bottom on the left-hand scale to (lat Z+ lat S) measured down from the top on the right-hand scale. If (lat Z- lat S) or (lat Z+ lat S) is negative, regard it as positive. - 2. Determine the separation in longitude of the stations. Regard as positive. If the angle so obtained is greater than 180 degrees, then subtract from 360 degrees. Measure this angle along the bottom scale, and erect a vertical line to the slant line obtained in (1). - 3. From the intersection of the lines draw a horizontal line to the left-hand scale. This gives ZS in degrees. - 4. Convert the distance ZS to kilometers, miles, or nautical miles, by using the scale at the bottom of Fig. 23. Note: The long greatcircle route in degrees is simply 360 — ZS. The value will always be greater than 180 degrees. Therefore, in order to obtain the dis- Fig. 22—Diagram of transmission between points Z and S. For use with Fig. 23. ^{*} Taken from Bureau of Standards Radio Propagation Prediction Charts. #### Great-circle calculations continued Fig. 23—Nomogram (after D'Ocagne) for obtaining great-circle distances, bearings, solar zenith angles, and latitude and longitude of transmission-control points. With conversion scale for various units. #### Great-circle calculations continued tance in miles from the conversion scale, the value for the degrees in excess of 180 degrees is added to the value for 180 degrees. - **b.** To obtain the bearing angle PZS (short route): - 1. Subtract the short-route distance ZS in degrees obtained in (a) above from 90 degrees to get h. The value of h may be negative, but should always be regarded as positive. - 2. Draw a slant line from (lat Z h) measured up from the bottom on the left-hand scale to (lat Z + h) measured down from the top on the right-hand scale. If (lat Z h) or (lat Z + h) is negative, regard it as positive. - 3. From $(90^{\circ} \text{lat S})$ measured up from the bottom on the left-hand scale, draw a horizontal line until it intersects the previous slant line. - 4. From the point of intersection draw a vertical line to the bottom scale. This gives the bearing angle PZS. The angle may be either east or west of north, and must be determined by inspection of a map. - c. To obtain the bearing angle PSZ: - 1. Repeat steps (1), (2), (3), and (4) in (b) above, interchanging Z and S in all computations. The result obtained is the interior angle PSZ, in degrees. - 2. The bearing angle PSZ is 360 degrees minus the result obtained in (1) (as bearings are customarily given clockwise from due north). Note: The *long-route* bearing angle is simply obtained by adding 180 degrees to the short-route value as determined in (b) or (c) above. - **d.** To obtain the latitude of Q, the mid- or other point of the path (this calculation is in principle the converse of (b) above): - 1. Obtain ZQ in degrees.
If Q is the midpoint of the path, ZQ will be equal to one-half ZS. If Q is one of the 2000-kilometer control points, ZQ will be approximately 18 degrees, or $ZS-18^{\circ}$. - 2. Subtract ZQ from 90 degrees to get h'. If h' is negative, regard it as positive. - 3. Draw a slant line from (lat Z-h') measured up from the bottom on the left-hand scale, to (lat Z+h') measured down from the top on the right-hand scale. If (lat Z-h') or (lat Z+h') is negative, regard it as positive. - **4.** From the bearing angle *PZS* (taken always as less than 180 degrees) measured to the right on the bottom scale, draw a vertical line to meet the above slant line. - 5. From this intersection draw a horizontal line to the left-hand scale. #### Great-circle calculations continued - 6. Subtract the reading given from 90 degrees to give the latitude of Q. (If the answer is negative, then Q is in the southern hemisphere.) - **e.** To obtain the longitude difference t' between Z and Q (this calculation is in principle the converse of (a) above): - 1. Draw a straight line from (lat $Z-\operatorname{lat} Q$) measured up from the bottom on the left-hand scale to (lat $Z+\operatorname{lat} Q$) measured down from the top on the right-hand scale. If (lat $Z-\operatorname{lat} Q$) or (lat $Z+\operatorname{lat} Q$) is negative, regard it as positive. - 2. From the left-hand side, at ZQ, in degrees, draw a horizontal line to the above slant line. - 3. At the intersection drop a vertical line to the bottom scale, which gives t' in degrees. #### Available maps and tables Great-circle initial courses and distances are conveniently determined by means of navigation tables such as - a. Navigation Tables for Navigators and Aviators—HO No. 206. - b. Dead-Reckoning Altitude and Azimuth Table—HO No. 211. - c. Large Great-Circle Charts: HO Chart No. 1280-North Atlantic 1281—South Atlantic 1282—North Pacific 1283-South Pacific 1284---Indian Ocean The above tables and charts may be obtained at a nominal charge from United States Navy Department Hydrographic Office, Washington, D. C. ## Ionospheric scatter propagation* This type of transmission permits communication in the frequency range from approximately 25 to 60 megacycles and over distances from about 600 to 1200 miles. It is believed that this type of propagation is due to scattering from the lower E layer of the ionosphere and that the useful bandwidth is restricted to less than 10 kilocycles. The greatest use for this type of transmission has been for printing-telegraph channels. ^{*} D. K. Bailey, R. Bateman, and R. C. Kirby, "Radio Transmission at VHF by Scattering and Other Processes in the Lower Ionosphere," *Proceedings of the IRE*, volume 43, pages 1181-1231; October, 1955. #### lonospheric scatter propagation continued The median attenuation over paths of between 800 and 1000 miles in length is about 80 decibels below free-space path attenuation at 30 megacycles and about 90 decibels below free-space value at 50 megacycles. #### Ultra-high-frequency line-of-sight conditions Example shown: Height of receiving antenna 60 feet, height of transmitting antenna 500 feet, and maximum radio-path length =41.5 miles. Fig. 24—Nomogram giving radio-horizon distance in miles when $h_{ m r}$ and $h_{ m f}$ are known. #### Straight-line diagrams The index of refraction of the normal lower atmosphere (troposphere) decreases with height so that radio rays follow a curved path, slightly bent downward toward the earth. If the real earth is replaced by a fictitious Example shown: Height of receiving-antenna airplane 8500 feet (1.6 miles), height of transmitting-antenna airplane 4250 feet (0.8 mile); maximum radio-path distance = 220 miles. Fig. 25—Nomogram giving radio-path length and tangential distance for transmission between two airplanes at heights h_r and h_ℓ . earth having an enlarged radius 4/3 times the earth's true radius (3963 \times 4/3 = 5284 miles), the radio rays may be drawn on profiles as straight lines. The radio distance to effective horizon is given with a good approximation by $$d = (2h)^{\frac{1}{3}}$$ where h = height in feet above sea level d = radio distance to effective horizon in miles when the height is very small compared to the earth's radius. Over a smooth earth, a transmitter antenna at height h_t (feet) and a receiving antenna at height h_τ (feet) are in radio line-of-sight provided the spacing in miles is less than $(2h_t)^{\frac{14}{2}} + (2h_\tau)^{\frac{14}{2}}$. The nomogram in Fig. 24 gives the radio-horizon distance between a transmitter at height h_t and a receiver at height h_τ . Fig. 25 extends the first nomogram to give the maximum radio-path length between two airplanes whose altitudes are known. ## Path plotting and profile-chart construction Path plotting: When laying out a microwave system, it is usually convenient to plot the path on a profile chart. This chart is scaled to indicate the departure of the curvature of the earth from a straight line. Referring to Fig. 26, $$D^2 + R^2 = (h + R)^2 = h^2 + 2Rh + R^2$$ $$D^2 = h^2 + 2Rh$$ where D = distance R = radius of earth h = altitude Since $h \ll R$. $$D = (2Rh)^{\frac{1}{2}}$$ and inserting the earth's radius, with R and D in statute miles and h in feet. $$D = \left(\frac{2 \times 3900}{5280} h\right)^{\frac{1}{2}}$$ Fig. 26—Straight line tangent to earth's surface. $$D = [(3/2)h]^{\frac{1}{2}}$$ $$h = (2/3)D^2$$ for true earth. Using 4/3-earth-radius correction factor, $$D = [(3/2)h]^{\frac{1}{2}} (4/3)^{\frac{1}{2}} = (2h)^{\frac{1}{2}}$$ $$h = D^2/2$$ Other radius correction factors can be calculated accordingly. Fig. 27—Typical 4/3-earth profile paper, 1000-foot scale. **Profile paper:** Using a 4/3-radius correction factor, the departure from a level tangent line is $$h = D^2/2$$ where symbols are as above. Using this formula, a template can be made for convenient drawing of profile paper (Fig. 27). For instance, if the horizontal scale is 10 miles/inch, the vertical scale 100 feet/inch, and a width corresponding to 40 miles is desired, the following points may be plotted: | distance
from center
(horizontal) | distance
from level
(vertical) | | | |--|--------------------------------------|---|--| | 0 miles = 0 inches | an d | $0 ext{ feet} = 0 ext{ inches}$ | | | $5 \text{ miles} = \frac{1}{2} \text{ inch}$ | and | $12\frac{1}{2}$ feet = $\frac{1}{8}$ inch | | | 10 miles = 1 inch | and | 50° feet $=\frac{1}{2}$ inch | | | 15 miles = $1\frac{1}{2}$ inches | and | $112\frac{1}{2}$ feet = $1\frac{1}{8}$ inches | | | 20 miles = 2 inches | and | 200 feet $= 2$ inches | | A typical example of a template constructed according to these figures is given in Fig. 28. If it is desired to use a different scale than is provided Fig. 28—Canstruction of a template for profile charts. Drawing is actual size. on available profile-chart paper; for example, if a 50-mile hop is to be plotted on 30-mile paper, then the scale of miles may be doubled to extend the range of the paper to 60 miles. The vertical scale in feet must then be quadrupled; i.e., 100-foot divisions become 400-foot divisions. (Fig. 27) #### Fresnel-zone clearance at uhf A criterion to determine whether the earth is sufficiently removed from the radio line-of-sight ray to allow mean free-space propagation conditions to apply is to have the first Fresnel zone clear all obstacles in the path of the rays. This first zone is bounded by points for which the transmission path from transmitter to receiver is greater by one-half wavelength than the direct path. Let d be the length of the direct path and d_1 and d_2 be the distances to transmitter and receiver. The radius of the first Fresnel zone corresponding to d_2 is approximately given by $$R_{1^{2}} = \lambda \frac{d_{1}d_{2}}{d}$$ where all quantities are expressed in the same units. The maximum occurs when $d_1 = d_2$ and is equal to $$R_{1m} = \frac{1}{2} (\lambda d)^{\frac{1}{2}}$$ Expressing d in miles and frequency F in megacycles/second, the first Fresnel-zone radius at half distance is given in feet by $$R_{1m} = 1140(d/F)^{\frac{1}{2}}$$ While a fictitious earth of 4/3 of true earth radius is generally accepted for determining first Fresnel-zone clearance under normal refraction condition, unusual conditions that occur in the atmosphere occasionally may make it desirable to allow Fresnel clearance of a fictitious earth radius of as little as 2/3 of the true radius. ## Interference between direct and reflected uhf rays Where there is one reflected ray combining with the direct ray at the receiving point (Fig. 29), the resulting field strength (neglecting the difference in angles of arrival, and assuming perfect reflection at T) is related to the free-space intensity by the following equation, irrespective of the polarization: $$E = 2E_d \sin 2\pi \frac{\delta}{2\lambda}$$ $$\frac{h_{af}}{r_{effective}} \frac{\delta}{r_{af}}$$ $$\frac{h_{af}}{r_{effective}} \frac{\delta}{r_{af}}$$ $$\frac{h_{af}}{r_{effective}} \frac{\delta}{r_{af}}$$ $$\frac{\delta}{r_{af}}$$ $$\frac{\delta}{r_{a$$ Fig. 29—Interference between direct and reflected rays. where $$E = \text{resulting field strength}$$ same units $E_d = \text{direct-ray field strength}$ $\delta=$ geometrical length difference between direct and reflected paths, which is given to a close approximation by $$\delta = 2h_{at}h_{ar}/d$$ if h_{at} and h_{ar} are the heights of transmitter and receiver points above reflecting plane on effective earth. The following cases are of interest: $$E = 0$$ for $h_{at}h_{ar} = d\lambda/2$ $$E = 2E_d$$ for $h_{at}h_{ar} = d\lambda/4$ $$E = E_d$$ for $h_{at}h_{ar} = d\lambda/12$ In case $$h_{at} = h_{ar} = h$$, $$E = 0$$ for $h = (d\lambda/2)^{\frac{1}{2}}$ $$E = 2E_d$$ for $h = (d\lambda/4)^{1/3}$ $$E = E_d$$ for $h = (d\lambda/12)^{\frac{1}{2}}$ All of these formulas are
written with the same units for all quantities. # Space-diversity reception When h_{ar} is varied, the field strength at the receiver varies approximately according to the preceding formula. The use of two antennas at different heights provides a means of compensating to a certain extent for changes in electrical-path differences between direct and reflected rays by selection of the stronger signal (space-diversity reception). The spacing should be approximately such as to give a $\lambda/2$ variation between geometrical-path differences in the two cases. An approximate value of the spacing is given by $\lambda d/4h_{at}$ when all quantities are in the same units. The spacing in feet for d in miles, h_{at} in feet, λ in centimeters, and f in megacycles is given by spacing = $$43.4 \text{ } \lambda d/h_{at}$$ = $1.3 \times 10^6 \text{ } d/fh_{at}$ **Example:** $\lambda = 3$ centimeters, d = 20 miles, and $h_{at} = 50$ feet; therefore spacing = 52 feet Assuming $h_{ar} = h_{at}$, the total height of the receiving point in this case would be 70 + 50 + 52 = 172 feet The value 70 (minimum for line-of-sight) is obtained from Fig. 24. #### Variation of field strength with distance Fig. 30 shows the variation of resulting field strength with distance and frequency; this effect is due to interference between the free-space wave and the ground-reflected wave as these two components arrive in or out of phase. To compute the field accurately under these conditions, it is necessary to calculate the two components separately and to add them in correct phase relationship. The phase and amplitude of the reflected ray is determined by the geometry of the path and the change in magnitude and phase at ground reflection. For horizontally polarized waves, the reflection coefficient can be taken as approximately one, and the phase shift at reflection as 180 degrees, for nearly all types of ground and angles of incidence. For vertically polarized waves, the reflection coefficient and phase shift vary appreciably with the ground constants and angle of incidence. (See Fig. 31 of "Antennas" chapter.) Measured field intensities usually show large deviations from point to point due to reflections from irregularities in the ground, buildings, trees, etc. ## Fading at ultra-high frequencies Line-of-sight propagation at ultra-high frequencies is affected both by signal-strength variations due to multipath transmission and by bending of the beam due to abnormal variation of refractive index with height in the lower atmosphere. As previously noted, normal atmospheric refraction results in a moderate extension of the radio transmission path beyond the geometric horizon. It should be noted, however, that relatively stable and widespread departures from average refraction occur frequently and may be roughly predicted from a sufficiently detailed knowledge of local meteorological data. The atmospheric water-vapor gradient is of primary importance, with the vertical temperature gradient exerting a significant supplementary effect. This can result either in a loss of signal on a line-of-sight path or in the production of "mirage" effects that may extend communication far beyond the normally expected range. The fading due to an upward bending of the beam may generally be minimized by allowing for Fresnel clearance over an earth of normal or perhaps reduced radius. The downward bending that results in interference to other systems in direct line can be minimized Fig. 30—Variation of resultant field strength with distance and frequency. For information on ultra-high-frequency propagation beyond the horizon, see pp. 739 and 757. ## Ultra-high-frequency line-of-sight conditions continued by cross-polarizing the radiation on the interfering paths or eliminated by staggering the paths so that those on the same frequency are not in direct line. Multipath fading is largely due to interference with the direct path of signals reflected from layers of abnormal water-vapor or temperature gradient. Continuity of communication service is greatly improved by the use of either space or frequency diversity. For transmission paths of the order of 30 miles, good engineering practice should allow for possible increases of signal strength of +10 decibels with respect to free-space propagation and should allow a fading margin depending on the degree of reliability desired in accordance with the following: 10 decibels—90 percent 20 decibels—99 percent 30 decibels—99.9 percent 40 decibels-99.99 percent ## Atmospheric absorption Oxygen and water vapor may absorb energy from a radio wave by virtue of the permanent electric dipole moment of the water molecule and the permanent magnetic dipole moment of the oxygen molecule. Fig. 31 shows the water-vapor absoprtion and oxygen absorption as a function of wavelength. The water-vapor absorption curve is based on extensive measurements centered about a wavelength of 1.3 centimeters (frequency = 23,000 megacycles); the quantitative accuracy of the rest of this curve is less Fig. 31—Atmospheric absorption versus wavelength. The water-vapor curve is for 10 grams/meter³ (66 percent relative humidity at 18° centigrade) and the oxygen curve was taken on a sample of gas at 15 centimeters mercury pressure. certain. The oxygen absoprtion rises to a maximum at 5 millimeters wavelength; this has been quantitatively verified by direct measurements. # Free-space transmission formulas for uhf links #### Free-space attenuation Let the incoming wave be assimilated to a plane wave with a power flow per unit area equal to P_0 . The available power at the output terminals of a receiving antenna may be expressed as $$P_r = A_r P_0$$ where Ar is the effective area of the receiving antenna. The free-space path attenuation is given by Attenuation = $$10 \log \frac{P_t}{P_r}$$ where P_t is the power radiated from the transmitting antenna (same units as for P_r). Then $$\frac{P_r}{P_t} = \frac{A_r A_t}{d^2 \lambda^2}$$ where $A_r =$ effective area of receiving antenna A_t = effective area of transmitting antenna $\lambda = wavelength$ d = distance between antennas The length and surface units in the formula should be consistent. This is valid provided $d \gg 2a^2/\lambda$, where a is the largest linear dimension of either of the antennas. ## Effective areas of typical antennas Hypothetical isotropic antenna (no heat loss) $$A = \frac{1}{4\pi} \lambda^2 \approx 0.08 \lambda^2$$ 751 # Free-space transmission formulas for uhf links continued Small uniform-current dipole, short compared to wavelength (no heat loss) $$A = \frac{3}{8\pi} \lambda^2 \approx 0.12 \lambda^2$$ Half-wavelength dipole (no heat loss) $$A \approx 0.13 \lambda^2$$ Parabolic reflector of aperture area S (here, the factor 0.54 is due to non-uniform illumination of the reflector) $$A \approx 0.54 \text{ S}$$ Very long horn with small aperture dimensions compared to length $$A = 0.81 S$$ Horn producing maximum field for given horn length $$A = 0.45 \, S$$ The aperture sides of the horn are assumed to be large compared to the wavelength. # Path attenuation between isotropic antennas This is $$\frac{P_t}{P_c} = 4.56 \times 10^3 f^2 d^2$$ where $$f = megacycles/second$$ $$d = miles$$ Path attenuation α (in decibels) is $$\alpha = 37 + 20 \log f + 20 \log d$$ A nomogram for the solution of α is given in Fig. 32. #### Gain with respect to hypothetical isotropic antennas Where directive antennas are used in place of isotropic antennas, the transmission formula becomes $\alpha = 37 + 20 \log f + 20 \log d$ decibels Example shown: distance 30 miles, frequency 5000 megacycles; attenuation = 141 decibels Fig. 32—Nomogram for solution of path attenuation α between isotropic antennas $$\frac{P_r}{P_t} = G_t G_r \left[\frac{P_r}{P_t} \right]_{\text{isotropic}}$$ where G_t and G_r are the power gains due to the directivity of the transmitting and receiving antennas, respectively. The apparent power gain is equal to the ratio of the effective area of the antenna to the effective area of the isotropic antenna (which is equal to $\lambda^2/4\pi \approx 0.08 \ \lambda^2$). The apparent power gain due to a parabolic reflector is thus $$G = 0.54 \left(\frac{\pi D}{\lambda}\right)^2$$ where D is the aperture diameter, and an illumination factor of 0.54 is assumed. In decibels, this becomes $$G_{db} = 20 \log f + 20 \log D - 52.6$$ #### where f = megacycles/secondD = aperture diameter in feet The solution for Gab may be found in the nomogram, Fig. 33. ## Beam angle The beam angle θ in degrees is related to the apparent power gain G of a parabolic reflector with respect to isotropic antennas approximately by $$\theta^2 \approx \frac{27,000}{G}$$ Since $G = 5.5 \times 10^{-6} D^2 f^2$, the beam angle becomes $$\theta \approx \frac{7 \times 10^4}{fD}$$ where θ = beam angle between 3-decibel points in degrees f = frequency in megacycles D = diameter of parabola in feet $10 \log G = 20 \log f + 20 \log D - 52.6$ Exomple shown: Frequency 3000 megacycles, diameter 6 feet; gain = 32 decibels Fig. 33—Nomogram for determination of apparent power gain G_{db} (in decibets) of a parabolic reflector. # Transmitter power for a required output signal/noise ratio Using the above expressions for path attenuation and reflector gain, the ratio of transmitted power to theoretical receiver noise, in decibels, is given by $$10 \log \frac{P_t}{P_p} = A_p + \frac{S}{N} + (nf) - G_t - G_r - (nif)$$ where S/N = required signal/noise ratio at receiver in decibels (nf) = noise figure of receiver in decibels (see chapter "Radio noise and interference" for definition) (nif) = noise improvement factor in decibels due to modulation methods where extra bandwidth is used to gain noise reduction (see chapter "Modulation" for definition) P_n = theoretical noise power in receiver (see chapter "Radio noise and interference") P_t = radiated transmitter power $G_t = gain of
transmitting antenna in decibels$ G_r = gain of receiving antenna in decibels A_p = path attenuation in decibels An equivalent way to compute the transmitter power for a required output signal/noise ratio is given below directly in terms of reflector dimensions and system parameters: a. Normal free-space propagation, $$P_t = \frac{\beta_1 \beta_2}{40} \frac{BL^2}{f^2 r^4} \frac{F}{K} \frac{S}{N}$$ b. With allowance for fading, $$P_{t} = \frac{\beta_{1}\beta_{2}}{40} \frac{BL^{2}}{f^{2}r^{4}} \frac{F}{K} \sigma \left(\frac{S}{N}\right)_{m}$$ c. For multirelay transmission in n equal hops, $$P_{t} = \frac{\beta_{1}\beta_{2}}{40} \frac{BL^{2}n}{f^{2}r^{4}} \frac{F}{K} \sigma \left(\frac{S}{N}\right)_{nm}$$ ## Free-space transmission formulas for uhf links continued d. Signal/noise ratio for nonsimultaneous fading is $10 \log (S/N)_n = 10 \log \sigma (S/N)_{1n} - 10 \log \bar{n}$ where P_t = power in watts available at transmitter output terminals (kept constant at each repeater point) $oldsymbol{eta_1}=$ loss power ratio (numerical) due to transmission line at transmitter β_2 = same as β_1 at receiver B = root-mean-square bandwidth (generally approximated to bandwidth between 3-decibel attenuation points) in megacycles L = total length of transmission in miles f = carrier frequency in megacycles/second r = radius of parabolic reflectors in feet F = power-ratio noise figure of receiver (a numerical factor; see chapter "Radio noise and interference") K = improvement in signal/noise ratio due to the modulation utilized. For instance, $K = 3m^2$ for frequency modulation, where m is the ratio of maximum frequency deviation to maximum modulating frequency. Note that this is the numerical power ratio. σ = numerical ratio between available signal power in case of normal propagation to available signal power in case of maximum expected fading S/N = required signal/noise power ratio at receiver $(S/N)_m$ = minimum required signal/noise power ratio in case of maximum expected fading $(S/N)_{nm}$ = same as above in case of n hops, at repeater number n $(S/N)_{1m}$ = same as above at first repeater $(S/N)_n$ = same as above at end of n hops n = number of equal hops m = number of hops where fading occurs $\bar{n} = n - m + \sum_{1}^{m} \sigma_{k}$ σ_{k} = ratio of available signal power for normal conditions to available signal power in case of actual fading in hop number k (equation holds in case signal power is increased instead of decreased by abnormal propagation or reduced hop distance) ## Free-space transmission formulas for uhf links continued #### Passive reflectors distant from radiators In some cases where obstacles in the path prevent line-of-sight conditions, it is feasible to reflect the signal from one antenna to the other by means of a plane surface located in the beam. Under conditions in which the reflecting surface is at least 1000 feet from either antenna, the attenuation between the two radiators may be calculated by: (attenuation in decibels) = 10 log $[1.25 \times 10^{17} (D_1D_2/A)^2]$ where D_1 , D_2 = distance in miles A = effective area of reflector in feet² = projected area normal to path Fig. 34 indicates the path attenuation between isotropic radiators for various common sizes of passive reflectors. 1.0 120 130 140 150 160 170 180 path attenuation in decibels Fig. 34—Use of a passive reflector distant from both antennas. ## Tropospheric scatter propagation Weak but reliable fields are propagated several hundred miles beyond the horizon in the frequency band from about 40 to 4000 megacycles. The received power at these frequencies, and at points 30 miles or more beyond the horizon, is relatively independent of frequency and antenna height, but the hour-to-hour and day-to-day median carrier levels may be considerably influenced by atmospheric refraction. With beyond-the-horizon propagation at these frequencies, there are two types of fading: In one, the amplitude has Rayleigh distribution over short periods when the tropospheric conditions can be considered constant. This fast fading is due to the existence of several paths differing slightly in length and may be considerably reduced by the use of diversity. The second type of fading is much slower and is caused chiefly by variations ## Tropospheric scatter propagation continued in the gradient of the refractive index of the atmosphere; this type of fading is little affected by diversity. ### Design Chart* A summary of several well-known factors and of propagation data available as of mid 1956 is given in Fig. 35 to facilitate the selection of equipment and for computing the carrier-to-noise ratio for tropospheric propagation beyond the horizon. Three sample computations are given in Fig. 36 to demonstrate the use of the appropriate curves to derive in an orderly fashion the necessary information. Certain data, such as antenna gain or receiver noise factor, may be available from other sources for the specific equipment to be used. The distribution of excess scatter loss L_{BH} represents winter hourly medians in the temperate zone so that considerable signal increase may be expected under more-favorable meteorological conditions. The 50 percent L_{BH} curve is for the median value that will be exceeded 50 percent of the time; or conversely, the design resulting from the use of this loss has a reliability of 50 percent. The additional margin required for a reliability of 99.9 percent is shown in the next to the bottom line of the table. To simplify Fig. 35, it was designed to be entered with $10d_{ft}$ and $0.1P_w$. ^{*} Reprinted from: F. J. Altmon, "Design Chart for Tropospheric Beyond-the-Horizon Propagation," Electrical Communication, vol. 33, pp. 165-167; June, 1956. # Tropospheric scatter propagation continued frequency in megacycles = f_{mc} bandwidth in kilocycles = b_{kc} range in miles $= r_{ml}$ divide scale by 10 for antenna diameter in feet = $10d_{fg}$ multiply scale by IO for power in watts = $0.1p_w$ Fig. 35—Design chart for tropospheric scatter propagation. Fig. 36—Computations for beyond-the-horizon links. | | | Ž. | exem | exemple 1 | #BX8 | example 2 | exam | example 3 | |--|---|---------|--------|-----------|---------|-----------|--------|-----------| | symbol and factor | equation | Fig. 35 | given | decibels | given | decibels | given | decibels | | F = frequency | 20 log fmc | u. | 900 mc | 89 | 2000 mc | 3 | 300 mc | 90 | | R = range | 20 log r _m s | œ | 90 mi | 39 | 200 mi | 46 | 400 mi | 52 | | $K_p = \text{propagation constant}$ | Séë p. 751 | 1 | ı | 37 | I | 37 | ı | 37 | | LFS = free-space loss | F + R + Kp | 1 | 1 | 135 | 1 | 149 | I | 139 | | $L_{BH}=$ median beyond-the-horizon loss | See note 1 | 705 на₁ | 90 mi | 54 | 200 mi | 72 | 400 mi | 88 | | $L_T=$ terminal loss | 5 log fme-10 | LŢ | 900 шс | 3 | 2000 mc | 9 | 300 шс | e | | L = total loss | $l_{FS} + l_{BH} + l_T$ | 1 | I | 194 | I | 227 | 1 | 240 | | D = antenna diameter | 20 log 10 d _{ft} | Q | 28 ft | 49 | 4) 09 | 55 | 100 ft | 09 | | F = frequency | 20 log fme | u, | 900 mc | 59 | 2000 шс | 99 | 300 mc | 20 | | Sum | D+F | 1 | ļ | 108 | | 121 | 1 | 011 | | $K_{m{a}}=$ antenna constant | Use p. 753 , add 20 db for 10d _{ft} | ł | 1 | 73 | | 73 | ı | 73 | | G' = antenna gain, uncorrected | D+F-K. | l | I | 35 | ı | 48 | ı | 37 | | Gain for 2 antennas | 26' | ı | 1 | 20 | l | % | l | 74 | | | | | | | | | • | | continued Tropospheric scatter propagation | 2 | 72 | 47 | 119 | -121 | 78 | 5 | 83 | 184 | 151 | 30 | 10 | 20 | |--|-------------------------|------------------|------------------------|--|-----------------------------|-------------------------------|-----------|-------------------------------|------------------------------|----------------------------|---------------------------------|-----------------------| | ı | 1 | 50 kw | | ı | 60 kc | 300 шс | 1 | 293°K | 1 | 1 | 400 mi | I | | 4 | % | 40 | 132 | -95 | 38 | ٥ | 47 | 184 | -137 | 42 | 15 | 27 | | | 1 | 10 kw | 1 | l . | 600 kc | 2000 mc | 1 | 293°K | 1 | 1 | 200 mi | ı | | 2 | 89 | 27 | 9.5 | 66-1 | 33 | ٥ | 42 | 184 | -142 | 43 | 18 | 25 | | l | l | × 005 | 1 | 1 | 200 kc | эш 006 | j | 293°K | ı | 1 | 90 mi | ı | | ļ | 1 | ٩ | 1 | 1 | В | Z | 1 | | 1 | | l_{BH} | I | | See note 2 | 2G' — Le | 10 log P. | $G_N + P$ | $G_T - L$ | 10 log b _{ke} + 10 | I | $8 + F_N$ | 0.01 kT° | $K_N - (B_1^3 + F_N)$ | Q-2 | 50%-99.9% | $(C-N)-\Delta l_{BH}$ | | $L_{\it o} = {\it antenna aperture-to-medium coupling loss}$ | $G_N=$ net antenna gain | P = power ratio | $G_{m{T}}=$ total gain | C = median carrier at receiver
in db below 1 watt | 8 = bandwidth | $F_N = \text{receiver noise}$ | Sum | $K_N = \text{noise constant}$ | N = noise in db below 1 watt | C/N = median carrier/noise | $\Delta l_{BH} = fading margin$ | Minimum long-term C/N | Note 2: Aperture-to-medium coupling loss has been measured as being 4.5 decibels for 46-decibel-gain with antennas 150 miles apart. For much lower gains Note 1: W. E. Morrow, "Ultra-High-Frequency Transmissions Over Paths of 300 to 600 Miles", presented at Symposium on Scatter Propagation of the New York Section of the Institute of Radio Engineers, New York, New York, on January 14, 1956. and for distances substantially shorter or longer, this loss may be negligible. #### ■ Radio noise and interference ## Noise and its sources Noise and interference from other communication systems are two factors limiting the useful operating range of all radio equipment. The values of the main different sources of radio noise versus frequency are plotted in Fig. 1. Atmospheric noise is shown in Fig. 1 as the average peaks read on the indicating instrument of an ordinary field-intensity meter. This is lower than the true peaks
of atmospheric noise. Man-made noise is shown as the peak values that would be read on the radio noise meters specified in proposed American Standards C63.2 and C63.3. Receiver and antenna noise is that obtained with an energy-averaging device such as a thermo-ammeter. #### Atmospheric noise This noise is produced mostly by lightning discharges in thunderstorms. The noise level is thus dependent on frequency, time of day, weather, season of the year, and geographical location. Subject to variations due to local stormy areas, noise generally decreases with increasing latitude on the surface of the globe. Noise is particularly severe during the rainy seasons in certain areas such as Caribbean, East Indies, equatorial Africa, northern India, etc. Fig. 1 shows median values of atmospheric noise for the U. S. A. and these values may be assumed to apply approximately to other regions lying between 30 and 50 degrees latitude north or south. Rough approximations for atmospheric noise in other regions may be obtained by multiplying the values of Fig. 1 by the following factors: | | nigh | ttime | day | time | |---------------------|----------|---------|----------|---------| | degrees of latitude | 100 kc/s | 10 mc/s | 100 kc/s | 10 mc/s | | 90-50 | 0.1 | 0.3 | 0.05 | 0.1 | | 50-30 | 1 | 1 | 1 | 1 | | 30-10 | 2 | 2 | 3 | 2 | | 10- 0 | 5 | 4 | 6 | 3 | Atmospheric noise is the principal limitation of radio service on the lower frequencies. At frequencies above about 30 megacycles, the noise falls to levels generally lower than receiver noise. The peak amplitude of atmospheric noise usually may be assumed to be proportional to the square root of receiver bandwidth. #### Noise and its sources continued - 1. All curves assume a bandwidth of 10 kilocycles/second. - Refer to Fig. 3 for converting man-made-noise curves to bandwidths greater than 10 kilocycles. For all other curves, noise amplitude varies as the square root of bandwidth. - The curve of receiver noise shows the field intensities required to equal the receiver noise assuming - The use of a half-wave-dipole antenna. - b. A receiver noise level greater than the ideal receiver level by a factor varying from 2 decibels at 50 megacycles to 9 decibels at 1000 megacycles. - 4. Transmission-line loss is not considered in the calculations. - 5. For antennas having a gain with respect to a half-wave dipole, equivalent noise-field intensities are less than indicated above in proportion to the net gain of the antennatransmission-line combination. Fig. 1—Major sources of radio-frequency noise, showing amplitudes at various frequencies. For the U.S.A. and regions of similar latitude. ## Noise and its sources continued #### Cosmic and solar noise* Fig. 2 shows the level of cosmic and solar noise relative to receiver noise when using a half-wave dipole. The noise levels shown in this figure refer to the following sources of cosmic and solar noise. Fig. 2—Cosmic and solar noise levels for a half-wave-dipole receiving antenna. Galactic plane: Cosmic noise from the galactic plane in the direction of the center of the galaxy. The noise levels from other parts of the galactic plane are between 10 and 20 decibels below the levels given in Fig. 2. Quiet sun: Noise from the "quiet" sun; that is, solar noise at times when there is little or no sunspot activity. **Disturbed sun:** Noise from the "disturbed" sun. The term disturbed refers to times of sunspot and solar-flare activity. Cassiopeia: Noise from a high-intensity discrete source of cosmic noise known as Cassiopeia. This is one of more than a hundred known discrete sources, each of which subtends an angle at the earth's surface of less than 30 minutes of angle. The levels of cosmic and solar noise received by an antenna directed at a noise source may be estimated by correcting the relative noise levels with a half-wave dipole (from Fig. 2) for the receiving-antenna gain realized on the noise source. Since the galactic plane is an extended nonuniform ^{*} B. Lovell and J. A. Clegg, "Radio Astronomy," John Wiley & Sons, Inc., New York, N. Y. Chapman and Hall, Limited, London England: 1952. Also, J. L. Pawsey and R. N. Brocewell; "Radio Astronomy," Clarendon Press, Oxford, England; 1955. #### Noise and its sources continued noise source, free-space antenna gains cannot be realized and 10 to 15 decibels is approximately the maximum antenna gain that can be realized here. However, on the sun and other discrete sources of cosmic noise, antenna gains of 50 decibels or more can be had. #### Man-made noise This includes interference produced by sources such as motorcar ignition, electric motors, electric switching gear, high-tension line leakage, diathermy, industrial-heating generators. The field intensity from these sources is greatest in densely populated and industrial areas. The nature of man-made noise is so variable that it is difficult to formulate a simple rule for converting 10-kilocycle-bandwidth receiver measurements to other bandwidth values. For instance, the amplitude of the field strength radiated by a diathermy device will be the same in a 100- as in a 10-kilocycle bandwidth receiver. Conversely, peak-noise field strength due to automobile ignition will be considerably greater with a 100- than with a 10-kilocycle bandwidth. According to the best available information, the peak field strengths of man-made noise (except diathermy and other narrow-band noise) increases as the receiver bandwidth is increased, substantially as shown in Fig. 3. The man-made noise curves in Fig. 1 show typical median values for the U.S.A. In accordance with statistical practice, median values are interpreted to mean that 50 percent of all sites will have lower noise levels than the Fig. 3—Bandwidth factor. Multiply value of man-made noise from Fig. 1 by the factor above for receiver bandwidths greater than 10 kilocycles. ### Noise and its sources continued values of Fig. 1; 70 percent of all sites will have noise levels less than 1.9 times these values; and 90 percent of all sites, less than 7 times these values. #### Thermal noise Thermal noise is caused by the thermal agitation of electrons in resistances. Let R = resistive component in ohms of an impedance Z. The mean-square value of thermal-noise voltage is given by $$F^2 = 4 R kT \cdot \Delta f$$ where $k = Boltzmann's constant = 1.38 \times 10^{-23} joules/degree Kelvin$ T = absolute temperature in degrees Kelvin $\Delta f = \text{bandwidth in cycles/second}$ E = root-mean-square noise voltage The above equation assumes that thermal noise has a uniform distribution of power through the bandwidth Δf . In case two impedances Z_1 and Z_2 with resistive components R_1 and R_2 are in series at the same temperature, the square of the resulting root-mean-square voltage is the sum of the squares of the root-mean-square noise voltages generated in Z_1 and Z_2 ; $$E^2 = E_1^2 + E_2^2 = 4(R_1 + R_2) kT \cdot \Delta f$$ In case the same impedances are in parallel at the same temperature, the resulting impedance Z is calculated as is usually done for alternating-current circuits, and the resistive component R of Z is then determined. The root-mean-square noise voltage is the same as it would be for a pure resistance R. It is customary in temperate climates to assign to T a value such that 1.38T=400, corresponding to about 17 degrees centigrade or 63 degrees Fahrenheit. Then $$E^2 = 1.6 \times 10^{-20} R \cdot \Delta f$$ ## Noise in ampliflers The ultimate sensitivity of an amplifier is set by the noise inherent to its input stage. For discussions of the noise produced in electron tubes and intransistors, refer to the pertinent chapters. ### Noise measurements — noise figure #### Measurement for broadcast receivers* For standard broadcast receivers, the noise properties are determined by means of the equivalent noise sideband input (ensi). The receiver is connected as shown in Fig. 4. Fig. 4—Measurement of equivalent noise sideband input of a broadcast receiver. Components of the standard dummy antenna are $C_1 = 200$ micromicrofarads $C_2 = 400$ micromicrofarads L = 20 microhenries R = 400 ohms The equivalent noise sideband input (ensi) = $$m E_s \sqrt{P'_n/P'_s}$$ where $E_s = \text{root-mean-square unmodulated carrier-input voltage}$ m = degree of modulation of signal carrier at 400 cycles/second $P'_{\rm A} = {\rm root\text{-}mean\text{-}square signal\text{-}power output}$ when signal is applied P'_n = root-mean-square noise-power output when signal input is reduced to zero It is assumed that no appreciable noise is transferred from the signal generator to the receiver, and that *m* is small enough for the receiver to operate without distortion. ^{*&}quot;Standards on Radio Receivers: Methods of Testing Broadcast Radio Receivers, 1938," published by The Institute of Radio Engineers, 1942. ### Noise measurements — noise figure continued #### Noise flaure of a receiver A more precise evaluation of the quality of a receiver as far as noise is concerned is obtained by means of its noise figure.* It should be clearly realized that the noise figure evaluates only the linear part of the receiver, i.e., up to the demodulator. Fig. 5--Measurement of the noise figure of a receiver. The receiver is considered as a 4-terminal network. Output refers to last intermediate-frequency stage. The equipment used for measuring noise figure is shown in Fig. 5. The incoming signal (applied to the receiver) is replaced by an unmodulated signal generator with R_0 = internal resistive component E_i = root-mean-square open-circuit carrier voltage $E_n = \text{root-mean-square}$ open-circuit noise voltage produced in signal generator Then $$E_{n^2} = 4 k T_0 R_0 \Delta f'$$ where $k = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \text{ joules/degree Kelvin}$ T_0 = temperature in degrees Kelvin $\Delta f' =$ effective bandwidth of receiver (determined as below) If the receiver does not include
any other source of noise, the ratio E_i^2/E_n^2 is equal to the power carrier/noise ratio measured by the indicator: $$\frac{E_i^2}{E_n^2} = \frac{E_i^2/4R_0}{k T_0 \Delta f'} = \frac{P_i}{N_i}$$ ^{*} The definition of the noise figure was first given by H. T. Frils, "Noise Figures of Radio Receivers," Proceedings of the IRE, vol. 32, pp. 419–422; July, 1944. ## Noise measurements — noise figure continued The quantities $E_s^2/4R_0$ and $kT_0\Delta f'$ are called the available carrier and noise powers, respectively. The output carrier/noise power ratio measured in a resistance R may be considered as the ratio of an available carrier-output power P_0 to an available noise-output power N_0 . The noise figure F of the receiver is defined by $$\frac{P_o}{N_o} = \frac{1}{F} \times \frac{P_i}{N_i}$$ $$F = \frac{N_o}{N_i} \times \frac{1}{P_o/P_i} = \frac{E^2_{i1:1}}{4k T_0 R_0 \Delta f'} = \frac{P_{i1:1}}{k T_0 \Delta f'}$$ where P_o/P_i = available gain G of the receiver $P_{i1:1}$ = available power from the generator required to produce a carrier-to-noise ratio of one at the receiver output Noise figure is often expressed in decibels: $$F_{\rm db} = 10 \log_{10} F$$ ### Effective bandwidth $\Delta f'$ of the receiver is $$\Delta f' = \frac{1}{G} \int G_f df$$ where G_f is the differential available gain. $\Delta f'$ is generally approximated to the bandwidth of the receiver between those points of the response showing a 3-decibel attenuation with respect to the center frequency. ### Noise figure of cascaded networks The over-all noise figure of two networks a and b in cascade (Fig. 6) is Fig. 6—Over-all noise figure F_{ab} of two networks, a and b, in cascade. ### Noise measurements — noise figure of continued $$F_{ab} = F_a + \frac{F_b - 1}{G_a}$$ provided $\Delta f_b' \leqslant \Delta f_a'$ The value of F is a measure of the quality of the input tubes of the circuits. Up to some 300 megacycles, noise figures of 2 to 4 have been obtained. From 3000 to 6000 megacycles, the noise figure varies between 10 and 40 for the tubes at present available. It goes up to about 50 for 10,000-megacycle receivers. The additional noise due to external sources influencing real antennas (such as cosmic noise), may be accounted for by an apparent antenna temperature, bringing the available noise-power input to $k T_a \Delta t'$ instead of $N_i = k T_0 \Delta t'$ (the physical antenna resistance at temperature T_0 is generally negligible in high-frequency systems). The internal noise sources contribute $(F-1)N_i$ as before, so that the new noise figure is given by $$F'N_i = (F - 1)N_i + k T_0 \Delta f'$$ $F' = F - 1 + T_a/T_0$ The average temperature of the antenna for a 6-megacycle equipment is found to be 3000 degrees Kelvin, approximately. The contribution of external sources is thus of the order of 10, compared with a value of (F-1) equal to 1 or 2, and becomes the limiting factor of reception. At 3000 megacycles, however, values of T_a may fall below T_0 , while noise figures are of the order of 20. ## Noise improvement factor In case the receiver includes demodulation processes that produce a carrier/noise ratio improvement (nif), this improvement ratio must, of course, be considered when evaluating the carrier required to produce a desired output carrier/noise ratio. For a discussion of noise improvement factor in such systems as frequency modulation and pulse demodulation, see the chapter "Modulation." ## Measurement of external radio noise External noise fields, such as atmospheric, cosmic, and man-made, are measured in the same way as radio-wave field strengths, with the exception #### Measurement of external radio noise continued that peak, rather than average, values of noise are usually of interest, and that the over-all band-pass action of the measuring apparatus must be accurately known in measuring noise.* When measuring noise varying over wide limits with time, such as atmospheric noise, it is generally best to employ automatic recorders. #### Interference effects in various systems Besides noise, the efficiency of radio-communication systems can be limited by the interference produced by other radio-communication systems. The amount of tolerable signal/interference ratio, and the determination of conditions for entirely satisfactory service, are necessary for the specification of the amount of harmonic and spurious frequencies that can be allowed in transmitter equipments, as well as for the correct spacing of adjacent channels. The following information has been extracted from "Final Acts of the International Telecommunication and Radio Conferences (Appendix 1)," Atlantic City, 1947. Available information is not sufficient to give reliable rules in the cases of frequency modulation, pulse emission, and television transmission. ## Simple telegraphy It is considered that satisfactory radiotelegraph service is provided when the radio-frequency interference power available in the receiver, averaged over a cycle when the amplitude of the interfering wave is at a maximum, is at least 10 decibels below the available power of the desired signal averaged in the same manner, at the time when the desired signal is a minimum. In order to determine the amount of interference produced by one telegraph channel on another, Figs. 7 and 8 will be found useful. ## Frequency-shift telegraphy and facsimile It is estimated that the interference level of -10 decibels as recommended ^{*} For methods of measuring field strengths and, hence, noise, see "Standards on Radio Wave Propagation: Measuring Methods, 1942," published by the Institute of Radio Engineers. For information on suitable circuits to obtain peak values, particularly with respect to man-made noise, see C. V. Agger, D. E. Foster, and C. S. Young, "Instruments and Methods of Measuring Radio Noise," Electrical Engineering, vol. 59, pp. 178–192; March, 1940. #### Interference effects in various systems continued Fig. 7—Curves giving the envelopes for Fourier spectra of the emission resultfrom shapes of a single telegraph dot. For the upper curve the dot is taken to be rectangular and its length is 1/2 of the period 7 corresponding to the fundamental dotting frequency. The dotting speed in bauds is B = 1/t = 2/T. The bottom curve would result from the insertion of a filter with a pass band equal to 5 units on the f/B scale, and having a slope of 30 decibels / octave outside of the pass band. Fig. 8—Received power as a function of frequency separation between transmitter frequency and midband frequency of the receiver. in the previous case will also be suitable for frequency-shift telegraphy and facsimile. ## Double-sideband telephony The multiplying factor for frequency separation between carriers as required for various ratios of signal/interference is given in the following table. This factor should be multiplied by the highest modulation frequency. The acceptance band of the receiving filters in cycles/second is assumed to be $2 \times$ (highest modulation frequency) and the cutoff characteristic is assumed to have a slope of 30 decibels/octave. | Interference | effects in | various s | ystems | continued | |--------------|------------|-----------|--------|-----------| |--------------|------------|-----------|--------|-----------| | ratio of desired
to interfering | multiplying factor for various ratios of signal/interference | | | | | | | | |------------------------------------|--|-------|-------|-------|--|--|--|--| | carriers in
decibels | 20 db | 30 db | 40 db | 50 db | | | | | | 60 | 0 | 0 | 0 | 0 | | | | | | 50 | Ö | Ö | Ö | 0.60 | | | | | | 40 | 0 | 0 | 0.60 | 1.55 | | | | | | 30 | 0 | 0.60 | 1.55 | 1.85 | | | | | | 20 | 0.60 | 1,55 | 1.85 | 1.96 | | | | | | 10 | 1.55 | 1.85 | 1.96 | 2.00 | | | | | | 0 | 1.85 | 1.96 | 2.00 | 2.55 | | | | | | - 10 | 1.96 | 2.00 | 2.55 | 2.85 | | | | | | 20 | 2.00 | 2.55 | 2.85 | 3.2 | | | | | | — 30 | 2.55 | 2.85 | 3.2 | 3.6 | | | | | | - 4 0 | 2.85 | 3.2 | 3.6 | 4.0 | | | | | | 5 0 | 3.2 | 3.6 | 4.0 | 4.5 | | | | | | - 60 | 3.6 | 4.0 | 4.5 | 5.1 | | | | | | 70 | 4.0 | 4.5 | 5.1 | 5.7 | | | | | | 80 | 4.5 | 5.1 | 5.7 | 6.4 | | | | | | 90 | 5.1 | 5.7 | 6.4 | 7.2 | | | | | | 100 | 5.7 | 6.4 | 7.2 | 8.0 | | | | | #### **Broadcastina** As a result of a number of experiments, it is possible to set down the following results for carrier frequencies between 150 and 285 kilocycles/second and between 525 and 1560 kilocycles. | frequency separation betwee carriers in kilocycles | n minimum ratio of desired and
interfering carriers in decibels | |--|--| | 11 | 0* | | 10 | 6† | | 9 | 14† | | 8 | 26‡ | | 5 (or less) | 60† | ^{*} extrapolated † experimental ‡ interpolated These experimental results agree reasonably well with the theoretical results of the preceding table with a highest modulation frequency of about 4500 cycles/second, and with a signal/interference ratio of 50 decibels. #### Single-sideband telephony Experience shows that the separation between adjacent channels need be only great enough to insure that the nearest frequency of the interfering signal is 40 decibels down on the receiver filter characteristic when due allowance has been made for the frequency instability of the carrier wave. ### Spurious responses In superheterodyne receivers, where a nonlinear element is used to get a desired intermediate-frequency signal from the mixing of the incoming signal and a local-oscillator signal, interference from spurious external signals results in a number of undesired frequencies that may fall within the intermediate-frequency band. Likewise, when two local oscillators are mixed in a transmitter or receiver to produce a desired
output frequency, several unwanted components are produced at the same time due to the imperfections of the mixer characteristic. The following tables show how the location of the spurious frequencies can be determined. #### Symbols $f_1 = \text{signal frequency (or first source)}$ f_1' = spurious signal ($f_1' = f_1$ for mixing local sources, but when dealing with a receiver, usually $f_1' \neq f_1$) f_2 = local-injection frequency (or second source) $f_x = \text{desired mixer-output frequency}$ $f_{*}' = \text{spurious mixer-output frequency}$ k = m + n = order of response, where m and n are positive integers Coincidence is where $f_1' = f_1$ and $f_x' = f_x$ ## Defining and coincidence equations | | mixing for difference | frequency | | mixing for sum fre | quency | |------|--|--|------|---|--| | type | defining equations | coincidence | type | defining equations | coincidence | | 1 | $f_x = \pm (f_1 - f_2)$
$f_{x'} = \pm (nf_2 - mf_1')$ | $\lceil \frac{f_2}{2} \rceil = \frac{m+1}{2}$ | IV | $f_x = f_1 + f_2$ | $\left\lceil \frac{f_2}{f_2} \right\rceil = \frac{m-1}{2}$ | | | $f_x' = \pm (nf_2 - mf_1')$ | $\lfloor f_1 \rfloor_{\infty} n + 1$ | | $f_x = f_1 + f_2$ $f_{x'} = mf_1' - nf_2$ | $\lfloor f_1 \rfloor_{co} n + 1$ | | R | $f_x = \pm (f_1 - f_2)$ | $\lceil f_2 \rceil = m-1$ | ٧ | $f_x = f_1 + f_2$ | $\lceil f_2 \rceil = m+1$ | | | $f_x = \pm (f_1 - f_2)$ $f_{x'} = \pm (mf_1' - nf_2)$ | $\lfloor f_1 \rfloor_{co}$ $n-1$ | | $f_{x'} = nf_2 - mf_1'$ | $\lfloor f_1 \rfloor_{eo} = n-1$ | | 111 | $f_x = f_1 - f_2$ | $\lceil \frac{f_2}{f_2} \rceil = \frac{1-m}{n}$ | ۷I | $f_s = f_1 + f_2$ | | | | $f_x = f_1 - f_2$ $f_0' = mf_1' + nf_2$ | $\left[\frac{f_2}{f_1}\right]_{\text{co}} = \frac{1-m}{n+1}$ | | $f_{x}' = mf_{1}' + nf_{2}$ | $\lfloor f_1 \rfloor_{00} n - 1$ | In types I and II, both f_x and $f_{x'}$ must use the same sign throughout. Types III and VI are relatively unimportant except when m = a = 1. ## Spurious responses continued Image (m = n = 1) | kind of
mixing | receiver $(f_x{}'=f_x)$ | two local sources $(f_1' = f_1)$ | |-------------------|--|----------------------------------| | Difference | $f_1' = \pm (2f_2 - f_1) = \pm (f_1 - 2f_2) = f_1 + 2f_2 f_2 > f_1$ | $f_{\mathbf{z}'} = f_1 + f_2$ | | Sum | $f_1' = f_1 + 2f_2$
= $2f_x - f_1$ | $f_x' = \pm (f_1 - f_2)$ | Intermediate-frequency rejection must be provided for spurious signating $f_1' = f_x$ where m = 1, n = 0. #### Selectivity equations Where the coefficients and the ∓ signs are | | 1 | | 3 | | | |------|-------|-------------|-------------|-----|--------| | type | A | $f_2 < f_1$ | $f_2 > f_1$ | c | ∓ sign | | 1 | n + 1 | A | -A | Α . | _ | | II | n 1 | -A | A | -А | _ | | IV | n + 1 | -A | -A | -A | + | | V | n 1 | A | A | Α | + | ## Variation of output frequency vs input-signal deviation For any type $$\Delta f_{\pi}' = \pm m \, \Delta f_1'$$ Use the + or the - sign according to defining equation for type in question: ### Spurious responses continued #### Table of spurious responses Type I coincidences: $$\left[\frac{f_2}{f_1}\right]_{\rm co} = \frac{m+1}{n+1}$$, where $f_x{'} = f_x$ and $f_1{'} = f_1$ | frequenc | y ratio = | $[f_2/f_1]_{co}$ | low | esi or | der | | |--------------------|-------------------------|-------------------------|----------------|-------------|-------------|---| | fraction | decimol | reciprocal | k _I | mI | nI | highest orders | | 1/1
8/9 | 1.000 | 1.000
1.125 | 2
15 | 1 7 | 1 8 | All even orders $m = (See note b)$ | | 7/8 | 0.875 | 1.143 | 13 | 6 | 8
7 | | | 6/7
5/6
4/5 | 0.857
0.833
0.800 | 1.167
1.200
1.250 | 11
9
7 | 5
4
3 | 6
5
4 | | | 7/9
3/4
5/7 | 0.778
0.750
0.714 | 1.286
1.333
1.400 | 14
5
10 | 6
2
4 | 8
3
6 | $\begin{cases} m_{\rm I} = 5 \\ n_{\rm I} = 7 \end{cases}$ | | 7/10
2/3
5/8 | 0.700
0.667
0.625 | 1.429
1.500
1.600 | 15
3
11 | 6
1
4 | 9
2
7 | $\begin{cases} m_{\mathbf{I}} = 3 \\ n_{\mathbf{I}} = 5 \end{cases} \begin{cases} = 5 \\ = 8 \end{cases}$ | | 3/5
4/7
5/9 | 0.600
0.571
0.556 | 1.667
1.750
1.800 | 6
9
12 | 2
3
4 | 4
6
8 | $\begin{cases} m_{\mathbf{I}} = 5 \\ n_{\mathbf{I}} = 9 \end{cases}$ | | 6/11
1/2 | 0.545
0.500 | 1.833
2.000 | 15
1 | 5 | 10 | $\begin{cases} m_{I} = 1 \\ n_{I} = 3 \end{cases} \begin{cases} = 2 \\ = 5 \end{cases} \begin{cases} = 3 \\ = 7 \end{cases} \begin{cases} = 4 \\ = 9 \end{cases}$ | Types II, IV, and V coincidences: For each ratio $[f_2/f_1]_{\rm co}$ there are also the following responses | type | k | m | n | |------|---------------------------------------|-----------------------------------|---------------------------------------| | H | $k_{II}=k_{I}+4$ | $m_{II}=m_I+2$ | $n_{II} = n_I + 2$ | | ١٧ | $k_{IV}=k_I+2$ | $m_{IV} = m_I + 2$ | $n_{IV} = n_I$ | | ٧ | $k_{\mathbf{V}} = k_{\mathbf{I}} + 2$ | $m_{\mathbf{V}} = m_{\mathbf{I}}$ | $n_{\mathbf{v}} = n_{\mathbf{I}} + 2$ | #### Notes: - **a.** When $f_2 > f_1$, use reciprocal column and interchange the values of m and n. - **b.** At $[f_2/f_1]_{co} = 1/1$, additional important responses are type II: m = n = 2 type IV: m = 2, n = 0 type V: m = 0, n = 2 #### Spurious responses continued #### Chart of spurious responses Each circle represents a spurious response coincidence, where $f_1'=f_1$ and $f_x'=f_z$. **Example:** Suppose two frequencies whose ratio is $f_2/f_1=0.12$ are mixed to obtain the sum frequency. The spurious responses are found by laying a transparent straightedge on the chart, passing through the circle -1, -1 and lying a little to the right of the line marked $f_2/f_1=0.10$. It is observed that the straightedge passes near circles indicating the responses Type IV $$\begin{cases} m = 1 \\ n = 0 \end{cases}$$ $\begin{cases} = 2 \\ = 7 \end{cases}$ $\begin{cases} = 2 \\ = 8 \end{cases}$ Type V $\begin{cases} m = 0 \\ n = 9 \end{cases}$ $\begin{cases} = 0 \\ = 10 \end{cases}$ The actual frequencies of the responses f_x' or f_1' can be determined by substituting these coefficients m and n in the defining equations. ## ■ Broadcasting ### Introduction Radio broadcasting for public entertainment in the U.S.A. is at present of three general types. Standard broadcasting: Utilizing amplitude modulation in the 535-1605-kitocycle/second band. **Frequency modulation:** Broadcasting in the 88–108-megacycle/second band. **Television broadcasting:** Utilizing amplitude-modulated video and frequency-modulated aural transmission in the (low) 54–88-megacycle band, the (high) 174–216-megacycle band, and in the (ultra-high-frequency) 470–890-megacycle band. There is also International broadcasting: On assigned frequencies in the region between 6000 and 21,700 kilocycles in accordance with international agreement.* Operation in these bands in the U.S.A. is subject to licensing and technical regulations of the Federal Communications Commission. Selected administrative and technical information and rules from F.C.C. publications applicable to each of these broadcast applications are given in this chapter. General reference: "Rules Governing Radio Broadcast Services," Subparts A through G; January, 1956; Federal Communications Commission, Washington, D. C. ## Standard broadcasting† Standard-broadcast stations are licensed for operation on 10-kilocycle-spaced channels occupying the band 535–1605 kilocycles, inclusive, and are classified as indicated in Fig. 1. ^{*}A more detailed explanation of International broadcasting frequency assignments and requirements is given in the chapter "Frequency data." [†] See "Standards of Good Engineering Practice Concerning Standard Broadcast Stations August 1, 1939, revised to Oct. 30, 1947," Federal Communications Commission, Washington, D. C.; and, "Rules Governing Radio Broadcast Services," Subpart A; January, 1956. ## Standard broadcasting continued Fig. 1—Classification of standard-broadcast stations.* | | | | | microvolts/meter | ity contour in
r of area protected
ible interference | |------------------------|------------------------|-----------------------|---------------------------------------|-----------------------|--| | class
of
station | class
of
channel | normai
service | permissifile
power in
kilowatts | day†
(ground-wave) | night | | la | Clear | Primary and secondary | 50 | SC = 100
AC = 500 | Not duplicated | | lb | Clear | Primary and secondary | 10 to 50 | SC = 100
AC = 500 | 500
(50% sky wave) | | H | Clear | Primary | 0.25 to 50 | 500 | 2500
(Ground wave) | | III-A | Regional | Primary | 1 to 5 | 500 | 2500
(Ground wave) | | III-B | Regional | Primary | Night = 0.5 to 1
Day = 5 | 500 | 4000
(Ground wave) | | IV | Local | Primary | 0.1 to 0.25 | 500 | 4000
(Ground wave) | ^{*} Taken from "Rules Governing Radio Broadcast Services," Subpart A; January, 1956. Federal Communications Commission, Washington, D. C. † SC = same channel, AC = adjacent channel. #### Field-intensity requirements #### Primary service | City business, factory areas: | : 10 | to | <i>5</i> 0 | millivolts/meter, ground wave | |-------------------------------|------|----|------------|-------------------------------| | City residential areas: | 2 | to | 10 | millivolts/meter, ground wave | | Rural areas: | 0.1 | to | 1.0 | millivolt /meter, ground wave | ## Secondary service All areas having sky-wave field intensity greater than 500 microvolts/meter for 50
percent or more of the time. ## Coverage data The charts of Figs. 2–4 show computed values of ground-wave field intensity as a function of the distance from the transmitting antenna. These are used for the determination of coverage and interference. They were computed for the frequencies indicated, a dielectric constant equal to 15 for ground and 80 for sea water (referred to air as unity), and for the surface conductivities noted. The curves are for radiation from a short vertical antenna at the surface of a uniformly conductive spherical earth, with an antenna power and efficiency such that the inverse-distance field is 100 millivolts/meter at one mile. Fig. 2—Ground-wave field intensity plotted against distance. Computed for 550 kilocycles. Dielectric constant = 15. Ground-conductivity values above are emu \times 10¹⁴. Fig. 3—Ground-wave field intensity plotted against distance. Computed for 1000 kilocycles. Dielectric constant = 15. Ground-conductivity values above are emu imes 10¹⁴. The table of Fig. 5 gives data on ground inductivity and conductivity in the U.S.A. #### Station performance requirements Operation is maintained in accordance with the following specifications. Modulation: Amplitude modulation of at least 85 to 95 percent. Fig. 4—Ground-wave field intensity plotted against distance. Computed for 1600 kilocycles. Dielectric constant = 15. Ground-conductivity values above are emu imes 10¹⁴. Audio-frequency distortion: Harmonics less than 5 percent arithmetical sum or root-mean-square amplitude up to 85 percent modulation; less than 7.5 percent for 85 to 95 percent modulation. Audio-frequency response: Transmission characteristic flat between 100 and 5000 cycles to within 2 decibels, referred to 1000 cycles. **Noise:** At least 50 decibels, unweighted, below 100 percent modulation for the frequency band 150 to 5000 cycles, and at least 40 decibels down outside this range. Carrier-frequency stability: Within 20 cycles of assigned frequency. Fig. 5—Electrical characteristics of various types of terrain.* | type of terrain | inductivity
referred to
air = 1 | conductivity
In emu | absorption factor
at 50 miles,
1000 kilocycles† | |---|---------------------------------------|--------------------------|---| | Sea water, minimum attenuation | 81 | 4.64 × 10 ⁻¹¹ | 1.0 | | Pastoral, low hills, rich soil, typical of
Dalkas, Texas; Uncoln, Nebraska; and
Wolf Point, Montana, areas | 20 | 3 × 10 ⁻¹³ | 0.50 | | Pastoral, low hills, rich soil, typical of Ohio and Illinois | 14 | 10-13 | 0.17 | | Flat country, marshy, densely wooded, typical of Louisiana near Mississippi River | 12 | 7.5 × 10 ⁻¹⁴ | 0.13 | | Pastoral, medium hills, and forestation, typical of Maryland, Pennsylvania, New York, exclusive of mountainous territory and sea coasts | 13 | 6 × 10 ⁻¹⁴ | 0.09 | | Pastoral, medium hills, and forestation,
heavy clay soil, typical of central Virginia | 13 | 4 × 10 ⁻¹⁴ | 0.05 | | Rocky soil, steep hills, typical of New England | 14 | 2 × 10 ⁻¹⁴ | 0.025 | | Sandy, dry, flat, typical of coastal country | 10 | 2 × 10 ⁻¹⁴ | 0.024 | | City, industrial areas, average attenuation | 5 | 10-14 | 110.0 | | City, industrial areas, maximum attenuation | 3 | 10-15 | 0.003 | ^{*} From "Standards of Good Engineering Practice Concerning Standard Broadcasting, August 1, 1939, revised October 30, 1947," Federal Communications Commission, Washington, D.C. † This figure is stated for comparison purposes in order to indicate at a glance which values of conductivity and inductivity represent the higher absorption. It is the ratio between field intensity obtained with the soil constants given and with no absorption. ## Frequency modulation* Frequency-modulation broadcasting stations are authorized for operation on 100 allocated channels each 200 kilocycles wide extending consecutively from channel No. 201 on 88.1 megacycles to No. 300 on 107.9 megacycles. Commercial broadcasting is authorized on channels No. 221 (92.1 megacycles) through No. 300. Noncommercial educational broadcasting is licensed on channels No. 201 through 220 (89.9 megacycles). #### Station service classification Class-A stations: Render service primarily to communities other than the principal city of an area. Provide coverage equivalent of effective rated power of 1 kilowatt and an antenna height of 250 feet. Class-A channel. Class-B stations: Render service primarily to a metropolitan district or principal city and its surrounding rural area, or to primarily rural areas. In FM Area I, which includes New England and the North- and Middle-Atlantic-states areas, they are licensed for a coverage of not more than 20 kilowatts equivalent effective rated power and 300 feet minimum, 500 feet maximum, effective antenna height. In FM Area II (balance of U.S.A. outside of Area I), class-B stations are licensed for same coverage as class-A stations. However, greater coverage is encouraged where it would not result in undue interference to existing or probable assignments. ## Coverage data The frequency-modulation broadcasting service area is considered to be only that served by the ground wave. The median field intensity considered necessary for adequate service in city, business, or factory areas is 1 millivolt/meter; in rural areas, 50 microvolts/meter is specified. A median field intensity of 3000 to 5000 microvolts/meter is specified for the principal city to be served. The curves of Fig. 6 give data for determination of fm broadcast-station coverage as a function of rated power and antenna height. Objectionable interference from other stations may limit the service area. Such interference is considered by the F.C.C. to exist when the ratio of desired to undesired signal values is as follows: Same channel: 10/1 ^{*} See "Rules Governing Radio Broadcast Services," Part 3, Subparts B and C; January, 1956: Federal Communications Commission, Washington, D. C. #### Frequency modulation continued Adjacent channel (200-kc/s separation): 2/1 (400-kc/s separation): 1/10 (600-kc/s separation): 1/100 (≥800-kc/s separation): No restriction Values are ground-wave median field for the desired signal, and the tropospheric-signal intensity exceeded for 1 percent of the time for the undesired signal. It is considered that stations having alternate-channel spacing (400-kilocycle separation) may be operated in the same coverage area without objectionable mutual interference. Fig. 6—Ground-wave signal range for frequency-modulation broadcasting band, 98 megacycles. Conductivity = 5×10^{-14} emu, and dielectric constant = 15. Receiving-antenna height = 30 feet. For horizontal (and approximately for vertical) polarization. These curves do not represent the best available propagation data. Hawever, they are used to estimate expected coverage by a station filing for a license. It is recommended that Fig. 12 be used as a better engineering approximation. ## Frequency modulation continued ## Station performance requirements Operation is maintained in accordance with the following specifications. Audio-frequency response: Transmitting system capable of transmitting the band of frequencies 50 to 15,000 cycles. Pre-emphasis employed and response maintained within limits shown by curves of Fig. 7. #### Audio-frequency distortion: Maximum combined audiofrequency harmonic root-mean-square voltage in system output less than as shown below. Fig. 7—Standard pre-emphasis curve for frequency-modulation and television aural broadcasting. Time constant = 75 microseconds (solid line). Frequencyresponse limits are set by the two lines. | modulating frequency
in cycles/second | percent
harmonic | | |--|---------------------|--| | 50-100 | 3.5 | | | 100-7500 | 2.5 | | | 7500-15000 | 3.0 | | Power output: Standard transmitter power output ratings are 10 watts for noncommercial stations, 250 watts, 1, 3, 5, 10, 25, 50, and 100 kilowatts. **Modulation:** Frequency modulation with a modulating capability of 100 percent corresponding to a frequency swing of ± 75 kilocycles. #### Noise: FM—In the band 50 to 15,000 cycles, at least 60 decibels below 100-percent swing at 400-cycle modulating frequency. AM—In the band 50 to 15,000 cycles, at least 50 decibels below level representing 100-percent amplitude modulation. Center-frequency stability: Within ±2000 cycles of assigned frequency. Antenna polarization: Horizontal. ## Television broadcasting* #### Channel designations Television-broadcast stations are authorized for commercial operation on 83 channels designated as in Fig. 8. Fig. 8—Numerical designation of television channels. | channel
number | band
mc/s | channel
number | band
mc/s | channet
number | band
mc/s | |-------------------|-------------------|-------------------|----------------------|-------------------|----------------------| | 1 | | l | | · · | | | 2 3 | 5460 | 29 | 560-566 | 57 | 728-734 | | 3 | 60-66 | 30 | 566-572 | 58 | 734-740 | | 4 | 66-72 | 31 | 572-578 | 59 | 740-746 | | 5 6 | 76– 82 | 32 | 578-584 | 60 | 746-752 | | 6 | 82-88 | 33 | 584-590 | 61 | 752-758 | | 7 | 174-180 | 34 | 590 -59 6 | 62 | 75 8- 764 | | 8 | 180-186 | 35 | 596-602 | 63 | 764-770 | | 9 | 186-192 | 36 | 602-608 | 64 | 770-776 | | 10 | 192-198 | 37 | 608-614 | 65 | 776-782 | | 11 | 198-204 | 38 | 614-620 | 66 | 782-788 | | 12 | 204-210 | 39 | 620-626 | 67 | 788-794 | | 13 | 210-216 | 40 | 626-632 | 68 | 794-800 | | 14 | 470-476 | 41 | 632-638 | 69 | 800806 | | 15 | 476-482 | 42 | 638-644 | 70 | 806-812 | | 16 | 482-488 | 43 | 644-650 | 71 | 812-818 | | 17 | 488-494 | 44 | 650-656 | 72 | 818-824 | | 18 | 494-500 | 45 | 656-662 | 73 | 824-830 | | 19 | 500-506 | 46 | 662-668 | 74 | 830-836 | | 20 | 506-512
 47 | 668-674 | 75 | 836-842 | | 21 | 512-518 | 48 | 674-680 | 76 | 842-848 | | 22 | 518-524 | 49 | 680-686 | 77 | 848854 | | 23 | <i>5</i> 24-530 | 50 | 686-692 | 78 | 854-860 | | 24 | 530-536 | 51 | 692-698 | 79 | 860-866 | | 25 | 536-542 | 52 | 698-704 | 80 | 866-872 | | 26 | 542-548 | 53 | 704-710 | 81 | 872-878 | | 27 | 548-554 | 54 | 710-716 | 82 | 878-884 | | 28 | 554-560 | 55 | 716-722 | 83 | 884-890 | | | | 56 | 722-728 | 1 | | #### Coverage data Assignment of channels to specific areas has been made by the F.C.C. in such a manner as to facilitate maximum interference-free coverage within the available frequency spectrum. The radiated power of a particular station is fixed by several considerations. Minimum power is 100 watts effective visual radiated power. No minimum antenna height is specified. ^{*} See "Rules Governing Radio Broadcast Service," Part 3, Subpart E; January, 1956: Federal Communications Commission, Washington, D. C. ## Television broadcasting continued **Interference:** To avoid cochannel and adjacent-channel interference, a table of the channels assigned to listed communities in the United States has been designated in the referenced rules of the Federal Communications Commission. Maximum power: (See Figs. 10 and 11.) Except as limited by antenna heights in excess of 1000 feet in TV Zone I and antenna heights in excess of 2000 feet in TV Zones II and III, the maximum visual estimated radiated power in decibels above 1 kilowatt is: | channel | maximum power | | | | |---------|------------------------------|--|--|--| | | | | | | | 2–6 | 20 decibels = 100 kilowatts | | | | | 713 | 25 decibels = 316 kilowatts | | | | | 14-83 | 30 decibels = 1000 kilowatts | | | | Fig. 9-Minimum television-station power in relation to population. Fig. 11--Maximum television-station power versus antenna height for TV Zones II and III. 300 1000 3000 30 50 100 2 oiones everes everes and the ien onnetre maximum power in kilowatts Fig. 10—Maximum television-station power versus antenna height for TV Zone I. ### Television broadcasting continued **Grade of service:** Two grades of service are designated Grade A and Grade B. The signal strength (in decibels above 1 microvolt/meter) specified for each service is: | channel | Grade A | Grade B | |----------------------|---|---| | 2-6
7-13
14-83 | 68 decibels = 2510 microvolts 71 decibels = 3550 microvolts 74 decibels = 5010 microvolts | 47 decibels = 224 microvolts 56 decibels = 631 microvolts 64 decibels = 1585 microvolts | Transmitter location: The transmitter location must be so chosen that on the basis of effective radiated power and antenna height, the following Fig. 12—Ground-wave signal range for television channels 2-6 and 14-83. Conductivity $= 5 \times 10^{-14}$ emu, and dielectric constant = 15. Receiving-antenna height = 30 feet. For horizontal (and approximately for vertical) polarization. ## Television broadcasting continued minimum field intensity in decibels above 1 microvalt/meter will be provided over the principal community to be served. | channel | signal | | | |----------------------|---|--|--| | 2-6
7-13
14-83 | 74 decibels = 5010 microvolts 77 decibels = 7080 microvolts 80 decibels = 10,000 microvolts | | | The curves of Figs. 12 and 13 give coverage distance through the allocated television-frequency bands as a function of radiated power and antenna height. Fig. 13—Ground-wave signal range for television channels 7-13. Conductivity $= 5 \times 10^{-14}$ emu, and dielectric constant = 15. Receiving-antenna height = 30 feet. For horizontal (and approximately for vertical) polarization. # Television broadcasting continued #### Over-all station performance requirements F.C.C. television standards are Channel width: 6 megacycles/second. Picture carrier location: 1.25 megacycles above lower boundary of the channel. Aural center frequency: 4.5 megacycles above visual carrier. Polarization of radiation: Horizontal. **Modulation:** Amplitude-modulated composite picture and synchronizing signal on visual carrier, together with frequency-modulated audio signal on aural carrier shall be included in a single television channel (Figs. 14 and 15). Fig. 14—Radio-frequency amplitude characteristic of television picture transmission. Field intensity at points A shall not exceed 20 decibels below picture carrier. Drawing not to scale. channel frequency spectrum in megacycles referred to lower frequency limit of channel # Visual transmission requirements Modulation: Amplitude modulation. Polarization: Horizontal. **Polarity of transmission:** Negative—a decrease in initial light intensity causes an increase in radiated power. **Transmitter brightness response:** For monochrome transmission, radio-frequency output varies in an inverse logarithmic relation to the brightness of the scene. **Aural-transmitter power:** Maximum radiated power is 70 percent (minimum, 50 percent) of peak visual-transmitter power. # Television broadcasting continued Scanning lines: 525 lines/frame interlaced two to one. Scanning sequence: Horizontal from left to right, vertically from top to bottom. Horizontal scanning frequency: 15,750 for monochrome or 2/455 times chrominance subcarrier frequency ($15,734.264 \pm 0.044$ cycles/second). Vertical scanning frequency: 60 cycles/second for monochrome or 2/525 times the horizontal scanning frequency (59.94 cycles/second) for color. Aspect ratio: 4 units horizontal, 3 units vertical. Chrominance subcarrier frequency: 3.579545 megacycles ± 10 cycles/second. **Reference black level:** Black level is separated from the blanking level by 7.5 ± 2.5 percent of the video range from blanking level to reference white level. Reference white level: Luminance signal of reference white is 12.5 ± 2.5 percent of peak carrier. **Peak-to-peak variation:** Total permissible peak-to-peak variation in one frame due to all causes is less than 5 percent. Color signal: The equation of the complete color signal is: $$E_{M} = E_{Y}' + E_{O}' \sin(\omega t + 33^{\circ}) + E_{I}' \cos(\omega t + 33^{\circ})$$ where $$E_{Q}' = + 0.41 (E_{B}' - E_{Y}') + 0.48 (E_{R}' - E_{Y}')$$ $$E_{I}' = -0.27 (E_{B}' - E_{Y}') + 0.74 (E_{R}' - E_{Y}')$$ $$E_{Y}' = +0.30E_{R}' + 0.59E_{G}' + 0.11E_{B}'$$ For color-difference frequencies below 500 kilocycles, the signal can be represented by: $$E_{M} = E_{Y}' + \left\{ \frac{1}{1.14} \left[\frac{1}{1.78} (E_{B}' - E_{Y}') \sin \omega t + (E_{R}' - E_{Y}') \cos \omega t \right] \right\}$$ The symbols have the following significance: E_M = total video voltage, corresponding to the scanning of a particular picture element applied to the modulator of the picture transmitter. # **Television broadcasting** continued #### Notes: - H = time from start of one line to start of next line. - V = time from start of one field to start of next field. - Leading and trailing edges of vertical blanking should be complete in less than 0.1H. - Leading and trailing shapes of horizontal blanking must be steep enough to preserve minimum and maximum values of (x + y) and z under all conditions of picture content. - Dimensions marked with an asterisk indicate that tolerances given are permitted only for long-time variations, and not for successive cycles. - Equalizing pulse area shall be between 0.45 and 0.5 of the area of a horizontal synchronizing pulse. - Color burst follows each horizontal pulse but is amitted following the equalizing pulses and during the broad vertical pulses. - Color bursts to be amitted during monochrome transmission. - The burst frequency shall be 3.579545 megacycles. The tolerance on the frequency shall be ±10 cycles with a maximum rate of change of frequency not to exceed 1/10 cycle/second/second. - The horizontal scanning frequency shall be 2/455 times the burst frequency. - 11. The dimensions specified for the burst determine the times of starting and stopping the burst but not its phase. The color burst consists of amplitude modulation of a continuous sine wave. Fig. 15-(Above and at right.) Television composite-signal waveform data. #### Television broadcasting continued Fig. 15 — continued # Television broadcasting continued E_{x}' = gamma-corrected voltage of the monochrome (black-and-white) portion of the color picture signal, corresponding to the given picture element. E_{Q}' , E_{I}' = amplitudes of two orthogonal components of the chrominance signal corresponding respectively to narrow-band and wideband axes. $E_{R}', E_{G}', E_{B}' =$ gamma-corrected voltage corresponding to red, green, and blue signals during the scanning of the given picture element. $\omega=$ angular frequency = 2π times frequency of the chrominance subcarrier. The portion of each expression between brackets represents the chrominance subcarrier signal that carries the chrominance information. The phase reference in the E_M equation is the phase of the burst $+180^\circ$, as shown in Fig. 16. The burst corresponds to amplitude modulation of a continuous sine wave. The equivalent bandwidth assigned prior to modulation to the color difference signals E_{Ω}' and E_{I}' are as follows: #### Q-channel bandwidth: At 400 kilocycles, less than 2 decibels down. At 500 kilocycles, less than 6 decibels down. At 600 kilocycles, at least 6 decibels down. I-channel bandwidth: At 1.3 megacycles, less than 2 decibels down. At 3.6 megacycles, at least 20 decibels down. The gamma-corrected voltages E_R' , E_G' and E_B' are suitable for a color picture tube having primary colors with the chromaticities listed at the right in the C.I.E. (Commission Internationale de l'Eclairage) system of specification. Fig. 16—Above, phases of color signal. | color | ×
 у | |-----------|------|------| | Red (R) | 0.61 | 0.33 | | Green (G) | 0.21 | 0.71 | | Blue (B) | 0.14 | 0.08 | and having a transfer gradient (gamma exponent) of 2.2 associated with each primary color. The voltages E_{R}' , E_{G}' , and E_{B}' may be respectively of # Television broadcasting continued the form $E_R^{1/2}$, $E_G^{1/2}$, and $E_B^{1/2}$, although other forms may be used with advances in the state of the art. The radiated chrominance subcarrier vanishes on the reference white of the scene. The numerical values of the signal specification assume that this condition will be produced as C.I.E. Illuminant C (x = 0.310, y = 0.316). E_{Y}' , E_{Q}' , E_{I}' , and the components of these signals shall match each other in time to 0.05 microseconds. The angles of the subcarrier measured with respect to the burst phase, when reproducing saturated primaries and their complements at 75 percent of full amplitude shall be within \pm 10 degrees and their amplitudes within \pm 20 percent of the values specified above. The ratios of the measured amplitudes of the subcarrier to the luminance signal for the same saturated primaries and their complements must fall between the limits of 0.8 and 1.2 of the values specified for their ratios. #### Visual transmitter design Over-all frequency response: The output measured into the antenna after vestigial-sideband filters shall be within limits of ± 0 and - 2 decibels at 0.5 megacycles - 2 decibels at 1.25 megacycles - 3 decibels at 2.0 megacycles - 6 decibels at 3.0 megacycles ± 12 decibels at 3.5 megacycles acteristic of Fig. 17. with respect to video amplitude char- For color transmission, the following limits apply: +0 and - -2 decibels at 0.5 megacycles - -2 decibels at 1.25 megacycles - -2 decibels from 1.25 to 4.18 megacycles Fig. 17—Ideal demodulated amplitude characteristic of television transmitter. The dashed lines are F.C.C. limits. This response is with respect to a 200-kilocycle modulating frequency. **Lower-sideband radiation:** For modulating frequency of 1.25 megacycles or greater, radiation must be 20 decibels below carrier level. In addition, the #### Television broadcastina continued radiation of the lower sideband due to modulation by the color subcarrier (3.579545 megacycles) must be attenuated by a minimum of 42 decibels. For monochrome and color, the field strength of the upper sideband for a modulating frequency of 4.75 megacycles or greater shall be attenuated at least 20 decibels. Spurious and harmonic emission: All emissions removed in frequency in excess of 3 megacycles above or below the respective channel edge shalf be attenuated by no less than 60 decibels below visual-transmitter power. Envelope delay: The modulated radiated signal shall have an envelope delay relative to the average envelope delay between 0.05 and 0.2 megacycle of zero microseconds up to a frequency of 3.0 megacycles; and then linearly decreasing to 4.18 megacycles to 0.17 microsecond at 3.58 megacycles. The tolerance on the envelope delay is ± 0.05 microsecond at 3.58 megacycles and linearly increasing to ± 0.1 microsecond down to 2.1 megacycles and up to 4.18 megacycles; and remain at ± 0.1 microsecond down to 0.2 megacycles. See Fig. 18. Radiated radio-frequency-signal envelope: Specified by Fig. 15 as modified by vestigial operation characteristic of Fig. 14. tion of time interval between successive pulse leading edges to be less than 0.5 percent of average interval. Horizontal pulse-repetition stability: Rate of change of leading-edge recurrence frequency shall not exceed 0.15 percent/second. #### Aural transmitter Modulation: Frequency modulation with 100-percent swing of ±25 kilocycles. Required maximum swing = ± 40 kilocycles. Audio-frequency response: 50 to 15,000 cycles within limits and utilizing preemphasis as shown in Fig. 7. Fig. 18-Envelope delay curve for television transmitter. # Television broadcasting continued **Audio-frequency distortion:** Maximum combined harmonic root-mean-square output voltage shall be less than | medulating frequency
in cycles/second | percent
harmonic | |--|---------------------| | 50 100 | 3.5 | | 100- 7500 | 2.5 | | 7500-15000 | 3.0 | #### Noise FM-55 decibels below 100-percent swing. AM-50 decibels below level corresponding to 100-percent modulation. #### Radar fundamentals # General* A simplified diagram of a set for radio direction and range finding is shown in Fig. 1. A pulsed high-power transmitter emits centimeter waves for approximately a microsecond through a highly directive antenna to Fig. 1—Simplified diagram of a radar set. illuminate the target. The returned echo is picked up by the same antenna, amplified by a high-gain wide-band receiver, and displayed on an indicator. Direction of a target is usually indicated by noting the direction of the narrow-beam antenna at the time the echo is received. The range is measured in terms of time because the radar pulse travels with the speed of light, 300 meters one way per microsecond, or approximately 10 microseconds per round-trip radar mile. Fig. 2 gives the range corresponding to a known echo time. The factors characterizing the operation of each component are shown in Fig. 1. These are discussed below in turn and combined into the free-space range equation. The propagation factors modifying free-space range are presented. # Transmitter Important transmitter factors are: $\tau =$ pulse length in microseconds f_r = pulse rate in cycles/second $d = duty ratio = \tau f_{\tau} \times 10^{-6} = P_{a}/P_{p}$ P_a = average power in kilowatts P_p = peak power in kilowatts $\lambda = \text{carrier wavelength in centimeters}$ ^{* &}quot;IRE Standards on Radio Aids to Navigation: Definitions of Terms, 1954," Proceedings of the IRE, vol. 43, pp. 189-209; February, 1955. #### Transmitter continued Pulse length is generally about one microsecond. A longer pulse may be used for greater range, if the oscillator power capacity permits. On the other hand, if a range resolution of ΔR feet is required, the pulse cannot be longer than $\Delta R/500$ microseconds. The repetition frequency must be low enough to permit the desired maximum unambiguous range ($f_r < 90,000/R_u$). This is the range beyond which the echo returns after the next transmitter pulse and thus may be mistaken for a short-range echo of the next cycle. If this range is small, oscillator maximum average power may impose an upper limit. The peak power required may be computed from the range equation (see below) after determination or assumption of the remaining factors. Peak and average power may be interconverted by use of Fig. 3. Pulse energy is $P_p \tau \times 10^{-3}$ joules. Fig. 2-Time between transmission and reception of a reflected signal. #### Transmitter continued The choice of carrier frequency is a complex one, often determined by available oscillators, antenna size, and propagation considerations. Frequency-wavelength conversions are facilitated by Fig. 4, which also defines the band nomenclature. Fig. 3—Power-time relationships. Fig. 4—Correlation between frequency, wavelength, and band nomenclature for radar. #### Antenna The beam width in radians of any antenna is approximately the reciprocal of its dimension in the plane of interest expressed in wavelength units. Beam width may be found readily from Fig. 5, which also shows gain of a paraboloid of revolution. The angular accuracy and resolution of a radar are roughly equal to the beam width; thus precision radars require high frequencies to avoid excessively cumbersome antennas. Fig. 5-Beam width and gain of a parabolic reflector. # Target echoing area The radar cross section σ is defined as 4π times the ratio of the power per unit solid angle scattered back toward the transmitter, to the power per unit area striking the target. For large complex structures and short wavelengths, the values vary rapidly with aspect angle. The effective areas of several important configurations are listed in the following table.* ^{*}L. N. Ridenour, "Radar System Engineering," v. 1, Radiation Laboratory Series, McGraw-Hill Book Company, New York, New York; 1947. See pp. 64–68, 78, 80. ### Target echoing area continued | reflector | cross section = σ | |--|--| | Tuned $\lambda/2$ dipole Small sphere with radius = a, where $a/\lambda < 0.15$ large sphere with radius = a, where $a/\lambda > 1$ | 0.22λ ²
9πα ² (2πα/λ) ⁴
πα ² | | Corner reflector with one edge $=$ a (maximum) Flat plate with area $=$ A (normal incidence) Cylinder with radius $=$ a, length $=$ L (normal incidence) | $4\pi\alpha^4/3\lambda^2$ $4\pi A^2/\lambda^2$ $2\pi L^2\alpha/\lambda$ | | Small airplane (AT-11)
Large airplane (B-17) | 200 feet ²
800 feet ² | | Small cargo ship
Large cargo ship | 1,500 feet ²
160,000 feet ² | #### Receiver The receiver is characterized by an overall noise figure N, defined as the ratio of carrier power available from the antenna to theoretical noise Fig. 6—Noise figure of a receiver of given bandwidth. #### Receiver continued power KTb, when the mean noise power and the carrier power are equal.* This equality must be observed at some stage in the receiver where both have been amplified so highly as to override completely any noise introduced by succeeding stages. $KT=4.1\times10^{-21}$, and b= receiver bandwidth in cycles/second. The bandwidth in megacycles should be $1.2/\tau$, plus an allowance for frequency drift, thus usually about $2/\tau$. Fig. 6 enables the determination of the noise figure of a receiver operating from any source impedance, Z_{σ} ohms. E is one-half the open-circuit voltage of a
fifty-ohm source, adjusted for receiver output carrier-plus-noise 3 decibels above noise alone. Thus, if the generator is calibrated for microvolts into Z_{σ} ohms, use $\sqrt{50/Z_{\sigma}}$ times the indicated voltage. If it is calibrated for voltage into an open circuit, multiply by $\frac{1}{2}\sqrt{50/Z_{\sigma}}$, but add series resistance to make source $=Z_{\sigma}$ ohms, for which the receiver input is designed. #### Indicator The many types of radar indicators are shown in Fig. 7. Type A is the first type used, and the best example of a deflection-modulated display. The PPI is the most common intensity-modulated type. For the purpose of determining maximum radar range, an indicator is characterized by a visibility factor V, defined as follows: $$V = \tau P_{min} \times 10^{-6}/NKT$$ where P_{\min} is the receiver input-signal power in watts for a 50-percent probability of de- For an A-scope presentation, V may be found from Fig. 8, where τ is in microseconds, and B is in megacycles. The values are conservative, but the effects of changing τB and f_{τ} are shown correctly. Fig. 8-Visibility factor for an A scope. ^{*}Receiver noise figures are more completely discussed in the chapter "Radio noise and interference," p. 768–770. [†] K. A. Norton, and A. C. Omberg, "The Maximum Range of a Radar Set," Proceedings of the I.R.E., v. 35, pp. 4–24, January, 1947: p. 6. type A type B type C type D Coarse range information provided by position of signal in broad azimuthal trace. (Used in a prototype airborne interception set now obsolete.) type E type F azimuth errar Single signal only. In the absence of a signal, the spot may be made to expand into a circle type G Fig. 7-Types of radar indicators are given on this and the facing page. Courtesy of McGraw-Hill Book Campany azimuth error Single signal only. Signal appears as "wingspot," position giving azimuth and elevation errors. Length of wings inversely proportional to range type H Signal appears as two dots. Left dot gives range and azimuth of target. Relative position of right dot gives rough indication of elevation type l Antenna scan is conical. Signal is a circle, the radius proportional to range. Brightest part indicates direction fram axis of cane to target type J Same as type A, except time base is circular, and signals appear as radial pips type K Type A with lobe-switching antenna. Spread voltage splits signals from two lobes. When pips are of equal size, antenna is on target type L Same as type K, but signals from two lobes are placed back to back type M Type A with range step or range notch. When pip is aligned with step or notch, range can be read from dial or counter type N A combination of type K and type M #### type P (PPI) Range is measured radially from center #### Range equation The theoretical maximum free-space range of a radar using an isotropic common receiving and transmitting antenna, lossless transmission line, and a perfect receiver, may be found as follows: Transmitted pulse energy = P' (in peak watts) $\times \tau'$ (in seconds) Energy incident on target $=P'\tau'/4\pi R^2$ per unit area Energy returned to antenna = $P'\tau'\sigma/(4\pi R^2)^2$ per unit area Energy at receiver input = $P'\tau'\sigma\lambda^2/(4\pi)^3R^4$ where σ , λ , and R are in the same units. Receiver input-noise energy = $KT = 4.11 \times 10^{-21}$ joules. Assuming that the receiver adds no noise, and that the signal is visible on the indicator when signal and noise energies are equal, the maximum range is found to be $$R^4 = \frac{P'\tau'\sigma\lambda^2}{(4\pi)^3KT}$$ The free-space range of an actual radar will be modified by several dimensionless factors, primarily antenna gain G, receiver noise figure N, and indicator visibility factor V, as discussed above. Additional minor losses may be lumped under factors L_1 and L_2 , one-way and two-way loss factors, respectively. L_1 includes losses in transmission lines running from the tr switch to both transmitter and receiver, as well as tr loss, usually about 1 decibel. L_2 includes loss of the transmission line between tr box and antenna, and atmospheric absorption. The range equation, including these factors, and using convenient units, is $$R_m = 0.1146 \sqrt[4]{P_p \tau \sigma \lambda^2 G^2 L_1 L_2^2 / VN}$$ where $R_m = \text{maximum free-space range in miles}$ P_p = peak power in kilowatts $au = ext{pulse width in microseconds}$ $\sigma=$ effective target area in square feet $\lambda = \text{wavelength in centimeters}$ The use of this equation is facilitated by use of decibels throughout, since many of the factors are readily found in this form. Thus, to find maximum radar range, 809 # Range equation continued **a.** From Fig. 9, find $(P_p + \tau + \sigma + \lambda^2)$ in decibels. **b.** Add $2 \times$ (gain in decibels of common antenna). **c.** Subtract $(L_1 + 2L_2 + V + N)$ in decibels. Note: V may be negative. **d.** From the net result and Fig. 9, find R_m in miles. 7 — poise rengin in inicroseconds Fig. 9-The radar range equation. # **Reflection lobes** The maximum theoretical free-space range of a radar is often appreciably modified, especially for low-frequency sets, by reflections from the earth's surface. For low angles and a flat earth, the modifying factor is $$F = 2 \sin \frac{(2\pi h_1 h_2)}{\lambda R}$$ where h_1 , h_2 , and R are defined in Fig. 10, all in the same units as λ . The result- # Reflection lobes continued Fig. 10-Radar geometry, showing reflection from flat earth. ing vertical pattern is shown in Fig. 11 for a typical case. The angles of the maxima of the lobes and the minima, or nulls, may be found from $$\theta_m = \frac{h_2}{R} = \frac{n\lambda}{4h_1}$$ where θ_m = angle of maximum in radians, when n = 1, 3, 5... = angle of minimum in radians, when $n = 0, 2, 4 \dots$ This expression may be applied to the problem of finding the height of a maximum or null over the curved earth with the following approximate result: $$H_2 = 44 \text{ n } \lambda D/H_1 + D^2/2$$ where H = feet $\lambda = centimeters$ D = miles Fig. 11—Vertical-lobe pattern resulting from reflections from earth. #### Reflection zone The reflection from the ground accurs not at a point, but over an elliptical area, essentially the first Fresnel zone. The center of the ellipse and its dimensions may be found from $$x_0 = d_1(1 + 2a)$$ $x_1 = 2d_1 \sqrt{a(1 + a)}$ $y_1 = 2h_1 \sqrt{a(1 + a)}$ where x_0 , x_1 , y_1 , d, are shown in Fig. 10, and $$d_1 = h_1 d/h_2 = h_1/\sin\theta$$ $$a = \lambda/4h_1 \sin \theta$$ In the maximum of the first lobe, a=1, and the distances to the nearest and farthest points are $$x_0 - x_1 = 0.7h_1^2/\lambda$$ $x_0 + x_1 = 23.3h_1^2/\lambda$ $y_1 = 2\sqrt{2h_1}$ These dimensions determine the extent of flat ground required to double the free-space range of a radar as above. The height limit of any large irregularity in the area is $h_1/4$. If the same area is available on a sloping site of angle ϕ , double range may be obtained on a target on the horizon. In this case $$x_0 + x_1 = 1.46\lambda/\sin^2\phi$$ # Continuous-wave Doppler radar Echoes from stationary objects confuse or mask those from aircraft, especially on ppi scopes. This effect may be minimized by use of short pulses, narrow beams, and several circuit modifications, but it is still intolerable in many situations such as ground control of approach and aircraft detection. Discrimination between fixed and moving targets is possible by use of the Doppler principle. In its simplest application, a cw transmitter is used and the return energy is detected by mixing with a portion of the transmitter power. Fixed targets produce a constant voltage, whereas a moving target produces an alternating voltage at the Doppler frequency difference between transmitted and received signals, $$f_d = f_t \frac{c+v}{c-v} - f_t \approx \frac{2v}{c} f_t = 89.4 \frac{v}{\lambda}$$ where f_d = Doppler frequency in cycles/second #### Continuous-wave Doppler radar continued f_t = transmitted frequency in cycles/second v = target radial velocity in miles/hour c = speed of propagation in miles/hour λ = transmitted wavelength in centimeters Each cycle of Doppler frequency corresponds to a target radial motion of one-half transmitted wavelength. Thus, a target moving with a radial velocity of 300 miles/hour = 440 feet/second will move about 880 half-waves per second at 1000 megacycles ($\lambda \approx 1$ foot), resulting in a Doppler frequency of about 880 cycles. Target azimuth may be determined by rotating an antenna beam, but range cannot be found without modulation of the transmitter, so this type of radar is suitable only for measuring radial velocities of targets, and sentry applications to detect presence rather than accurate position of moving targets. #### Pulsed Doppler radar—coherence The straightforward way of obtaining range information is to pulse-modulate the transmitted carrier. If this is done in the simplified manner of Fig. 12, the received pulses will be small segments of the cw returns discussed above, as shown in Fig. 13. A fixed target produces uniform pulses, whereas moving-target pulses vary in amplitude periodically. An A-scope with one fixed and one moving target will appear as indicated. The basic cause of this distinction is phase coherence; that is, each time a fixed target echo returns, it is mixed with a voltage that has gone through the same difference in phase since the instant of transmission. To produce this same essential coherence in an actual radar using a magnetron, some complexity is required as in the upper circuits of Fig. 14. Here there is an extremely stable local oscillator, the stalo, that provides a relatively fixed reference, pulse after pulse, and a coherent oscillator, the coho, operating at if frequency, capable of being started in a phase related to each transmission and providing a coherent
reference in the interval from pulse to pulse. It can be seen that at Doppler frequencies that are multiples of the repetition rate, the Fig. 12—Simple pulsed Doppler radar. Fig. 13—Pulsed Doppler radar video signal. # Pulsed Doppler radar—coherence continued resulting pulses will be of constant amplitude, so these are said to be produced by targets at (blind speeds) = $n\lambda f_r/89.4$ #### Moving-target-indicator radar #### Cancellation To provide moving-target indication (mti) on a ppi-scope, the constantamplitude fixed-target pulses must be cancelled by subtraction of successive pulse trains. A typical cancellation-circuit block diagram is shown in the lower part of Fig. 14. The delay element is an ultrasonic transmission line, Fig. 14—Moving-target-indicator radar. either mercury or quartz. These operate best in the region of 10 to 30 megacycles, so a carrier wave in this range is modulated by the video input. # Moving-target-indicator radar continued After delay, the signal is detected, amplified, and subtracted from the next pulse train. Obviously, the delay must be $1/f_r$. For the mercury line, the length in inches determines the delay in microseconds, $$D = L (17.42 + 0.0052T)$$ where T is centigrade temperature. For quartz, the length (with no reflections) is determined from $$D = 4.84 L$$ #### Limitations There are three major limitations on the subclutter visibility (ratio of fixed target that can be cancelled to just-visible moving target). Variation of fixed targets: Buildings and mountains do not vary, but vegetation and sea-echo fluctuations are a function of wind velocity. In low winds, cancellation of 50 db may be expected. Antenna rotation: Antenna rotation modulates the fixed targets so that the visibility cannot be better than approximately $$V_{ec} = 10^4 \theta / r_{max} \omega$$ where $V_{sc} = \text{subclutter visibility (ratio)}$ θ = antenna horizontal beamwidth in degrees r_{max} = range of farthest clutter in miles $\omega = \text{rotational rate in revolutions/minute}$ Thus for a beamwidth of one degree, maximum clutter range of 100 miles, and one antenna revolution per minute, V_{sc} is 100 or 40 db. Equipment instabilities: The above limitations on maximum visibility must often be accepted as given. Then it is necessary to provide corresponding equipment stability, but there is no point in setting stability limits that would give performance exceeding the above two practical considerations. Permissible stalo and coho drift rated in kc/sec² are given by $$df/dt = 20f_r/V_{sc} r_{max}$$ # Moving-target-indicator radar continued The coho mistuning should not be greater than $1/4\tau$ megacycle where τ is pulse length in microseconds. Proper operation of the cancellation equipment requires an amplitude unbalance between the two channels of less than $100/V_{sc}$ percent. Likewise, temporal unbalance between delay time and pulse interval must not exceed $50/V_{sc}$ percent of the interval. These figures are usually achieved and maintained by automatic balance controls. ### ■ Wire transmission # Telephone transmission-line data # Line constants of copper open-wire pairs #### 8- and 12-inch spacing #### Insulators: 40 pairs toil and double-petticoat (DP) per mile 53 pairs Pyrex glass (CS) per mile #### Temperature 68° fahrenheit | | <u> </u> | resistar | ce in | ohms/ | loop mi | le | induc | tance | in mill | ihenri | s/loo | p mile | |--------------------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | | 165 | mil | 128 | mil | 104 | mil | 165 | mil | 128 | mil | 104 | mil | | freq
in
kc/s | 12"
DP | 8"
CS | | 0.1 | 4.10 | 4.10 | 6.82 | 6.82 | 10.33 | 10.33 | 3.37 | 3.11 | 3.53 | 3.27 | 3.66 | 3.40 | | 0.5 | 4.13 | 4.13 | 6.83 | 6.83 | 10.34 | 10.34 | 3.37 | 3.10 | 3.53 | 3.27 | 3.66 | 3.40 | | 1.0 | 4.19 | 4.19 | 6.87 | 6.87 | 10.36 | 10.36 | 3.37 | 3.10 | 3.53 | 3.27 | 3.66 | 3.40 | | 1.5 | 4.29 | 4.29 | 6.94 | 6.94 | 10.41 | 10.41 | 3.37 | 3.10 | 3.53 | 3.26 | 3.66 | 3.40 | | 2.0 | 4.42 | 4.42 | 7.02 | 7.02 | 10.47 | 10.47 | 3.36 | 3.10 | 3.53 | 3.26 | 3.66 | 3.40 | | 3.0 | 4.76 | 4.76 | 7.24 | 7.24 | 10.62 | 10.62 | 3.35 | 3.09 | 3.52 | 3.26 | 3.66 | 3.40 | | 5.0 | 5.61 | 5.61 | 7.92 | 7.92 | 11.11 | 11,11 | 3.34 | 3.08 | 3.52 | 3.25 | 3.66 | 3.40 | | 10 | 7.56 | 7.56 | 10.05 | 10.05 | 12.98 | 12.98 | 3.31 | 3.04 | 3.49 | 3.23 | 3.64 | 3.38 | | 20 | 10.23 | 10.23 | 13.63 | 13.63 | 17.14 | 17.14 | 3.28 | 3.02 | 3.46 | 3.20 | 3.61 | 3.35 | | 30 | 12.26 | 12.26 | 16.26 | 16.26 | 20.55 | 20.55 | 3.26 | 3.00 | 3.44 | 3.17 | 3.58 | 3.33 | | 50 | 15.50 | 15.50 | 20.41 | 20.41 | 25.67 | 25.67 | 3.25 | 2.99 | 3.43 | 3.16 | 3.57 | 3.31 | | 100 | 21.45 | 21.45 | 28.09 | 28.09 | 35.10 | 35.10 | 3.24 | 2.98 | 3.42 | 3.15 | 3.55 | 3.29 | | 150 | 26.03 | 26,03 | 33.96 | 33.96 | 42.42 | 42.42 | 3.23 | 2.97 | 3.41 | 3.14 | 3.54 | 3.28 | | 200 | 29.89 | 29,89 | 38.93 | 38.93 | 48.43 | 48.43 | 3.23 | 2.97 | 3.40 | 3.14 | 3.54 | 3.28 | | 500 | 46.62 | 46.62 | 60.53 | 60.53 | 74.98 | 74.98 | 3.22 | 2.96 | 3.39 | 3.13 | 3.53 | 3.27 | | 1000 | 65.54 | 65.54 | 84.84 | 84.84 | 104.9 | 104.9 | 3.22 | 2.96 | 3.38 | 3.12 | 3.52 | 3.26 | | | | | nductance
Vloop mi | | | | tance in | |------------|---------|--------|-----------------------|-------------|------------------|---------|-----------------------| | freq | dry—ali | gauges | wet—all | gavges | | | rads/lao _l | | in
kc/s | 12" DP | 8"cs | 12"—DP | 8"—cs | wire size | 12" | 8" | | 0.1 | 0.04 | 0.04 | 2.5 | 2.0 | In space | | | | 0.5 | 0.15 | 0.06 | 3,0 | 2.3 | 165 mil | 0.00898 | 0.00978 | | 1.0 | 0.29 | 0.11 | 3.5 | 2.6
2.9 | 128 mil | 0.00855 | 0.00928 | | 1.5 | 0.43 | 0.15 | 4.0 | 2.9 | 104 mil | 0.00822 | 0.00888 | | | | | | | on 40-wire line, | | ļ | | 2.0 | 0.57 | 0.20 | 4.5 | 3.2 | dry | | | | 3.0 | 0.85 | 0.30 | 5.5
7.5 | 3.7 | 165 mil | 0.00915 | 0.01000 | | 5.0 | 1.4 | 0.49 | | 4.6 | 128 mil | 0.00871 | 0.00948 | | 10 | 2.8 | 0.97 | 12.1 | 6. 6 | 104 mil | 0.00857 | 0.00908 | | | | | | | on 40-wire line, | | | | 20 | 5.6 | 1.9 | 20.5 | 9.6 | wet | | ł | | 30 | 8.4 | 2.9 | 28.0 | 12.1 | 165 mil | 0.0093 | 0.0102 | | 50 | 14.0 | 4.8 | 41.1 | 15.7 | 128 mil | 0.0089 | 0.0097 | | | I i | | l , | | 104 mil | 0.0085 | 0.0093 | # Line constants of 40% Copperweld open-wire pairs #### 8- and 12-inch spacing #### Insulators: 40 pairs toll and double-petticoat (DP) per mile 53 pairs Pyrex glass (CS) per mile #### Temperature 68° fahrenheit | | | esistan | ce in c | hms/l | oop mi | le | indu | tance | in mill | ihenrie | s/loop | mile | |--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | | 165 | mil | 128 | mil | 104 | mil | 165 | mil | 128 | mil | 104 | mil | | freq
in
kc/s | 12"
DP | 8"
CS | | 0.0
0.1
0.5
1.0 | 9.8
10.0
10.0
10.1 | 9.8
10.0
10.0
10.1 | 16.2
16.3
16.4
16.6 | 16.2
16.3
16.4
16.6 | 24.6
24.6
24.7
24.8 | 24.6
24.6
24.7
24.8 | 3.37
3.37
3.37 | 3.11
3.10
3.10 | 3.53
3.53
3.53 | 3.27
3.27
3.27
3.27 | 3.66
3.66
3.66 | 3.40
3.40
3.40 | | 1.5
2.0
3.0
5.0 | 10.1
10.2
10.4
10.6 | 10.1
10.2
10.4
10.6 | 16.7
16.8
17.1
17.4 | 16.7
16.8
17.1
17.4 | 24.9
25.2
25.4
26.0 | 24.9
25.2
25.4
26.0 | 3.37
3.36
3.35
3.34 | 3.10
3.10
3.09
3.08 | 3.53
3.53
3.52
3.52 | 3.26
3.26
3.26
3.25 | 3.66
3.66
3.66
3.66 | 3.40
3.40
3.40
3.40 | | 10
20
30
50 | 10.8
11.4
12.3
14.5 | 10.8
11.4
12.3
14.5 | 17.7
18.2
18.8
20.4 | 17.7
18.2
18.8
20.4 | 26.5
27.1
27.5
28.7 | 26.5
27.1
27.5
28.7 | 3.31
3.28
3.26
3.25 | 3.04
3.02
3.00
2.99 | 3.49
3.46
3.44
3.43 | 3.23
3.20
3.17
3.16 | 3.64
3.61
3.58
3.57 | 3.38
3.35
3.33
3.31 | | 100
150 | 20.8 | 20.8
25.9 | 26.5
32.5 | 26.5
32.5 | 33.3
39.6 | 33.3
39.6 | 3.24
3.23 | 2.98
2.97 | 3.42
3.41 | 3.15
3.14 | 3.55
3.54 | 3.29
3.28 | | | | | loop mile | | | | ance in
ads/loop | |------------|---------|--------|-----------|------------|------------------|---------|---------------------| | freq | dry-all | gauges | we!all | gauges | | | ile | | in
kc/s | 12" DP | 8"—C5 | 12"—DP | 8"—C5 | wire size | 12" | 8" | | 0.1 | 0.04 | 0.04 | 2.5 | 2.0 | in space | | | | 0.5 | 0.15 | 0.06 | 3.0 | 2.3 | 165 mil | 0.00898 | 0.00978 | | 1.0 | 0.29 | 0.11 | 3.5 | 2.6 | 128 mil | 0.00855 | 0.00928 | | 1.5 | 0.43 | 0.15 | 4.0 | 2.9 | 104 mil | 0.00822 | 0.00888 | | | | | | 1 | on 40-wire line, | | 1 | | 2.0 | 0.57 | 0.20 | 4.5 | 3.2
3.7 | dry | | Į | | 3.0 | 0.85 | 0.30 | 5.5 | | 165 mil | 0.00915 | 0.01000 | | 5.0 | 1.4 | 0.49 | 7.5 | 4.6 | 128 mil | 0.00871 | 0.00948 | | 10 | 2.8 | 0.97 | 12.1 | 6.6 | 104 mil | 0.00857 | 0.00908 | | | 1 | | 1 3 1 | | on 40-wire line, | | | | 20 | 5.6 | 1.9 | 20,5 | 9.6 | wet | | | | 30 | 8.4 | 2.9 | 28.0 | 12.1 | 165 mil | 0.0093 | 0.0102 | | 50 | 14.0 | 4.8 | 41.1 | 15.7 | 128 mil | 0.0089 | 0.0097 | | | | I | | | 104 mil | 0.0085 | 0.0093 | # Attenuation of copper open-wire pairs 8- and 12-inch spacing Insulators: 40 pairs toll and double-petticoat (DP) per mile 53 pairs Pyrex glass (CS) per mile Temperature 68° fahrenheit #### dry weather | | | | at | tenuatio | ı in deci | bels per | mile | | | |---------------------------|-----------------------------------|----------------------------------|-------------------------------------
-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------| | | | 165 mii | | | 128 mil | | | 104 mil | | | freq
in
kc/s | 12"
DP | 12"
CS | 8"
CS | 12"
DP | 12"
CS | 8"
C\$ | 12"
DP | 12"
CS | 8"
CS | | 0.1
0.5
1.0
1.5 | 0.023
0.029
0.030
0.031 | 0.023
0.029
0.030
0.031 | 0.025
0.0315
0.0325
0.0335 | 0.032
0.045
0.047
0.048 | 0.032
0.045
0.047
0.048 | 0.034
0.048
0.0505
0.051 | 0.041
0.063
0.067
0.068 | 0.041
0.063
0.067
0.068 | 0.0425
0.067
0.072
0.073 | | 2.0
3.0
5.0
10 | 0.0325
0.036
0.044
0.061 | 0.032
0.034
0.041
0.056 | 0.035
0.038
0.0445
0.0605 | 0.0485
0.051
0.057
0.076 | 0.048
0.050
0.055
0.070 | 0.052
0.054
0.0595
0.076 | 0.069
0.071
0.076
0.093 | 0.069
0.070
0.074
0.087 | 0.074
0.076
0.080
0.094 | | 20
30
50
100 | 0.088
0.110
0.148 | 0.076
0.092
0.118
0.165 | 0.083
0.100
0.127
0.178 | 0.108
0.135
0.179 | 0.096
0.116
0.147
0.204 | 0.104
0.125
0.158
0.220 | 0.129
0.159
0.209 | 0.116
0.140
0.176
0.244 | 0.125
0.151
0.189
0.262 | | 150
200
500
1000 | -
-
- | 0.203
0.235
— | 0.218
0.25
0.42±
0.7± | | 0.249 | 0.268 | | 0.296 | 0.317 | | | | | | | a sasa i
Maka | | | | | |-------------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------------------|-------------------------|---------------------------|-------------------------|----------------------------| | wet wea | ther | | | | * . | | | | | | 0.1
0.5
1.0 | 0.032
0.037
0.039 | 0.029
0.034
0.035 | 0.030
0.036
0.037 | 0.043
0.053
0.056 | 0.039
0.050
0. 0 52 | 0.040
0.053
0.055 | 0.054
0.072
0.076 | 0.049
0.069
0.073 | 0.0505
0.0705
0.0775 | | 1.5 | 0.041 | 0.037 | 0.0385 | 0.058 | 0.0535 | 0.0565 | 0.078 | 0.0745 | 0.0795 | | 2.0
3.0
5.0 | 0,043
0.0485
0.060 | 0.038
0.041
0.050 | 0.040
0.044
0.0525 | 0.060
0.064
0.075 | 0.0545
0.0575
0.0645 | 0.058
0.061
0.068 | 0.0805
0.0845
0.094 | 0.076
0.078
0.084 | 0.0805
0.083
0.089 | | 10 | 0.085 | 0.068 | 0.072 | 0.102 | 0.083 | 0.0885 | 0.120 | 0.101 | 0.106 | | 20
30 | 0.127 | 0.095 | 0.101 | 0.150
0.188 | 0.116 | 0.123
0.150 | 0.173 | 0.137 | 0.144
0.176 | | 50
100
150 | 0.220 | 0.154
0.228
0.288 | 0.162
0.237
0.299 | 0.253 | 0.185
0.271
0.339 | 0.195
0.283
0.353 | 0.287 | 0.217
0.313
0.390 | 0.227
0.326
0.405 | # Attenuation of 40% Copperweld open-wire pairs #### 8- and 12-inch spacing #### Insulators: 40 pairs toll and double-petticoat (DP) per mile 53 pairs Pyrex glass (CS) per mile #### Temperature 68° fahrenheit #### dry weather | | | | atte | nuation | in decib | els per m | ile | | | |--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | | 165 mil | | | 128 mil | | | 104 mii | | | freq
in
kc/s | 12"
DP | 12"
CS | 8"
CS | 12"
DP | 12"
CS | 8"
CS | 12"
DP | 12"
CS | 8"
Cs | | 0.2
0.5 | 0.054
0.067 | 0.054
0.067 | 0.057 | 0.073
0.097 | 0.073 | 0.077 | 0.091
0.127 | 0.091 | 0.096 | | 1.0
1.5 | 0.073 | 0.073 | 0.078 | 0.112
0.118 | 0.112
0.118 | 0.120
0.127 | 0.152
0.162 | 0.152
0.162 | 0.162
0.174 | | 2.0
3.0 | 0.077
0.079 | 0.077
0.079 | 0.083
0.085 | 0.120
0.124 | 0.120
0.124 | 0.130
0.134 | 0.168
0.174 | 0.168
0.174 | 0.180
0.188 | | 5.0
10 | 0.082 | 0.082
0.085 | 0.088
0.092 | 0.127
0.131 | 0.127
0.131 | 0.138
0.142 | 0.1 7 9
0.186 | 0.179
0.186 | 0.195
0.201 | | 20
30 | 0.088
0.095 | 0.088
0.095 | 0.096
0.103 | 0.135
0.139 | 0.135
0.139 | 0.147
0.152 | 0.19 1
0.195 | 0.191
0.195 | 0.207
0.211 | | 50
100
150 | 0.110
0.156
0.199 | 0.110
0.156
0.199 | 0.119
0.168
0.214 | 0.150
0.188
0.233 | 0.150
0.188
0.233 | 0.163
0.203
0.251 | 0.206
0.234
0.273 | 0.206
0.234
0.273 | 0.221
0.252
0.293 | #### wet weather | 0.2 | 0.066 | 0.060 | 0.063 | 0.089 | 0.081 | 0.084 | 0.111 | 0.101 | 0.105 | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 0.5 | 0.077 | 0.072 | 0.076 | 0.111 | 0.104 | 0.110 | 0.145 | 0.136 | 0.142 | | 1.0 | 0.083 | 0.078 | 0.084 | 0.126 | 0.119 | 0.126 | 0.168 | 0.160 | 0.169 | | 1.5 | 0.088 | 0.082 | 0.087 | 0.130 | 0.124 | 0.133 | 0.178 | 0.170 | 0.181 | | 2.0 | 0.089 | 0.083 | 0.089 | 0.136 | 0.128 | 0.137 | 0.184 | 0.176 | 0.188 | | 3.0 | 0.093 | 0.086 | 0.092 | 0.140 | 0.132 | 0.142 | 0.192 | 0.183 | 0.196 | | 5.0 | 0.100 | 0.091 | 0.097 | 0.147 | 0.137 | 0.148 | 0.201 | 0.190 | 0.205 | | 10 | 0.111 | 0.098 | 0.104 | 0.159 | 0.145 | 0.155 | 0.214 | 0.200 | 0.215 | | 20 | 0.126 | 0.107 | 0.115 | 0.175 | 0.155 | 0.166 | 0.233 | 0.212 | 0.228 | | 30 | 0.145 | 0.120 | 0.127 | 0.197 | 0.168 | 0.177 | 0.253 | 0.224 | 0.238 | | 50 | 0.184 | 0.147 | 0.153 | 0.230 | 0.190 | 0.199 | 0.288 | 0.247 | 0.261 | | 100 | 0.282 | 0.219 | 0.227 | 0.314 | 0.254 | 0.265 | 0.372 | 0.303 | 0.317 | | 150 | 0.370 | 0.285 | 0.295 | 0.415 | 0.324 | 0.336 | 0.461 | 0.367 | 0.382 | Characteristics of standard types of aerial copper-wire telephone circuits 1000 cycles per second DP (double petticoat) insulators for all 12- and 18-inch spaced wires. CS (special glass with steel pin) insulators for all 8-inch spaced wires. | | _ | _ | _ | primory constants | onstants | _ | ă | propagation constant | n constar | = | | line impedance | edance | | | - | 1 | |--------------------|---------------|-----------------------|-----------|-------------------|----------|--------|-------------|----------------------|-------------|-------|--------------|----------------|-------------|-------|--------------------------|------------------------|--------| | | 901100 | ģ. | | per loop mile | p mile | | polar | ŏ | rectangular | gular | polar | Ē | rectangular | gular | | - A | vation | | type of circuit | wires
wils | of
wires
inches | R
ohms | L | υĦ | o et m | ni-
tvde | engle
deg | 8 | 80 | mag-
trde | deg
deg | a has | × g | wove-
length
miles | miles
Per
second | 4 g i | | Non-pole pair phys | 165 | 8 | 4.11 | 11600. | 00010. | = | .0353 | 83.99 | .00370 | 1580. | 285 | 5.88 | 282 | 83 | 179.0 | 000'621 | .0325 | | Non-pole pair side | 165 | . 21 | 4.1 | .00337 | 51600. | 82 | .0352 | 84.36 | .00346 | .0350 | 612 | 5:35 | 019 | 25 | 179.5 | 179,500 | 030 | | Pole pair side | 165 | 18 | 4.11 | .00364 | .00863 | 8. | .0355 | 84.75 | .00325 | .0353 | 653 | 9.00 | 159 | 25 | 178.0 | 178,000 | .028 | | Non-pole pair phan | 165 | 12 | 5.06 | .00208 | .01514 | 38. | .0355 | 85.34 | .00288 | .0354 | 373 | 4.30 | 372 | 88 | 177.5 | 005'221 | .025 | | Non-pole pair phys | 128 | 80 | 6.74 | .00327 | .00948 | = | .0358 | 80.85 | 69500 | .0353 | 603 | 8.97 | 969 | 46 | 178.0 | 178,000 | .0505 | | Non-pole pair side | 128 | 12 | 6.74 | .00353 | 12800 | .29 | .0356 | 81.39 | .00533 | .0352 | 920 | 8.32 | 643 | 75 | 178.5 | 178,500 | .047 | | Pole pair side | 128 | 18 | 6.74 | .00380 | .00825 | .29 | .0358 | 81.95 | .00502 | .0355 | 663 | 7.72 | 989 | 83 | 0.771 | 000'221 | .044 | | Non-pole pair phan | 128 | 12 | 3.37 | 91200. | .01454 | 85 | .0357 | 82.84 | .00445 | .0355 | 104 | 6.73 | 398 | 47 | 0.771 | 000'221 | 680. | | Non-pole pair phys | 5 | 80 | 10.15 | .00340 | .00708 | = | .0367 | 77.22 | 11800. | .0358 | 644 | 12.63 | 629 | 4 | 175.5 | 175,500 | .072 | | Non-pole pair side | 5 | 12 | 10.15 | 99800. | .00837 | .29 | .0363 | 77.93 | 09200. | .0355 | 269 | 11.75 | 229 | 4 | 0.771 | 177,000 | 290. | | Pole pair side | 5 | 18 | 10.15 | .00393 | 76200. | .29 | .0365 | 78.66 | 81.700. | .0358 | 730 | 10.97 | 717 | 139 | 175.5 | 175,500 | £90. | | Non-pole pair phan | 5 | 12 | 5.08 | .00223 | .01409 | .58 | .0363 | 79.84 | .00640 | .0357 | 451 | 9.70 | 415 | | 176.0 | 176,000 i | 950. | Notes: 1. All values are for dry-weather conditions. 2. All capacitance values assume a line carrying 40 wires. 3. Resistance values are for temperature of 20° C (68° f). continued Telephone transmission-line data onstants 2 | 8 | |---------------| | propagation | | e and | | <u>.</u> | | toll-cable | | ð | | values | | epresentative | | | | | | | | | | | | | 7 | | 13, | 16, ar | 13, 16, and 19 AWG quadded toll cable Nonloaded All figures for loop-mile basis Temperature 55° fahrenheit | d 19 AWG quadded toll cable
Nonloaded
All figures for loop-mile basis
Temperature 55° fahrenhelt | tvadde
or loop
vre 55 | d toll cable Nonloadedmile basis | cable
aded
basis | |---|------------------------------|------------------------------|-------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|-------------------------------|------------------------------|--------------------------------------|--|--|--|---------------------------------
--|---|------------------------------|----------------------------------|------------------------------| | | 5 £ | resistance
ohms/mile | _ | Ē | Inductance
millihenries/mile | | con
micron | conductance
micromhos/mile | | capacitance µf/mile | charac | characteristic impedance
ohms | edance | <u> </u> | phase shift
rodians/mile | = 2 | deci | attenuation
decibels/mile | _ • | | freq in
kc/s | 13 | 91 | 16 | 13 | 16 | 19 | 13 | 16 | 6 | 13, 16, or 19 | 13 | 16 | 16 | 13 | 16 | 19 | 13 | 16 | 19 | | 0.0.0.1
0.0.1 | 20.7
20.7
20.8 | 41.8
41.9
42.0 | 83.8
83.8
84.0 | 1.070
1.069
1.065 | 001.1.0% | 2222 | 0.40 | 0.25
0.75
1.5 | 0.70 | 0.0610
0.0610
0.0609
0.0609 | 530-j505
250-j210
195-j140 | 745–j730
345–j315
255–j215 | 1050-j1040
480- j460
345- j319 | 0.020 | 0.027 | 0.040 | 0.17 | 0.24 | 0.35
0.77
1.06 | | - 25.5
5.00.5 | 20.9
21.0
22.0 | 425.7
42.24
43.0 | 843.2.2
243.2.2 | 1.057
1.053
1.046
1.035 | 1.097 | = 0.06
= 0.06 | 3.5
4.5
6.5 | 2.65
4.15
7.6 | 2.35
4.05
8.0 | 0.0608
0.0608
0.0607
0.0608 | 170-j105
160- j85
145- j63
135- j42 | 225-7175
205-7150
180-7115
155- 772 | 290- J255
255- J215
217- J170
182- J120 | 0.100
0.120
0.170
0.26 | 0.116
0.140
0.189
0.28 | 0.17
0.20
0.25
0.35 | 0.53
0.58
0.63 | 0.79
0.87
1.00
1.16 | 1.27
1.44
1.68
2.03 | | 2888 | 24.0
29.1
35.5
47.5 | 44.5
49.5
55.4
67.0 | 85.3
89.0
94.0
105.5 | 1.007
0.968
0.945
0.910 | 1.085
1.066
1.047
1.015 | 1.105
1.095
1.085
1.065 | 21.0
47.0
78.0
150. | 18.5
46.2
80.5
160. | 20.0
50.0
87.5
180. | 0.0605
0.0604
0.0602
0.0600 | 131 – <i>J</i> 23
128 – <i>J</i> 15
126 – <i>J</i> 12
124 – <i>J</i> 10 | 142- 740
137- 725
135- 718
133- 713 | 155- <i>j</i> 73
141- <i>j</i> 41
137- <i>j</i> 30
134- <i>j</i> 20 | 0.50
0.97
1.43
2.34 | 0.52
1.00
1.48
2.42 | 0.59
1.07
1.57
2.60 | 0.80
1.04
1.27
1.75 | 1.32
1.55
1.78
2.24 | 2.43
2.77
3.02
3.53 | | 150
200
500
1000 | 5.0.111 | 5.5. | 137.0 | 0.850 | 0.935 | 0.980 | 9350. | 88111 | 6.0.111 | 0.0598 | 121- <i>j7.</i> 3
119- <i>j6.</i> 0 | 130- j9
127- j7 | 131- 713 | \$. ⁴ .5
1 1 | 6.94 | 5.00
7.25
1 | 3.60 | 3.31 | 6.88
12.7.88
18 # # | | For O° F:
Increase by
Decrease by | 1% | 1% | 1% | 0.5% | 0.5% | 0.5% | 20% | 20% | %! | 2% | 11 | 11 | 11 | 2% | 1% | 2% | 1% | 1% | 1% | | For 110° F:
Increase by
Decrease by | 8%1 | 8% | 8% | 0.4% | 0.4% | 0.4% | 1%05 | 1000 | 20% | 2% | 11 | 11 | 11 | 2% | 1% | 2% | % | % | % | Telephone transmission-line data Approximate characteristics of standard types of paper-insulated toll telephone cable circuits 1000 cycles per second continued | | _ | _ | - | stants as | of beams | - 4 | ď | propagation constant | constar | - | | ilne impedonce | donce | | _ | | | | | |---|---|-------------------------|----------------------|-----------------------------------|---------------------------|------------|----------------------------------|------------------------------|--------------------------------------|----------------------------------|-----------------------------|---------------------|-----------------------------|--|------------------------------|----------------------------------|-----------------------|-------------------------|---| | | ty e | spac- | ē | ributed p | distributed per loop mile | 3 <u>e</u> | polar | ō | reclangular | geler | Polar | 5 | rectongular | utar | | velocity | * | affenuation | | | wire
gauge
AWG | load-
ing* | load
coils
miles | R
ohms | L | E,C | G
µmho | magni-
fude | angle
deg + | 8 | β | magni-
tude | angle
deg - | s myo | × vho | wave-
length
miles | miles
per
second | fre-
quency | decibels
per
mile | | | side circult | rcult | 222 | N.L.S.
H-31-S
H-44-S | 1.135 | 84.0
87.2
88.4 | 0.001 | 0.061 | 222 | 0.183
0.277
0.319 | 76.6 | 0.1249 | 0.134 | 470
710
818 | 13.2 | 345
691
806 | 319.4
162.2
140.8 | 223.5
8.00
8.00 | 23300
20000 | 5700 | 0.56
0.56
0.49 | | | 666 | H-88-S
H-172-S
B-88-S | 1.135
1.135
0.568 | 91.2
96.3
97.7 | 0.078 | 0.061 | 222 | 0.441
0.610
0.620 | 87.0
87.0 | 0.0418 | 0.439 | 1131
1565
1590 | 252
288
288 | 1126
1563
1588 | 102.8
76.9
76.7 | 10.2 | 14300
10300
10200 | 4000
2900
5700 | 0.36
0.28
0.28 | | | 222 | N.LS.
H-31-S
H-44-S | 1.135 | 42.1
44.5
45.7 | 0.001 | 0.061 | 222 | 0.129
0.266
0.315 | 49.1
82.8
84.6 | 0.0842 0.0334 0.0296 | 0.264 | E 888 | 7.0
7.0
5.2 | 255
677
805 | 215.4
83.0
72.8 | 23.8
20.1 | 23800
20000 | 6700
5700 | 0.69
0.29
0.26 | | | 85
85
85
85 | H-88-S
H-172-S
B-88-S
N.L.S. | 1.135
0.568 | 53.6
54.9
20.8 | 0.078
0.154
0.001 | 0.061 | 25.55 | 0.438
0.608
0.618
0.094 | 87.6
88.3
88.3
52.9 | 0.0224
0.0183
0.0185
0.0568 | 0.437
0.608
0.618
0.075 | 1124
1562
1587
242 | 35.9 | 1123
1562
1587
195 | 83.4.4.4.6.4.4.4.6.0.0.4.4.4.0.0.0.4.4.4.4 | 14.4
10.3
10.2
83.6 | 14400
10300
10200
83600 | 2900
5700 | 0.19
0.16
0.16 | | | phanto | tom circuit | 525 | N.L.P.
H-18-P | 1.135 | 42.0
43.5
44.2 | 0.0007 | 0.00 | 222 | 0.165 | 47.8
78.7
81.3 | 0.1106 | 0.122 | 262
429
491 | 42.0
11.1
8.5 | 195
421
485 | 175.2
82.6
72.4 | 20.02
8.05
8.05 | 23800
20600 | 1 0000 | 0.96
0.46
0.40 | | | 222 | H-50-P
H-63-P
B-50-P | 1.135
1.135
0.568 | 45.7
47.8
49.0 | 0.045 | 9.100 | 222 | 0.424
0.472
0.594 | 85.3
86.0
87.4 | 0.0351 | 0.423 | 675
752
945 | 2.4
2.4
4.5 | 673
750
944 | 53.3
49.8
39.8 | 14.9
13.3
10.6 | 14900 | 3700
3700
5900 | 0.30 | • | | 222 | N.L.P.
H-18-P | 1.135 | 21.0
22.2
22.8 | 0.0007 | 0.100 | 22.2 | 0.116
0.262
0.303 | 50.0
84.0
85.4 | 0.0746 | 0.260 | 185
754
83 | 39.0
5.8
4.4 | 144
415
481 | 116.3
41.8
36.8 | 70.6
24.1
20.8 | 70600
24100
20800 | 1 200
2000
2900 | 0.65
0.24
0.21 | | | 85
85
85
85
85
85
85
85
85
85
85
85
85
8 | H-50-P
H-63-P
B-50-P
N.L.P. | 1.135
1.135
0.568 | 24.3
27.5
10.4 | 0.045
0.056
0.089
0.0007 | 0.000 | 2222 | 0.422
0.471
0.593
0.086 | 87.4
87.7
88.5
55.1 | 0.0189
0.0185
0.0157
0.0442 | 0.422
0.471
0.593
0.071 | 672
749
944
137 | 2.0
1.3
33.9 | 672
749
114 | 27.5
26.6
21.4
76.3 | 14.9
13.4
10.6
89.1 | 14900
13400
10600
89100 | 4200
3700
5900 | 0.16
0.14
0.43 | | | physic
16 | physical circuit
16 8-22 | 0.568 | 43.1 | 0.040 | 0.061 | 1.5 | 0.315 | 85.0 | 85.0 0.0273 0.314 | 0.314 | 808 | 4.8 | 808 | 1.79 | 20.0 | 20000 | 11300 | 0.24 | | | * The It | * The letters H and B Indicate loading-coil spacings of 6000 and 3000 feet, respectively. | d B Indical | te loading | -coil spac | cings of 60 | 00 and 30 | 100 feet, re | spectively | | | | | | | | | | | | Approximate characteristics of standard types of paper-insulated exchange telephone cable circuits | | • | | | | | | | | | | | | | 1000 cycles per second | les per | puoses | |------|-------------|---------------|----------------------|------------------------|-------|---------|----------------------|-------|--------|---|-------------|-------|-----------------|------------------------|-----------|-------------| | | | | loop
con s | loop mile
constants | pre | pagatio | prapagation constant | Ē | chara | mid-section
characteristic impedance | imped | 9700 | | 3 | | | | wire | | \$ ea | | | polar | ь | rectangular | gular | polar | ь | rectangular | gular | Wave | miles | -to | ą | | AWG | epo or | of
loading | O 💐 | o mm | 68 E | angle | 8 | В | 348 | angle | Z 01 | Zon | length
miles | per | fred | per
mile | | 26 | BST | ž | .083 | 1.6 | | 1 | 1 | 1 | 910 | 1 | 1 | - | 1 | | 1 | 2.9 | | , | ST | ź | 690. | 9. | .439 | 45.30 | .307 | 310 | 1007 | 44.5 | 719 | 706 | 20.4 | 20,400 | ı | 2.67 | | 24 | DSM | ž | .085 | 1.9 | | | | | 725 | | | | | | İ | 2.3 | | | ASM | ž | .075 | 1.9 | .355 | 45.53 | .247 | .251 | 778 | 44.2 | 558 | 543 | 25.0 | 25,000 | 1 | 2.15 | | | | M88 | .075 | 6:1 | .448 | 70.25 | 151. | 12 | 787 | 23.7 | 904 | 386 | 14.9 | 14,900 | 3100 | 1.31 | | | |
H88 | .075 | 6:1 | .512 | 75.28 | ъ. | .495 | 1160 | 14.6 | 122 | 292 | 12.7 | 12,700 | 3700 | 1.13 | | | | B88 | .075 | 1.9 | .684 | 81.70 | 660: | .677 | 1532 | 8.1 | 1515 | 215 | 9.3 | 9,270 | 2300 | 98.0 | | 22 | CSA | ź | .083 | 2.1 | .297 | 45.92 | 207 | .213 | 576 | 43.8 | 416 | 399 | 29.4 | 29,400 | 1 | 98. | | Į. | | M88 | .083 | 2.1 | .447 | 76.27 | 901. | .434 | 906 | 13.7 | 88 | 214 | 14.5 | 14,500 | 2900 | 0.92 | | | | H88 | .083 | 2.1 | .526 | 80.11 | .090 | .519 | 1051 | 6.7 | 1040 | 171 | 17.1 | 12,100 | 3200 | 0.79 | | | | H135 | .083 | 2.1 | 644 | 83.50 | .0729 | .640 | 1306 | 6.3 | 1300 | 144 | 8.8 | 9,800 | 2800 | 0.63 | | | | B88 | .083 | 2.1 | .718 | 84.50
| .0689 | .718 | 1420 | 5.3 | 1410 | 33 | 8.75 | 8,750 | 2000 | 0.60 | | | | 8135 | .083 | 2.1 | .890 | 86.50 | .0549 | .890 | 1765 | 3.3 | 1770 | 102 | 7.05 | 7,050 | 4000 | 0.48 | | 16 | S
N
N | ž | .085 | 9: | 1 | ļ | 1 | 1 | 400 | 1 | 1 | ŀ | ļ | 1 | 1 | 1.23 | | | DNB | ž | 990. | 9.1 | .188 | 47.00 | .128 | 82. | 453 | 42.8 | 33 | 308 | 45.7 | 45,700 | 1 | 1.12 | | | | M88 | 990. | 9: | .383 | 82.42 | .0505 | .380 | 950 | 8.9 | 626 | 146 | 9.91 | 16,600 | 3200 | 0.44 | | | | H88 | 990. | 9.1 | .459 | 84.60 | .0432 | .459 | 1137 | 5.2 | 130 | 50 | 13.7 | 13,700 | 3900 | 0.38 | | | | H135 | 990. | 9.1 | .569 | 86.53 | .0345 | .570 | 1413 | 4.0 | 1410 | 66 | 0.1 | 11,000 | 3200 | 0.30 | | | | H175 | 990. | 9: | 199. | 87.23 | .0315 | 159. | 1643 | 33 | 1640 | 95 | 6.7 | 9,700 | 2800 | 0.27 | | | | B88 | 990: | <u>.</u> | .64 | 86.94 | .0342 | .641 | 1565 | 2.8 | 1560 | 2 | 8.6 | 6,800 | 2500 | 0.30 | | 91 | ĭ | ž | .064 | 1.5 | .133 | 49.10 | .0868 | 1004 | 320 | 40.6 | 243 | 208 | 62.6 | 62,600 | 1 | 0.76 | | • | | M88 | .064 | 1.5 | .377 | 85.88 | .0271 | .377 | 937 | 4.6 | 934 | 92 | 16.7 | 16,700 | 3200 | 0.24 | | _ | | H88 | .064 | 1.5 | .458 | 87.14 | .0238 | .458 | 138 | 2.8 | 1130 | 25 | 13.7 | 13,700 | 3800 | 0.21 | | | 1 1 1 1 1 | | | | | | | | 1 0000 | 1 | 1 | 1 000 | | Sand the C. | mode seem | 1 | In the third column of the above table the letters M, H, and B indicate loading-coll spacings of 9000 feet, 6000 feet, and 3000 feet, respectively, and the figures show the inductance of the loading coils used. # Representative values of line and propagation constants of miscellaneous cables All figures for loop-mile basis Nonloaded Temperature 55° fahrenheit #### 16-gauge spiral-four (disc-insulated) toll-entrance cable | freq
in
kc/s | resistance
ohms/mile | inductance
mh/mile | conductance
µmhos/mile | capacitance
μf/mile | characteristic
impedance
ohms | phase shift
radians/
mile | attenuatian
db/mile | |--------------------|-------------------------|-----------------------|---------------------------|------------------------|-------------------------------------|---------------------------------|------------------------| | 0.1 | 42.4 | 2.00 | 0.042 | 0.02491 | | 0.024 | 0.10 | | 0.1 | 42.4 | 2.00
1.98 | 0.042
0.053 | 0.02491 | 540-j460 | 0.024 | 0.18 | | 1.0 | 43.4 | 1.94 | 0.033 | 0.02491 | 428-j324 | 0.043 | 0.32 | | 1.0 | 70.7 | 1.54 | 0.074 | 0.02471 | 420 /324 | 0.007 | 0.44 | | 1.5 | 43.9 | 1.89 | 0.102 | 0.02491 | 380- <i>j</i> 275 | 0.085 | 0.49 | | 2.0 | 44.4 | 1.82 | 0.127 | 0.02491 | 350-j230 | 0.101 | 0.55 | | 3.0 | 45.5 | 1.74 | 0.186 | 0.02490 | 307-j157 | 0.145 | 0.64 | | 5.0 | 47.5 | 1.64 | 0.320 | 0.02490 | 279-j107 | 0.218 | 0.74 | | 10 | 50.8 | 1.56 | 0.72 | 0.02489 | 258-j63 | 0.405 | 0.85 | | 20 | 56.9 | 1.53 | 1.95 | 0.02488 | 226-j36 | 0.78 | 0.99 | | 30 | 63.0 | 1.52 | 3.54 | 0.02488 | 248-j26 | 1.15 | 1.10 | | 50 | 73.0 | 1.51 | 7.1 | 0.02488 | 245-j19 | 1.90 | 1.31 | | 100 | 94.8 | 1.46 | 16.9 | 0.02488 | 243-j13 | 3.80 | 1.71 | | 100 | 74.0 | 1.40 | 10.7 | 0.02400 | 240 710 | 3.00 | 1.71 | | 150 | 113.5 | 1.44 | 27.1 | 0.02488 | 240-j10 | 5.65 | 2.08 | | 200 | 130.0 | 1.43 | 38.0 | 0.02487 | _ | - | 2.35 | | 22 AV | VG emerge | ncy cable | | | | | | | side: | 1 | 1 | 1 | 1 | 1 | | I . | | 0 | 166 | 1.00 | _ | _ | | | _ | | ĭ | _ | _ | 1.3 | 0.063 | 468-j449 | _ | 1.53 | | phant: | | | | | | 1 | | | 0 | 83 | 0.69 | _ | | _ | _ | 1 | | ĭ | 35 | 0.07 | 2.1 | 0.100 | 265-j250 | _ | 1.37 | | • | 1 | 1 | 1 | 1 01.00 | 1 200)200 | 1 | 1 1.07 | | 19 AV | /G CL emer | gency cable | • | | | | | | side: | 1 | 1 | 1 | | 1 | 1 | 1 | | dry 0 | 92 | 1.39 | negligible | | _ | | | | wet 0 | 92 | 1.39 | negligible | _ | l — | - | - | | dry 1 | _ | _ | negligible | 0.110 | 272-j244 | _ | 1.48 | | wet 1 | - | _ | negligible | 0.14 | 239-j214 | - | 1.69 | | phant: | | | | | | | | | dry 0 | 46 | 0.5 | negligible | _ | _ | _ | | | wet 0 | 46 | 0.5 | negligible | _ | _ | | _ | | dry 1 | _ | <u> </u> | negligible | 0.25 | 124-j116 | - | 1.58 | | wet 1 | _ | - | negligible | 0.28 | 117-j109 | - | 1.69 | #### Coaxial cable 0.27-inch diam (New York-Philadelphia 1936 type) Temperature 68° fahrenheit | freq
in
kc/s | resistance
ohms/mile | inductance
mh/mile | conductance
µmhos/mile | capacitance
µf/mile | characteristic
impedance
ohms | phase shift
radians/
mHe | attenuation
db/mile | |--------------------|-------------------------|-----------------------|---------------------------|------------------------|-------------------------------------|--------------------------------|------------------------| | 50 | 24 | 0.48 | 23 | 0.0773 | 78.5 | | 1.3 | | 100 | 32 | 0.47 | 46 | 0.0773 | 78 | | 1.9 | | 300 | 56 | 0.445 | 156 | 0.0772 | 76 | | 3.2 | | 1000 | 100± | 0.43 | 570 | 0.0771 | 74.5 | _ | 6.1 | #### Coaxial cable 0.27-inch diam (Stevens Point-Minneapolis type) | Temperat | ORA au | fahrenh | ai. | |----------|--------|---------|-----| | | | | | | 10 | _ | - | _ | l — | i — | | 0.75 | |-------|---|--------------|-----|----------|------------------|---|------| | 20 | | _ | _ | | <u> </u> | _ | 0.92 | | 30 | _ | l — | _ | l — | _ | _ | 1.10 | | | | | | | ļ | | | | 50 | | l — | | l — | 79 <i>–j</i> 6 | _ | 1.38 | | 100 | _ | _ | _ | l — | 77.8-j4 | _ | 1.70 | | 300 | | <u> </u> | _ | l — | 76.1– <i>j</i> 2 | | 3.00 | | | | | | | - | | l | | 1000 | _ | | l — | l — | 75 <i>-j</i> 1.3 | | 5.6 | | 3000 | _ | | _ | _ | 74.5–jì.1 | _ | 10 | | 10000 | _ | i — | l — | <u> </u> | _ | | 18 | | | | | | | | | | # Coaxial cable 0.375-inch diam (Polyethylene discs) | 10
20
30 | = | _ | <u>-</u> | _
_
_ | _
_
_ | = | 0.53
0.65
0.72 | |-----------------------|---|---|-------------|-------------|-------------|---|----------------------| | 50
100
300 | = | _ | _
_
_ | = | 50±
— | = | 0.90
1.18
2.1 | | 1000
3000
10000 | | = | _ | = | _
 | = | 4.0
7
13 | # Telephone-set comparison* The following graphs compare the 500-type telephone set (solid lines in the graphs) with the older 302-type set (dashed lines). * W. F. Tuffnell, "500-Type Telephone Set," Bell Laboratories Record, vol. 29, pp. 414–418; September, 1951. # Comparison of over-all response Courtesy of Bell Laboratories Record # Telephone-set comparison continued #### Relative volume levels Courtesy of Bell Laboratories Record #### Comparative sidetone levels Courtesy of Bell Loborotories Record # Negative-impedance telephone repeaters | characteristic | series type | shunt type | | | | | |--|---|--|--|--|--|--| | Generation of negative Z and Y | Z=(1-A)Z _n Y Z Typical -Z generator * Positive feedback | Typical — Y generator * Positive feedback | | | | | | Insertion gain between line A and line B | Z_A Z_B | Grain = | | | | | | | $Gain = 20 \log_{10} 1 + \frac{Z}{Z_A + Z_B} db$ | $Gain = -20 \log_{10} \left[1 + \frac{Y}{Y_A + Y_B} \right] db$ | | | | | | Stability conditions | $Z_A + Z_B + Z > 0$ | $Y_A + Y_B + Y > 0$ | | | | | | Typical network configurations for telephone lines | Z network for loaded cable | Y network for nonloaded cable and open wire | | | | | | Maximum practical gain for a — Z or — Y repeater | Characteristic impedance = Z Propagation constant = 2 | line β Z_{L} $\alpha = \alpha + j\beta \text{ per unit length } l$ | | | | | # Negative-impedance telephone repeaters continued For a series (- Z-type) repeater Maximum gain = $$-20 \log_{10} \left| 1 - M \left(\frac{N_A Z_{0,A} + N_B Z_{0,B}}{Z_{0,A} + Z_{0,B}} \right) \right| db$$ $$N = \frac{1 - |\Gamma|}{1 + |\Gamma|} = \text{minimum normalized impedance seen by repeated}$$ $$N= rac{1-\mid\Gamma\mid}{1+\mid\Gamma\mid}=$$ minimum normalized impedance seen by repeater $\Gamma=\left(rac{Z_L-Z_0}{Z_L+Z_0} ight)\exp{-2\gamma l}= ext{load reflection coefficient plus twice line loss}$ M= stability factor, usually 0.9 (stability margin =1-M) For a shunt (— Y-type) repeater Substitute $Y_{0,A}$ for $Z_{0,A}$ and $Y_{0,B}$ for $Z_{0,B}$ A negative-impedance telephone repeater is a voice-frequency repeater that provides effective gain by inserting a negative impedance into the line to cancel out the line impedances that cause transmission losses. It is possible to generate two distinct types of negative impedances. The series type is stable when it is terminated in an open circuit and oscillates when connected to a low impedance. The shunt type is stable when shortcircuited but will oscillate when terminated in a high impedance. The shunt type may be regarded as a negative admittance. Because they represent lumped impedance discontinuities, series or shunt negative-impedance repeaters cause reflection at the point of insertion. These reflections produce echoes and limit the gain obtainable. To overcome these objections, series and shunt repeaters in combination are used. The chart on these pages illustrates the characteristics of the two types of repeater. The chart assumes uniform lines. For nonuniform lines, reflections at all junctions must be computed and referred to the repeater location. In switched telephone trunks, Z_L is generally taken as zero or infinity. Between lines having reasonably similar impedances, the bridged-T-configuration combination repeater may be used. Its insertion gain is $$G_T = 20 \log_{10} \left| \frac{1 - ZY/4}{1 + \frac{ZY}{4} + \frac{Z}{Z_A + Z_B} + \frac{Y}{Y_A + Y_B}} \right|$$ # Negative-impedance telephone repeaters continued The characteristic impedance of the series-shunt repeater is $$Z_0 = (Z/Y)^{1/2}$$ and its transmission is $$\exp \gamma = \frac{1 - x/2}{1 + x/2}$$ where $$x = (ZY)^{1/2} = Z/Z_0 = Y/Y_0$$ The maximum gain obtainable from a bridged-T repeater is given by $$20 \log_{10} (\exp \gamma) <
(RL_A/2) + (RL_B/2)$$ where RL_A and RL_B are the minimum return losses of the two lines relative to the characteristic impedance of the repeater. For best results, the characteristic impedance of the repeater should be matched to that of the line having the higher return loss. In practice, the above gain must be reduced somewhat to allow a margin of stability. In cases where the combination repeater is inserted between lines whose impedances differ by 3:1 or more, an "L" configuration (with the Z-type toward the higher impedance) may prove advantageous because of its impedance-matching properties. # Carrier telephone systems Many types of carrier systems are available. These may be classified according to the following characteristics: **Speech bandwidth** in cycles per second—300–2700, 250–2700, 250–3000, 250–3100, 250–3400* ## Signaling method By type: Ringdown, dialing (E and M leads) By frequency (c/s): In-band— Single frequency 1000, 1600, 2100, 2280, 2600 2700, 3000, interrupt carrier. Out-of-band— Single frequency 3400, 3550, 3700, 3850. Frequency shift (2 tones), 3400 and 3550, 3450 and 3550, frequency shift of carrier. ^{*} With in-band signaling. #### Carrier telephone systems #### continued #### Type of termination 2-wire, 4-wire, conditions for interconnection with other systems: 4-wire input levels vary from -13 to -17 dbm. 4-wire output levels vary from +4 to +10 dbm. 2-wire input level is zero dbm. 2-wire output level depends on circuit length, type of level stabilization, and hybrid balance. An average value is -9 dbm. #### Length of system Long haul, medium haul, short haul, subscriber carrier. #### Terms commonly used in carrier telephone transmission Four-wire termination: Separate wire pairs are employed to terminate the transmitting and receiving circuits at a terminal. Two-wire termination: The transmitting and receiving circuits are terminated in a single wire pair by means of a four-wire terminating set. Four-wire terminating set: A fourwire terminating set consists of a form of bridge circuit called a hybrid. The hybrid circuit may be made up of one or more transformers or it may be made up of resistors. The circuit is arranged so that the two-wire line and a balancing network form one pair of conjugate arms of the bridge. The four-wire input and output circuits are connected to form another pair of conjugate arms of the bridge. The amount of coupling between the input and output circuits at any frequency is determined by the degree of match between the impedances of the balancing network and the two-wire termination. Two-coil hybrid; normal transmission loss = 3.5 to 4.0 db. Simple resistance hybrid; normal transmission loss = 6 db. ## Carrier telephone systems continued Compromise network: The two-wire termination at a terminal is usually of varying impedance. It is therefore not practical to provide a network that will maintain a good hybrid balance under all conditions. A compromise network (usually a resistance in series with a capacitor, the values of which are determined by the general level of impedance) is employed to provide adequate average balance. **Transhybrid loss:** The transhybrid loss is the transmission loss measured across the hybrid circuit for a given two-wire termination and balancing network at a given frequency. **Return loss:** The return loss (RL) is the transhybrid loss less the sum of the losses from the two-wire path to each of the four-wire terminals. (Return loss) = 20 $$\log_{10} \frac{Z_N + Z_L}{Z_N - Z_L}$$ where Z_N = network impedance Z_L = two-wire termination impedance Crosstalk units: (CU) (Number of crosstalk units) = $10^6 \times (P_R/P_S)^{1/2}$ where P_R = power in the disturbed circuit P_S = power in the disturbing circuit In decibels, $(crosstalk) = 20 log_{10} (10^6/crosstalk units) = 10 log_{10} (P_S/P_R)$ Relative level: The relative power level at a point of the system, expressed in nepers, is one-half the natural logarithm of the ratio of the power at that point to the value of the power at the point of the system chosen as a reference point. Expressed in decibels, it is ten times the decimal logarithm of the above ratio. (Note: The reference point normally chosen is the test board at the transmitting end of the long-distance line.) #### Carrier telephone systems Net loss (equivalent): The net loss of a transmission system is the difference between the relative levels at the input and output of the system; in cases where the input corresponds to a point of zero relative level, it is equal in value, but opposite in sign, to the relative level at the output. 9 db is considered as a representative net circuit loss for a long circuit. Lower values may be employed provided satisfactory echo and singing margin are obtained. continued Singing margin: The singing margin of a circuit is defined as the maximum amount by which the net loss of each of the two directions of transmission may be reduced simultaneously before singing occurs. A minimum value of 8 db is generally required for satisfactory transmission. Intelligible crosstalk: In the coaxial case, a maximum length of parallel between any disturbing and disturbed channel is fixed by American Telephone and Telegraph Company at 1000 miles. Under this condition, the rms coupling in crosstalk units is required to be equal to at least 64 db between the zero level of the disturbing circuit and the -9-db level of the disturbed circuit. When crosstalk is unintelligible, it is treated as noise and the noise thus introduced should be consistent with the noise allowance. The American Telephone and Telegraph Company specifies that the crosstalk coupling in decibels corresponding to the root-mean-square value of all combinations, expressed in crosstalk units, shall be 55 db between equal-level points. **E and M leads:** The *E* and *M* leads of a signaling system are the output and input leads, respectively. The *E* lead provides an open or ground. The *M* lead accepts open or ground, or battery or ground, as the circuit may require. # Frequency-allocation and level-comparison charts The following notes apply to the charts of frequency allocation and level comparison (pp. 834-837) for the various commonly used wire and cable carrier telephone transmission systems. #### Notes: Solid arrows = carrier frequencies Dotted arrows = pilot frequencies ↑ = east—west or A-B direction ↓ = west-eost or B-A direction FTR = Federal Telephone and Radio Company, a division of IT&T STC = Standard Telephones and Cables, Limited WECo = Western Electric Company KSS = Kellogg Switchboard and Supply Company, a division of IT&T _____ = channel No. 1 S = signalling frequency ## Carrier telephone systems continued # Frequency allocations for open-wire carrier telephone systems ^{*} Letters A, B, C, D designate 4 band locations in each of which 6 telegraph channels may be applied. See notes on p. 833. ŝ Frequency allocations for 12-channel open-wire and 12- or 24-channel cable-carrier systems pilot frequency of. kilocycles 25 8 ह्या ब 듨 ŧ 12,28,56 kilocycles 10 11 12 12 2 의 当品品 品品 S 9 의 frequency in kilocycles/second 24-1 24 SOJ- B-12 SOJ-D-12 SOJ-A-12 SOJ-C-12 STC STC 24-channel WECo type K type J ž £ Š SB Open wire Cable Channel numbers are shown at the base of each arrow. See also notes on p. 833. Frequencies shown are line frequencies obtained by two or Sidebands include speech from 200 to 3300 cycles. Carriers spaced 4 kilocycles apart. more stages of modulation. #### Compandors Compandors are employed on a telephone channel to improve the noise and crosstalk quality of the channel. A compandor circuit includes a compressor at the transmitting end and an expander at the receiving end. Syllabic type of compandors may be applied to any telephone channel. The standard type of compandor employs a 2:1 compressor (output amplitude increases 1 db for each 2 db increase in input amplitude) and an expander that has the inverse characteristic. With this type of compandor, an effective signal-to-noise improvement of about 22 db may be expected. ## Limitations to compandor application Compandors, due to expander action, will double the decibels effective line-loss variations and variations in loss at the different frequencies. Unusually high noise levels will not be materially reduced. # Telephone noise and noise measurement #### **Definitions** The following definitions are based upon those given in the Proceedings of the tenth Plenary Meeting (1934) of the Comité Consultatif International Téléphonique (C.C.I.F.). #### Telephone noise and noise measurement continued **Note:** The unit in which noise is expressed in many of the European countries differs from the two American standards, the noise unit and the db above reference noise. The European unit is referred to as the psophometric electromotive force. **Noise:** Is a sound which tends to interfere with a correct perception of vocal sounds, desired to be heard in the course of a telephone conversation. It is customary to distinguish between: Room noise: Present in that part of the room where the telephone apparatus is used. Frying noise (transmitter noise): Produced by the microphone, manifest even when conversation is not taking place. **Line noise:** All noise electrically transmitted by the circuit, other than room noise and frying noise. **Reference noise:** The reference power level for noise measurements in the United States has been standardized as 10^{-12} watts, or 90 db below 1 milliwatt at 1000 c/s. Noise power readings may be expressed in dbrn (db above reference noise). Noise weighting: Noise weighting is employed to obtain a noise measurement that is representative of the relative disturbance effect of the noise frequencies in a communication system. The two types of weighting networks (144 and F1A) used in the United States are based on the relative frequency response of the type-144 and type-F1A telephone handsets, respectively. Noise
measurements made with the 144 weighting network are expressed in dbrn or dba. Both are equal in value (db above —90 Noise weighting networks. Response relative to 1000 c/s. dbm). Noise measurements made with FIA weighting network are expressed in dba (db above -85 dbm). (Listening tests have indicated that the FIA handset is 5 db more sensitive than the 144 receiver.) An expression of noise in dba (db adjusted) is indicative of the disturbing effect independent of the network used. #### Telephone noise and noise measurement continued #### Psophometric electromotive force The psophometric electromotive force is the electromotive force of a source having an internal resistance of 600 ohms and zero internal reactance that, when connected directly to a standard receiver of 600-ohms resistance and zero reactance, produces the same sinusoidal current as that of an 800-cycle generator of the same impedance as above. A psophometer (includes a filter weighting network specified by C.C.I.F.) connected across the terminals of the 600-ohm receiver gives a reading of half of the psophometric electromotive force for the particular case considered. The term "psophometric voltage" between any two points refers to the instrument reading between these points. #### Noise levels The amount of noise found on different circuits, and even on the same circuit at different times, varies through quite wide limits. Further, there is no definite agreement as to what constitutes a quiet circuit, a noisy circuit, etc. The following values should therefore be regarded merely as a rough indication of the general levels that may be encountered under the different conditions: | Open-wire circuit | db abov
ref nois | |-------------------|---------------------| | Quiet | 20 | | Average | 35 | | Noisy | 50 | | Cable circuit | | | Quiet | 15 | | Average | 25 | | Noisy | 40 | #### Relationship of European and American noise units The psophometric emf can be related to the American units: the noise unit and the decibel above reference noise. The following chart shows this relationship together with correction factors for psophometric measurements on circuits of impedance other than 600 ohms. #### Relationship of European and American noise units - a. The relationship of noise units to decibels above reference noise is obtained from technical report No. 1B-5 of the joint subcommittee on development and research of the Bell Telephone System and the Edison Electric Institute. - **b.** The relationship of **db** above reference noise to psophometric emf is obtained from the Proceedings of Comité Consultatif International Téléphonique, 1934. - C. The C.C.I.F. expresses noise limits in terms of the psophometric emf for a circuit of 600 ohms resistance and zero reactance, terminated in a resistance of 600 ohms. Meosurements made in terms of the potential difference across the terminations, or on circuits of impedance other than 600 ohms, should be corrected as follows: d. Reference notse—with respect to which the American noise measuring set is calibrated —is a 1000-cycle/second tone 90 decibels below 1 milliwatt. #### Telephone noise and noise measurement continued ## Multichannel frequency-division loading* The graph at the right shows the required single-tone capacity in dbm of a system at a point of zero transmission level as a function of the total number of telephone channels. The peak value of the single-frequency tone will not be exceeded by the peak value of the actual multichannel signal more than 1 percent of the time during the busy hour. ^{*} B. D. Holbrook and J. T. Dixon, "Load Rating Theory for Multi-Channel Amplifiers," Bell System Technical Journol, vol. 18, pp. 624– 644; October, 1939. # Telegraph facilities #### International Morse and cable codes International Morse code is determined by combinations of unipolar current pulses of short and long (\approx 1:3) durations: $$A = {}^{+}$$ **International cable code** is determined by combinations of bipolar current pulses of the same length: # Telegraph facilities continued # Code combinations | character | international
Morse | international
cable | character | international
Morse | international cable | |-----------|------------------------|------------------------|----------------|--|--------------------------------| | - A | . – | + - | • | ·-· | | | В | | -+++ | ; | | | | c | | -+-+ | , | | | | D | | -++ | | | SE | | E | • | + | ŝ | ·· · | systems. | | F | | ++-+ | • | | | | G | | + | - | | 99 | | н | | ++++ | / | | many variations between | | I | • • | ++ | Ā | | ڡٞ | | J | · | + | á or Å | · | suo | | К | | -+- | É | | a‡; | | L | ·-·· | +-++ | СН | | ari | | M | | | Ñ | | > | | N | | -+ | ö | | in Di | | 0 | | | Ü | ·· | | | P | ·· | ++ | (OR) | | o o | | Q | | +- | | <u>. – – . </u> | Punctuations not shown because | | R | • | +-+ | | ·· | 550 | | S | • • • | +++ | = | | ٩ | | T | | _ | 505 | | ð | | U | ··- | ++- | Attention | | -ks | | V | ···- | +++- | CQ | | Į to | | W | · | + | DE | | SU | | X | | -++- | Go ahead | | iệ | | Y | | -+ | Wait | | ¥ | | Z | | ++ | Break | | Š | | 1 | | + | Understand | • | <u> </u> | | 2 | <u> </u> | ++ | Error | | | | 3 | ··· | +++ | OK | ·-· | | | 4 | • • • • • • | ++++ | End
message | · - · - · | +++-+ | | 5 | | ++++ | End of | | | | 6 | | -++++ | work | ··· | | | 7 | | +++ | | | | | 8 | | + + | | | | | 9 | | + | | | | | 0 | | - | i | | | # Printing-telegraph codes | fower-case
character | | | ,* | ARQ 7-unit
Moore code | | | | | | | | | | | | | | | | |-------------------------|----|---|----|--------------------------|---|-----|-----|---|---|---|---|---|---|---|---|---|---|-----|---| | character | sĦ | 1 | 2 | 3 | 4 | 5 | stp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | A | 0 | • | • | 0 | 0 | С | • | • | • | 0 | 0 | 0 | 0 | 0 | • | • | 0 | • | 0 | | В | 0 | • | 0 | 0 | • | | • | • | 0 | 0 | • | • | 0 | 0 | • | • | 0 | 0 | • | | С | 0 | 0 | • | • | • | C | • | 0 | • | • | • | 0 | • | 0 | 0 | • | • | 0 | 0 | | D | 0 | • | 0 | 0 | • | C | • | • | 0 | 0 | • | 0 | 0 | 0 | • | • | • | 0 | 0 | | ٤ | 0 | • | 0 | 0 | 0 | C | • | • | 0 | 0 | 0 | 0 | 0 | • | • | • | 0 | 0 | 0 | | F | 0 | • | 0 | • | • | C | • | • | 0 | • | • | 0 | 0 | 0 | • | 0 | 0 | • | • | | G | 0 | 0 | • | 0 | • | | • | 0 | • | 0 | • | • | • | • | 0 | 0 | 0 | 0 | • | | н | 0 | 0 | 0 | • | 0 | • | • | 0 | 0 | • | 0 | • | • | 0 | • | 0 | 0 | • | 0 | | ł | 0 | 0 | • | • | 0 |) (| • | 0 | • | • | 0 | 0 | • | • | • | 0 | 0 | 0 | 0 | | į | 0 | • | • | 0 | • | С | • | • | • | 0 | • | 0 | 0 | • | 0 | 0 | 0 | • | • | | K | 0 | • | • | • | • | C | • | • | • | • | • | 0 | 0 | 0 | 0 | • | 0 | • | • | | t | 0 | 0 | • | 0 | 0 | • | • | 0 | • | 0 | 0 | • | • | • | 0 | 0 | 0 | • | 0 | | м | 0 | 0 | 0 | • | • | • | • | 0 | 0 | • | • | • | • | 0 | • | 0 | 0 | 0 | • | | N | 0 | 0 | 0 | • | • | С | • | 0 | 0 | • | • | 0 | • | 0 | • | 0 | • | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | • | | • | 0 | 0 | 0 | • | • | • | 0 | 0 | 0 | • | • | 0 | | P | 0 | 0 | • | • | 0 | | • | 0 | • | • | 0 | • | • | 0 | 0 | • | 0 | • | 0 | | Q | 0 | • | • | • | 0 | • | • | • | • | • | 0 | • | 0 | 0 | 0 | • | • | 0 | • | | R | 0 | 0 | • | 0 | • | C | • | 0 | • | 0 | • | 0 | • | • | 0 | 0 | • | 0 | 0 | | S | 0 | • | 0 | • | 0 | C | • | • | 0 | • | 0 | 0 | 0 | • | 0 | • | 0 | • | 0 | | 7 | 0 | 0 | 0 | 0 | 0 | • | • | 0 | 0 | 0 | 0 | • | • | 0 | 0 | 0 | • | 0 | • | | U | 0 | • | • | • | 0 | C | • | • | • | • | 0 | 0 | 0 | • | • | 0 | 0 | • | 0 | | ٧ | 0 | 0 | • | • | • | • | • | 0 | • | • | • | • | • | 0 | 0 | • | 0 | 0 | • | | w | 0 | • | • | 0 | 0 | • | • | • | • | 0 | 0 | • | 0 | • | 0 | 0 | • | 0 | • | | X | 0 | • | 0 | • | • | • | • | • | 0 | • | • | • | 0 | 0 | • | 0 | • | • | 0 | | Y | 0 | • | 0 | • | 0 | • | • | • | 0 | • | 0 | • | 0 | 0 | • | 0 | • | 0 | • | | Z | 0 | • | 0 | 0 | 0 | • | • | • | 0 | 0 | 0 | • | 0 | • | • | 0 | 0 | С | • | | Blank | 0 | 0 | 0 | 0 | 0 | C | • | | | | | | | | | | | | | | Space | 0 | 0 | .0 | • | 0 | C | • | 0 | 0 | • | 0 | 0 | • | • | 0 | • | C | C | 0 | | Carriage return | 0 | 0 | 0 | 0 | • | 0 | • | 0 | 0 | 0 | • | 0 | • | 0 | 0 | 0 | 0 | • | • | | Line feed | 0 | 0 | • | 0 | 0 |) (| • | 0 | • | 0 | 0 | 0 | • | 0 | • | • | C |) C | 0 | | Figures | 0 | • | • | 0 | • | | • | • | • | 0 | • | • | 0 | • | 0 | C | • | | 0 | | Letters | 0 | • | • | • | • | | • | • | • | • | • | • | 0 | 0 | 0 | • | | • | 0 | | ldle | | | | | | | | | | | | | | | | | | _ | | | ldle signal α | | | _ | | | _ | | | | _ | | | 0 | • | 0 | • | C | 0 | • | | Idle signal B | | | | | | | | | | | | | | • | | _ | | _ | 0 | | Request | | | | | | | | | _ | _ | | | 0 | • | • | C | | 0 | 0 | | ff | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | | • | ^{*} International Telegraph Alphabet 2 = space (start) + 5-unit Comite Consultatif International Telegraphique code 2 + mark (stop). # **Telegraph facilities** continued #### Printing-telegraph code card | | | | | | upper | ase | | | | | |-------------------------|----------------------------|--------------------------------|---------------------|-----------------------------|---------------------|---------------------|------------------------------|--------------------------------|--------------|----------------| | lower-case
characler | new U. S. Navy
standard | Army, old Navy
(Teletype A) | TWX
(Telelype C) | British standard | Western Union
28 | Western Union
2C | Western Union
101 and 102 | Western Union
101C and 102C | CCIT | American Cable | | A | | = | | | | | | | | - ? | | В | ? | ? | 5/8 | ? | ? | 5/8 | ? | 5/8 | ? | | | C | : | : | 1/8 | ; | <u>-:-</u> | 1/8 | _:_ | 1/8 | Who are | :_ | | D | 8 | • | 8 | Who are
you ¹ | 8 | 8 | 8 | \$ | you you | XXX | | E | 3 | 3 | 3 | 3 | 3 | 3 | -3- | 3 | 3 | 3 | | | 1-1 | | -1/4 | -% | | 1/4 | | 1/4 | | | | F | | | - '4 | <u>~</u> | -& | & | & | -
& | | ==== | | H | | £ | Stop | _£_ | £ - | # | # | # | | 0 | | ī | 8 | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | _ | - <u>-</u> - | - | | Bell ² | Bell | -, | Bell | , | Bell | Bell | | K | | (| 1/2 | | | 3/2 | (| 1/2 | (| (| | L |) |) | 3/4 |) |) | 3/4 | | 3/4 |) |) | | M | | • | • | | % | ? | | · · | • | · | | | See | | | | - | | | | | | | N | note ⁸ | • | 7/8 | | | 7/8 | | 7/8 | | :- | | 0 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Q | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | R | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 8 | Bell | Bell | Bell | · | 1 | Bell | | Bell | 5 | | | T | 5 | 5 | 5 | 5 7 | 7 | - 5 - | - 5 7 | - 5 7 | - | 7 | | | 7 | 7 | 7 | | | 3/8 | | 3/8 | | | | | | ; | 3/8 | = | - ;
2 | 2 | ; - | 2 | | $-\frac{-}{2}$ | | | _1 | | - 1 | 1- | | | | | | | | X | - 6 | <u></u> | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | | | - " | + | - | - " | - " | - n | + | + | | | Line | Line | Line | Line | | | Line | Line | Line | Lin | | Line feed | feed | feed | feed | feed | 1 | | feed | feed | feed | feed | | Carriage | Car | Car | Car | Car | | | Car | Car | Car | Car | | return | ret | ret | ret | ret | | | ret | ret | ret | ret | | Figures A | Figs Fig | | Letters* 🗡 | Ltrs Ltr | | Space | Blank ⁴ 000 | Blank Blan | | | Tape | printers | | | | | | | | | | Car ret | Car ret | Car ret | Car ret | 1 | Γ | 1 | Γ | Ι | Ī | | | < or . | , | , | ' | | , | | | | | | | Line feed | Line | Line | Line teed | | | | | | | Ì | | = or xx | feed . | feed . | Teed T | | # | | | | <u> </u> | | | | - | | | · | | | | | | | | , | 1 | l . | 1 | | | | | | | 1 | #### Notes ^{1.} Not used on British Army field machines. Used on British national network. 2. Not used by British Army. 3. Key left blank but comma remains on type bar. 4. Symbols on lower-case line are used on certain monitoring sets. # Signaling speeds and pulse lengths The graph below shows the speeds of various telegraph systems. The American Morse curve is based on an average character of 8.5 units determined from actual count of representative traffic. The Continental Morse curve similarly on 9 units, and the Cable Morse on 3.7 units. | | speed of usual types | | | | | | | |---|-------------------------|-------------------------|--|--|--|--|--| | system | frequency
in cycles* | bauds | | | | | | | Grounded wire
Simplex (telephone)
Composite
Metallic telegraph | 75
50
15
85 | 150
100
30
170 | | | | | | | Carrier channel | | | | | | | | | Narrow band
Wide band | 40
75 | 80
150 | | | | | | ^{*} Based on repetition rate of shortest signaling element. Feed holes: For Morse, (number feed holes/second) = (number cycles/second). For multiplex and teleprinter, (number feed holes/second) = (words/minute)/10. #### International telegraph alphabet 2 The following notes are excerpts from the Comite Consultatif International Telegraphique regulations, Paris, 1949, revision pertaining to the International Telegraph Alphabet 2. 221. A number which includes a fraction shall be transmitted with the fraction linked to the whole number by a single hyphen. Examples: 1-3/4 and not 13/4; 3/4-8 and not 3/48; 363-1/2 4 5642 and not 3631/2 4 5642 - 222. The inverted commas sign (quotation mark) (" ") shall be signalled by transmitting the apostrophe sign (") twice, at the beginning and the end of the text within the inverted commas (quotation marks) (" "). - 223. Accents on the letter E shall be made by hand when they are essential to the meaning (examples: achète, acheté). In this case the sending telegraphist shall repeat the word after the signature, signalling the accented E between two "blanks" so as to draw the attention of the receiving operator to it. - 226. To indicate "wait": the combination MOM - 227. To indicate the end of a telegram: the signal + - 228. To indicate the end of the transmission: the two signals +? - 229. To indicate the end of work: the signal + transmitted twice by the office which has transmitted the last telegram. - 231. In the interests of speed and efficiency in the movement of telegraph traffic and to further the development of a world-wide telecommunication network, the five-unit code, in accordance with the International Telegraph Alphabet 2, is recommended. However, this provision need not apply where Administrations or recognized private operating agencies have made other arrangements for particular circuits or networks. In such cases, the Administrations and recognized private operating agencies concerned could provide suitable facilities for converting from their method of operation to the five-unit code of International Telegraph Alphabet 2 whenever it becomes desirable to interconnect with offices using the latter system. 234. Signs: Full stop (period). Comma Colon | Question mark (note of interrogation) | ŝ | |---------------------------------------|---| | Apostrophe | • | | Cross | + | | Hyphen or dash | _ | | Fraction bar | / | | Double hyphen | = | | Left-hand bracket (parenthesis) | (| | Right-hand bracket (parenthesis) |) | - 240. Administrations and recognized private operating agencies desirous of confirming on a tape machine the reception or transmission of the signals "carriage return" and "line feed" shall effect this confirmation by printing: - 241. The symbol < for the signal "carriage return"; - 242. The symbol == for the signal "line feed". - 243. The provisions regarding the transmission of words, whole numbers, fractional numbers, texts within inverted commas (quotation marks) and the letters è and é, which are applicable to instruments using International Telegraph Alphabet i (§2), shall also be applicable to instruments using International Telegraph Alphabet 2. - 244. A group consisting of figures and letters shall be transmitted without space between figures and letters on these instruments. - 245. To indicate the sign o/o or o/oo, the figure 0, the fraction bar (/) and the figures 0 and 00 shall be transmitted successively. Examples: 0/o, 0/oo. - 246. To indicate a "blank", the signal "space" shall be transmitted. $\sim 10^{-857}$ - 247. To indicate a transmission error, the letter E and the signal "space" shall be repeated alternately three times. Transmission shall be resumed beginning with the last word correctly sent. When transmitting with perforated tape and provision exists for eliminating incorrectly perforated characters, this method shall be used. - 248. To indicate "wait", to show the end of a telegram, the end of a transmission or the end of work, the signals transmitted shall be the same as on instruments using the International Telegraph Alphabet 1 (§2). #### Carrier telegraph systems Carrier telegraph systems may be classified as follows. #### Modulation Amplitude (am), freauency shift (fm) am systems are less susceptible to carrier drift. fm systems are less susceptible to noise and level variations. Transmission speed: (5 characters per word) words per minute: 60, 75, 100 Channel spacing: (c/s) 120, 145, 170 Each of the three spacings is used in the United States. The 120-c/s spacing is standard outside the United States. Carrier or midfrequencies generally used in 120- and 170-cps systems are: Lowest 420 c/s increased by 120-c/s increments Lowest 425 c/s increased by 170-c/s increments Intercarrier-channel telegraphy: Carrier telegraph channels are applied in the available frequency spectrum between carrier telephone channels. The number applied is determined by the frequency spectrum available. #### ■ Electroacoustics # Theory of sound waves* Sound (or a sound wave) is an alteration in pressure, stress, particle displacement, or particle velocity that is propagated in an elastic material; or the superposition of such propagated alterations. Sound (or sound sensation) is also the sensation produced through the ear by the above alterations. #### Wave equation Behavior of sound waves is given by the wave equation $$\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \tag{1}$$ where p is the instantaneous pressure increment above and below a steady pressure (dynes/centimeter²); p is a function of time and of the three coordinates of space. Also, t = time in seconds c = velocity of propagation in centimeters/second ∇^2 = the Laplacian, which for the particular case of rectangular coordinates x, y, and z (in centimeters), is given by $$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \tag{2}$$ For a plane wave of sound, where variations with respect to y and z are zero, $\nabla^2 p = \partial^2 p/\partial x^2 = d^2 p/dx^2$; the latter is approximately equal to the curvature of the plot of p versus x at some instant. Equation (1) states simply that, for variations in x only, the acceleration in pressure p (the second time derivative of p) is proportional to the curvature in p (the second space derivative of p). **Sinusoidal variations** in time are usually of interest. For this case the usual procedure is to put p= (real part of $\bar{p}\epsilon^{f\omega l}$), where the phasor \bar{p} now satisfies the equation. $$\nabla^2 \bar{p} + (\omega/c)^2 \bar{p} = 0 \tag{3}$$ **Velocity phasor** \bar{v} of the sound wave in the medium is related to the complex pressure phasor \bar{p} by the formula $$\bar{\mathbf{v}} = -(1/j\omega\rho_0) \text{ grad } \bar{\rho}$$ (4) ^{*} Lord Rayleigh, "Theory of Sound," vols. I and II, Dover Publications, New York, New York; 1945. P. M. Morse, "Vibration and Sound," 2nd edition, McGraw-Hill Book Company, New York, New York; 1948. ## Theory of sound waves continued Fig. 1—Table of solutions for various parameters. | | type of sound wave | | | | | |---------------------------------------
---|--|--|--|--| | factor | plane wave | spherical wave | | | | | Equation for p | $\frac{\partial^2 \rho}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \rho}{\partial t^2}$ | $\frac{\partial^2 \rho}{\partial x^2} + \frac{2}{r} \frac{\partial \rho}{\partial r} = \frac{1}{c^2} \frac{\partial^2 \rho}{\partial t^2}$ | | | | | Equation for \overline{p} | $\frac{d^2\bar{p}}{dx^2} + \left(\frac{\omega}{c}\right)^2\bar{p} = 0$ | $\frac{d^2 \overline{p}}{dx^2} + \frac{2}{r} \frac{d\overline{p}}{dt} + \left(\frac{\omega}{c}\right)^2 \overline{p} = 0$ | | | | | Solution for p | $p = F\left(t - \frac{x}{c}\right)$ | $p = \frac{1}{r} F\left(t - \frac{x}{c}\right)$ | | | | | Solution for p | $\bar{\rho} = \bar{A} \epsilon^{-i\omega^x/\sigma}$ | $\bar{p} = \frac{1}{r} \bar{A} \epsilon^{-i\omega r/c}$ | | | | | Solution for \bar{v} | $ar{\mathbf{v}} = \frac{\ddot{\mathbf{A}}}{\rho_0 \mathbf{c}} \epsilon^{-i\omega \pi/c}$ | $\bar{v} = \frac{\bar{A}}{\rho_0 cr} \left(1 + \frac{c}{j\omega r} \right) \epsilon^{-i\omega r/c}$ | | | | | ž | $\bar{Z} = \rho_0 c$ | $\overline{Z} = \rho_0 c / \left(1 + \frac{c}{f \omega r} \right)$ | | | | | Equivalent electrical _ circuit for Z | ₹→ ₹%: | ₹ \$\rho_0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | | | | #### where $\rho = \text{excess pressure in dynes/centimeter}^2$ = complex excess pressure in dynes/centimeter² t = time in seconds x = space coordinate for plane wave in centimeters r = space coordinate for spherical wave in centimeters $\overline{v} = \text{complex velocity in centimeters/second}$ \overline{Z} = specific acoustic impedance in dyneseconds/centimeter³ c = velocity of propagation in centimeters/ second $\omega = 2\pi f$; f = frequency in cycles/second F = an arbitrary function $\overline{A} = complex constant$ $\rho_0 = \text{density of medium in grams/centimeter}^3$ # Theory of sound waves continued Specific acoustical impedance \overline{Z} at any point in the medium is the ratio of the pressure phasor to the velocity phasor, or $$\overline{Z} = \overline{p}/\overline{v}$$ (5) Fig. 2—Table of intensity levels. | type of sound | intensity
level in
decibels
above 10 ⁻¹⁶
watts/centi-
meter ² | intensity in
microwatts/
centimeter ² | root-mean-
square
sound
pressure in
dynes/
centimeter ² | root-mean-
square
particle
velocity in
centimeters/
second | peak-to-peak
particle
displacement
for sinsuoidal
tone at
1000 cycles
in centimeters | |---|--|--|---|---|--| | Threshold of painful sound | 130 | 1000 | 645 | 15.5 | 6.98 × 10 ⁻³ | | Airplone, 1600
rpm, 18 feet | 121 | 126 | 228 | 5.5 | 2.47 × 10 ⁻³ | | Subway, local
station, express
passing | 102 | 1.58 | 25.5 | 0.98 | 4.40 × 10 ⁻⁴ | | Noisest spot at
Niagara Falls | 92 | 0.158 | 8.08 | 0.31 | 1.39 × 10 ⁻⁴ | | Average auto-
mobile, 15 feet | 70 | 10-3 | 0.645 | 15.5×10^{-3} | 6.98 × 10 ⁻⁶ | | Average conversational speech $3\frac{1}{4}$ feet | 70 | 10-3 | 0.645 | 15.5 × 10 ⁻³ | 6.98 × 10 ⁻⁶ | | Average office | 55 | 3.16 × 10 ⁻⁵ | 0.114 | 2.75 × 10 ⁻⁸ | 1.24 × 10 ⁻⁶ | | Average
residence | 40 | 10 ⁻⁶ | 20.4 × 10 ⁻³ | 4.9 × 10 ⁻⁴ | 2.21 × 10 ⁻⁷ | | Quiet whisper,
5 feet | 18 | 6.3 × 10 ⁻⁹ | 1.62 × 10 ⁻⁸ | 3.9 × 10 ⁻⁵ | 1.75 × 10 ⁻⁸ | | Reference level | 0 | 10-10 | 2.04 × 10 ⁻⁴ | 4.9 × 10 ⁻⁶ | 2.21 × 10 ⁻⁹ | #### Theory of sound waves continued **Spherical waves:** The solutions of (1) and (3) take particularly simple and instructive forms for the case of one dimensional plane and spherical waves in one direction. Fig. 1 gives a summary of the pertinent information. For example, the acoustical impedance for spherical waves has an equivalent electrical circuit comprising a resistance shunted by an inductance. In this form, it is obvious that a small spherical source (r is small) cannot radiate efficiently since the radiation resistance $\rho_0 c$ is shunted by a small inductance $\rho_0 r$. Efficient radiation begins approximately at the frequency where the resistance $\rho_0 r$ equals the inductive (mass) reactance $\rho_0 c$. This is the frequency at which the period (= 1/f) equals the time required for the sound wave to travel the peripheral distance $2\pi r$. #### Sound intensity The sound intensity is the average rate of sound energy transmitted in a specified direction through a unit area normal to this direction at the point considered. In the case of a plane or spherical wave, the intensity in the direction of propagation is given by $$I = \rho^2/\rho c$$ ergs/second/centimeter² (6) where p = pressure (dynes/centimeter²) $\rho = \text{density of the medium (grams/centimeter}^3)$ and c = velocity of propagation (centimeters/second) The sound intensity is usually measured in decibels, in which case it is known as the intensity level and is equal to 10 times the logarithm (to the base 10) of the ratio of the sound intensity (expressed in watts/centimeter²) to the reference level of 10^{-16} watts/centimeter². Fig. 2 shows the intensity levels of some familiar sounds. ## Sound in gases The acoustical behavior of a medium is determined by its physical characteristics and, in the case of gases, by the density, pressure, temperature, specific heat, coefficients of viscosity, and the amount of heat exchange at the boundary surfaces. #### Sound in gases continued The velocity of propagation in a gas is a function of the equation of state (PV = RT plus higher-order terms), the molecular weight, and the specific heat.* For small displacements relative to the wavelength of sound, the velocity is given by $$c = (\gamma \rho_0 / \rho_0)^{1/2} \tag{7}$$ where $\gamma=$ ratio of the specific heat at constant pressure to that at constant volume p_0 = the steady pressure of the gas in dynes/centimeter² ρ_0 = the steady or average density of the gas in grams/centimeter³ The values of the velocity in a few gases are given in Fig. 3 for 0 degrees centigrade and 760 millimeters of mercury barometric pressure. The velocity of sound c in dry air is given by the following experimentally verified equation $c = 33,145 \pm 5$ centimeters/second $= 1.087.42 \pm 0.16$ feet/second for the audible-frequency range, at 0 degrees centigrade and 760 millimeters of mercury with 0.03-mole-percent content of CO_2 . The velocity in air for a range of about 20 degrees centigrade change in temperature is given by $c = 33,145 + 60.7T_c$ centimeters/second $= 1,052.03 + 1.106T_f \text{ feet/second}$ where T_c is the temperature in degrees centigrade and T_f in degrees fahrenheit. For values of T_c greater than 20 degrees, the following formula may be used $c = 33,145 \times (T_k/273)^{1/2}$ centimeters/second where T_k is the temperature in degrees kelvin. For other corrections when extreme accuracy is desired, reference should be made to the literature.† † H. C. Hardy, D. Telfair, and W. H. Pielemeier, "The Velocity of Sound in Air," Jaurnal of the Acoustical Society of America, vol. 13, pp. 226–233; January, 1942. ^{*} H. C. Hardy, D. Telfair, and W. H. Pielemeier, "The Velocity of Sound in Air," *Journal of the Acoustical Society of America*, vol. 13, pp. 226–233; January, 1942. See olso L. Beranek, "Acoustic Measurements," John Wiley & Sons, Inc., New York, New York; 1949: see p. 46. ## Sound in gases continued Fig. 3—Velocity of sound in various gases.* | | | velocity | | | | | | |------------------|-------------------------------|------------------|---------------------|--|--|--|--| | gas | symbol | in meters/second | in feet/second | | | | | | Air | _ | 331.45 | 1087.42 | | | | | | Ammonia | NH₃ | 415 | 1361 | | | | | | Argon | Α | 319 | 1046 | | | | | | Carbon monoxide | со | 337.1 | 1106 | | | | | | Carbon dioxide | CO2 | 268.6 | 881 (above 100 c/s) | | | | | | Carbon disulfide | CS ₂ | 189 | 606 | | | | | | Chlorine | CI | 205.3 | 674 | | | | | | Ethylene | C ₂ H ₄ | 317 | 1040 | | | | | | Helium | He | 970 | 3182 | | | | | | Hydrogen | H ₂ | 1269.5 | 4165 | | | | | | Illuminating gas | _ | 490.4 | 1609 | | | | | | Methane | CH₄ | 432 | 1417 | | | | | | Neon | Ne | 435 | 1427 | | | | | | Nitric oxide | NO | 325 | 1066 | | | | | | Nitrous oxide | N ₂ O | 261.8 | 859 | | | | | | Nitrogen | N ₂ | 337 | 1096 | | | | | | Oxygen | O ₂ | 317.2 | 1041 | | | | | | Steam (100° C) | H ₂ O | 404.8 | 1328 | | | | | ^{*} From, "Handbook of Chemistry and Physics," "International Critical Tables," and Journal of the Acoustical Society of America. From (5) and Fig. 1, characteristic impedance is equal to the ratio of the sound pressure to the particle velocity. $$\bar{Z} = \bar{\rho}/\bar{v} = \rho_0 c \cos \phi$$ where For plane waves, $\phi = 0$ and $\cos \phi = 1$ For spherical waves, $\tan \phi = \lambda/2\pi r$ and λ = wavelength of acoustical wave r = distance from sound source For r greater than a few wavelengths, $\cos \phi \approx 1$. Characteristic impedance ρ_{0} c in dyne-seconds/centimeter³ (rayls) for several gases at 0 degrees centigrade and 760 millimeters of mercury is given in Fig. 4. # Sound in gases continued Fig. 4—Characteristic impedance $\rho_0 c$ for gases. | gas | symbol | ρ ₀ c | |-----------------|------------------|-------------------------| | Air | _ | 42.86 | | Argon | A | 56.9 | | Carbon dioxide | CO ₂ | 51.1 | | Carbon
monoxide | со | 42.1 | | Helium | He | 17.32 | | Hydrogen | H ₂ | 11.40 | | Neon | Ne | 38.3 | | Nitric Acid | NO | 43.5 | | Nitrous oxide | N ₂ O | 51.8 | | Nitrogen | N ₂ | 41.8 | | Oxygen | 02 | 45.3 | # Sound in liquids In liquids, the velocity of sound is given by $c = (1/K\rho_0)^{1/2}$ centimeters/second where $K = \text{compressibility in centimeters/second}^2/\text{gram}$ and may be regarded as constant Fig. 5-Velocity of sound in liquids. | liquid | temperature in °C | velocity in (cm/sec) × 10 ⁵ | |--|-------------------|--| | Alcohol, ethyl | 12.5 | 1.24 | | | 20 | 1.17 | | Benzene | 20 | 1.32 | | Carbon disulfide | 20 | 1.16 | | Chloroform | 20 | 1.00 | | Ether, ethyl | 20 | 1.01 | | Glycerin | 20 | 1.92 | | Mercury | 20 | 1.45 | | Pentaine | 18 | 1.05 | | | 20 | 1.02 | | Petroleum | 15 | 1.33 | | Turpentine | 3.5 | 1.37 | | | 27 | 1.28 | | Water, fresh | 17 | 1.43 | | Water, sea (36 parts/million salinity) | 15 | 1.505 | #### Sound in liquids continued $K = (47 \times 10^{-9})/981$ for most liquids Figures for the velocity of sound through some liquids in centimeters/second is given in Fig. 5. #### Sound in solids The velocity of sound in solids is determined by the shape and size of the bounded medium as compared with the wavelength of the excitation. For rods or square bars with unconstrained sides, the velocity of propagation varies with the ratio of thickness to wavelength, being, for a wavelength in diameter, about 0.65 times the zero-diameter-to-wavelength ratio. Some experimental values are given in Fig. 6. Fig. 6—Velocity c of sound in longitudinal direction for bar-shaped solids in centimeters /second.* | material | veloc-
ity c
(× 106) | material | veloc-
ity c
(× 105) | |---|----------------------------|--|----------------------------| | digital | 1 1/2 107 | i maranar | 1 107 | | Aluminum | 5.24 | Crystals continued | ĺ | | Antimony | 3.40 | Rochelle salt (sodium potassium | İ | | Bismuth | 1.79 | tartrate, KNaC4H4O6 . 4H2O) | 1 | | Brass | 3.42 | 45° Y-cut | 2.47 | | Cadmium | 2.40 | 45° X-cut | 2.47 | | Constantan | 4.30 | Calcium fluoride (CaF ₂ , fluorite) | | | Copper | 3.58 | X-cut | 6.74 | | German silver | 3.58 | Sodium chloride (NaCl, rock | | | Gold | 2.03 | salt) | 1 | | Iridium | 4.79 | X-cut | 4.51 | | Iron | 5.17 | Sodium bromide (NaBr) | | | Lead | 1.25 | X-cut | 2.79 | | Magnesium | 4.90 | Potassium chloride (KCI, sylvite) | | | Manganese | 3.83 | X-cut | 4.14 | | Nickel | 4.76 | Potassium bromide (KBr) | | | Platinum | 2.80 | X-cut | 3.38 | | Silver . | 2.64 | Glasses | | | Steel | 5.05 | Heavy flint | 3,49 | | Tantalum | 3.35 | Extra-light flint | 4.55 | | Tin | 2.73 | Crown | 5.30 | | Tungsten | 4.31 | Heaviest crown | 4.71 | | Zinc | 3.81 | Quartz | 5.37 | | Cork | 0.50 | Granite | 3.95 | | Crystals | ļ | Ivory | 3.01 | | Quartz X-cut | 5.44 | Marble | 3.81 | | Ammonium dihydrogen phos- | | Slate | 4.51 | | phate (NH ₄ H ₂ PO ₄) | | Wood | | | 45° Z-cut | 3.28 | Elm | 1.01 | | | | Oak | 4.10 | ^{*} B. W. Henvis, "Wavelengths of Sound," Electronics, vol. 20, pp. 134, 136; March, 1947. # and their electrical analogs* The present advanced state of the art of electrical network theory suggests its advantageous application, by analogy, to equivalent acoustical and mechanical networks. Actually, Maxwell's initial work on electrical networks was based upon the previous work of Lagrange in dynamical systems. The following is a brief summary showing some of the network parameters available in acoustical and mechanical systems and their analysis using Lagrange's equations. Fig. 7 shows the analogous behavior of electrical, acoustical, and mechanical systems. These are analogous in the sense that the equations (usually differential equations) formulating the various physical laws are alike. #### Lagrange's equations The Lagrangian equations are partial differential equations describing the stored and dissipated energy and the generalized coordinates of the system. They are $$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_{\nu}}\right) + \frac{\partial F}{\partial \dot{q}_{\nu}} + \frac{\partial V}{\partial q_{\nu}} = Q_{\nu}, \ (\nu = 1, 2, \ldots, n)$$ (9) where T and V are, as in Fig. 7, the system's total kinetic and potential energy (in ergs), F is $\frac{1}{2}$ the rate of energy dissipation (in ergs/second, Rayleigh's dissipation function), Q_v the generalized forces (dynes), and q_v the generalized coordinates (which may be angles in radians, or displacements in centimeters). For most systems (and those considered herein) the generalized coordinates are equal in number to the number of degrees of freedom in the systems required to determine uniquely the values of T, V, and F. # Example As an example of the application of these equations toward the design of electroacoustical transducers, consider the idealized crystal microphone in Fig. 8. This system has 2 degrees of freedom since only 2 motions, namely the diaphragm displacement x_d and the crystal displacement x_c , are needed to specify the system's total energy and dissipation. A sound wave impinging upon the microphone's diaphragm creates an excess pressure p (dynes/centimeter²). The force on the diaphragm is then pA (dynes), where A is the effective area of the diaphragm. The diaphragm has ^{*} E. G. Keller, "Mathematics of Modern Engineering," vol. 2, 1st ed., John Wiley, New York, New York; 1942. Also, H. F. Olson, "Dynamical Analogies," 1st ed., D. Van Nostrand, New York, New York; 1943. #### and their electrical analogs continued # Fig. 7A—Table of analogous behavior of systems—parameter of energy dissipation (or radiation). | electrical | mechanical | acovstical | |--|---|---| | current in wire | viscous damping vane | p _o +p x P _o | | $P = Ri^{2}$ $i = \frac{e}{P} = \frac{dq}{dt} = \dot{q}$ | $P = R_m v^2$ $v = \frac{f}{R_m} = \frac{dx}{dt} = \dot{x}$ | $P = R_a \dot{X}^2$ $\dot{X} = \frac{p}{R_a} = \frac{dX}{dt}$ | | $R = \frac{\rho l}{A}$ | $R_m = \frac{\mu A}{h}$ | $R_a = \frac{8\mu\pi I}{A^2}$ | | where i = current in amperes e = voltage in volts q = charge in coulombs t = time in seconds R = resistance in ohms \(\rho = \text{resistance in ohms} \) i = length in centimeters A = cross-sectional area of wire in centimeters ² P = power in watts | where v = velocity in centimeters/ second f = force in dynes x = displacement in centimeters t = time in seconds R _m = mechanical resistance in dyne-seconds/centimeter \(\mu = \text{coefficient of viscosity in poise} \) h = height of damping vane in centimeters A = area of vane in centimeters P = power in ergs/second | where X = volume velocity in centimeters³/second p = excess pressure in dynes/centimeter² X = volume displacement in centimeters³ t = time in seconds R_a = acoustic resistance in dyne-seconds/centimeters⁵ μ = coefficient of viscosity in poise I = length of tube in centimeters A = area of circular tube in centimeters² | # and their electrical analogs continued Fig. 7B—Table of analogous behavior of systems—parameter of energy storage (electrostatic or potential energy). | electrical | mechanical | acoustical | |---|---|--| | A e,q | | P Vo | | capacitor with closely spaced plates | clamped-free (cantilever
beam) | piston acoustic compliance (at
audio frequencies, adiabatic
expansion) | | $W_{\bullet} = \frac{q^2}{2C} = \frac{Sq^2}{2}$ | $V=\frac{x^2}{2C_m}=\frac{S_mx^2}{2}$ | $V = \frac{\chi^2}{2C_a} = \frac{S_a \chi^2}{2}$ | | $q = Ce = \frac{e}{S}$ | $x = C_m f = \frac{f}{S_m}$ | $X = C_{ap} = \frac{p}{S_a} = xA$ | | $C = \frac{kA}{36\pi d} \times 10^{-11}$ | $C_{ms} = \frac{J^3}{3EI}$ | $C_a = \frac{V_o}{c^2 \rho}$ | | where C = capacitance in
farads S = stiffness = 1/C W _e = energy in watt-seconds k = relative dielectric constant (= 1 for air, numeric) A = area of plates in centimeters ² d = separation of plates in centimeters | where C _m = mechanical compliance in centimeters/dyne S _m = mechanical stiffness = 1/C _m V = potential energy in ergs E = Young's modulus of elasticity in dynes/centimeter ² I = moment of inertia of cross-section in centimeters ⁴ I = length of beam in cenmeters | where C _α = acoustical compliance in centimeters ⁵ /dyne S _a = acoustical stiffness = 1/C _a V = potential energy in ergs c = velocity of sound in enclosed gas in centimeters/second ρ = density of enclosed gas in grams/centimeter ³ V _o = enclosed volume in centimeters ³ A = area of piston in centimeters ² | # and their electrical analogs continued Fig. 7C—Table of analogous behavior of systems—parameter of energy storage (magnetostatic or kinetic energy). | electrical | mechanical | acoustical | |--|--|--| | for a very long solenoid | for translational motion in one direction m is the actual weight in grams | | | $W_m = \frac{Li^2}{2}$ $e = L\frac{di}{dt} = L\frac{d^2q}{dt^2} = L\ddot{q}$ $L = 4\pi \ln^2 Ak \times 10^{-9}$ | $T = \frac{mv^2}{2}$ $f = m\frac{dv}{dt} = m\frac{d^2x}{dt^2} = m\ddot{x}$ | $T = \frac{M\dot{X}^2}{2}$ $\rho = M\frac{d\dot{X}}{dt} = M\frac{d^2X}{dt^2} = M\ddot{X}$ $M = \frac{\rho l}{A}$ | | where $L = \text{Inductance in henries}$ $W_m = \text{energy in watt-seconds}$ $I = \text{length of solenoid in centimeters}$ $A = \text{area of solenoid in centimeters}^2$ $n = \text{number of turns of wire/centimeter}$ | where m = mass in grams T = kinetic energy in ergs | where M = inertance in grams/centimeter4 T = kinetic energy in ergs I = length of pipe in centimeters A = orea of pipe in centimeters2 \(\rho = \text{density of gas in grams/centimeter} \) | | k = relative permeability
of core l = 1 for air,
numeric) | | Centimeter | #### and their electrical analogs continued an effective mass m_d , in the sense that the kinetic energy of all the parts associated with the diaphragm velocity \dot{x}_d (= dx_d/dt) is given by $m_d\dot{x}_d^2/2$. The diaphragm is supported in place by the stiffness S_d . It is coupled to the crystal via the stiffness S_o . The crystal has a stiffness S_c , an effective mass of m_c (to be computed below), and is damped by the mechanical resistance R_c . The only other remaining parameter is the acoustical stiffness S_a introduced by compression of the air-tight pocket enclosed by the diaphragm and the case of the microphone. The total potential energy V stored in the system for displacements x_d and x_c from equilibrium position, is $$V = \frac{1}{2}S_d x_d^2 + \frac{1}{2}S_a (x_d A)^2 + \frac{1}{2}S_c x_c^2 + \frac{1}{2}S_o (x_d - x_c)^2$$ (10) The total kinetic energy T due to velocities \dot{x}_d and \dot{x}_c is $$T = \frac{1}{2}m_c \dot{X}_c^2 + \frac{1}{2}m_d \dot{X}_d^2 \tag{11}$$ (This neglects the small kinetic energy due to motion of the air and that due to the motion of the spring S_0). If the total weight of the unclamped part of the crystal is we (grams), one can find the effective mass m_c of the crystal as soon as some assumption is made as to movement of the rest of the crystal when its end moves with velocity \dot{x}_c . Actually, the crystal is like a transmission line and has an infinite number of degrees of freedom. Practically, the crystal is usually designed so that its first resonant frequency is the highest passed by the microphone. In that case, the end of the crystal moves in phase with the rest, and in a manner that, for simplicity, is here taken as parabolically. Thus it is assumed that an element of the crystal located y centimeters away from its Fig. 8—Crystal microphone analyzed by use of Lagrange's equations. #### and their electrical analogs continued clamped end moves by the amount $(y/h)^2x_c$, where h is the length of the crystal. The kinetic energy of a length dy of the crystal due to its velocity of $(y/h)^2\dot{x}_c$ and its mass of $(dy/h)w_c$ is $\frac{1}{2}(dy/h)w_c(y/h)^4\dot{x}_c^2$. The kinetic energy of the whole crystal is the integral of the latter expression as y varies from 0 to h. The result is $\frac{1}{2}(w_c/5)\dot{x}_c^2$. This shows at once that the effective mass of the crystal is $m_c = w_c/5$, i.e., $\frac{1}{5}$ its actual weight. The dissipation function is $F = \frac{1}{2}R_c\dot{x}_c^2$. Finally, the driving force associated with displacement x_d of the diaphragm is pA. Substitution of these expressions and (10) and (11) in Lagrange's equations (9) results in the force equations $$m_d \ddot{x}_d + S_d x_d + S_o A^2 x_d + S_o (x_d - x_e) = pA$$ $$m_e \ddot{x}_e + S_o (x_e - x_d) + S_e x_e + R_e \dot{x}_e = 0$$ (12) These are the mechanical version of Kirchhoff's law that the sum of all the resisting forces (rather than voltages) are equal to the applied force. The equivalent electrical circuit giving these same differential equations is shown in Fig. 8. The crystal produces, by its piezoelectric effect, an open-circuit voltage proportional to the displacement x_c . By means of this equivalent circuit, it is now easy, by using the usual electrical-circuit techniques, to find the voltage generated by this microphone per unit of sound-pressure input, and also its amplitude- and phase-response characteristic as a function of frequency. It is important to note that this process of analysis not only results in the equivalent electrical circuit, but also determines the effective values of the parameters in that circuit. # Sound in enclosed rooms* ## Good acoustics—governing factors Reverberation time or amount of reverberation: Varies with frequency and is measured by the time required for a sound, when suddenly interrupted, to die away or decay to a level 60 decibels (db) below the original sound. The reverberation time and the shape of the reverberation-time/frequency curve can be controlled by selecting the proper amounts and varieties of ^{*} F. R. Watson, "Acoustics of Buildings," 3rd ed., John Wiley and Sons, New York, New York; 1941. sound-absorbent materials and by the methods of application. Room occupants must be considered inasmuch as each person present contributes a fairly definite amount of sound absorption. Standing sound waves: Resonant conditions in sound studios cause standing waves by reflections from opposing parallel surfaces, such as ceiling-floor and parallel walls, resulting in serious peaks in the reverberation-time/frequency curve. Standing sound waves in a room can be considered comparable to standing electrical waves in an improperly terminated transmission line where the transmitted power is not fully absorbed by the load. Fig. 9—Preferred room dimensions based on $2^{\frac{1}{2}}$ ratio. Permissible deviation \pm 5 percent. | type room | H:W:L | chart
designation | |------------------------------|------------|----------------------| | Small | 1:1.25:1.6 | | | Average shape
Low ceiling | 1:1.60:2.3 | | | Long | 1:1.25:3.2 | F:E:A: | #### Room sizes and proportions for good acoustics The frequency of standing waves is dependent on room sizes: frequency decreases with increase of distances between walls and between floor and ceiling. In rooms with two equal dimensions, the two sets of standing waves occur at the same frequency with resultant increase of reverberation time at resonant frequency. In a room with walls and ceilings of cubical contour this effect is tripled and elimination of standing waves is practically impossible. The most advantageous ratio for height:width:length is in the proportion of $1:2^{16}:2^{36}$ or separated by $\frac{1}{3}$ or $\frac{2}{3}$ of an octave. In properly proportioned rooms, resonant conditions can be effectively reduced and standing waves practically eliminated by introducing numerous surfaces disposed obliquely. Thus, large-order reflections can be avoided by breaking them up into numerous smaller reflections. The object is to prevent sound reflection back to the point of origin until after several rereflections. Most desirable ratios of dimensions for broadcast studios are given in Fig. 9. #### Optimum reverberation time Optimum, or most desirable reverberation time, varies with (1) room size, and (2) use, such as music, speech, etc. (see Figs. 10 and 11). Fig. 10—Optimum reverberation time in seconds for various room volumes at 512 cycles per second. These curves show the desirable ratio of the reverberation time for various frequencies to the reverberation time for 512 cycles. The desirable reverberation time for any frequency between 60 and 8000 cycles may be found by multiplying the reverberation time at 512 cycles (from Fig. 10) by the number in the vertical scale which corresponds to the frequency chosen. Fig. 11—Desirable relative reverberation time versus frequency for various structures and auditoriums. ### Computation of reverberation time Reverberation time at different audio frequencies may be computed from room dimensions and average absorption. Each portion of the surface of a room has a certain absorption coefficient a dependent on the material of the surface, its method of application, etc. This absorption coefficient is equal to the ratio of the energy absorbed by the surface to the total energy impinging thereon at various audio frequencies. Total absorption for a given surface area in square feet S is expressed in terms of absorption
units, the number of units being equal to $a_{av}S$. $$a_{av} = \frac{\text{(total number of absorption units)}}{\text{(total surface in square feet)}}$$ One absorption unit provides the same amount of sound absorption as one square foot of open window. Absorption units are sometimes referred to as "open window" or "OW" units. $$T = \frac{0.05V}{-S \log_e(1 - \alpha_{ax})}$$ where T = reverberation time in seconds V = room volume in cubic feet S = total surface of room in square feet a_{av} = average absorption coefficient of room at frequency under consideration. For absorption coefficients a of some typical building materials, see Fig. 12. Fig. 13 shows absorption coefficients for some of the more commonly used materials for acoustical correction. Fig. 12-Table of acoustical coefficients of materials and persons.* | description | | | absorpt | | | | authority | |---------------------------------------|-------|-------|---------|-------|-------|-------|---------------------------| | | 128 | 256 | 512 | 1024 | 2048 | 4096 | Comorny | | Brick wall unpainted | 0.024 | 0.025 | 0.031 | 0.042 | 0.049 | 0.07 | W. C. Sabine | | Brick wall painted | 0.012 | 0.013 | 0.017 | 0.02 | 0.023 | 0.025 | W. C. Sabine | | Plaster + finish coat on | | | | | | | | | wood lath-wood studs | 0.020 | 0.022 | 0.032 | 0.039 | 0.039 | 0.028 | P. E. Sabine | | Plaster + finish coat on metal lath | 0.038 | 0.049 | 0.060 | 0.085 | 0.043 | 0.056 | V. O. Knudsen | | Poured concrete unpainted | 0.010 | 0.012 | 0.016 | 0.019 | 0.023 | 0.035 | V. O. Knudsen | | Poured concrete painted and varnished | 0.009 | 0.011 | 0.014 | 0.016 | 0.017 | 0.018 | V. O. Knudsen | | Carpet, pile on concrete | 0.09 | 0.08 | 0.21 | 0.26 | 0.27 | 0.37 | Building Research Station | | Carpet, pile on 1/8 in felt | 0.11 | 0.14 | 0.37 | 0.43 | 0.27 | 0.25 | Building Research Station | | Draperies, velour, 18 oz per sq yd in | | | | | | | | | contact with wall | 0.05 | 0.12 | 0.35 | 0.45 | 0.38 | 0.36 | P. E. Sabine | | Ozite 3/8 in | 0.051 | 0.12 | 0.17 | 0.33 | 0.45 | 0.47 | P. E. Sabine | | Rug, axminster | 0.11 | 0.14 | 0.20 | 0.33 | 0.52 | 0.82 | Wente and Bedell | | Audience, seated per sq ft of area | 0.72 | 0.89 | 0.95 | 0.99 | 1.00 | 1.00 | W. C. Sabine | | Each person, seated | 1.4 | 2.25 | 3.8 | 5.4 | 6.6 | _ | Bureau of Standards, | | | | | | | | | averages of 4 tests | | Each person, seated | _ | - | _ | _ | | 7.0 | Estimated | | Glass surfaces | 0.05 | 0.04 | 0.03 | 0.025 | 0.022 | 0.02 | Estimated | Reprinted by permission from Architectural Acoustics by V. O. Knudsen, published by John Wiley and Sons, Inc. Fig. 13—Table of acoustical coefficients of materials used for acoustical correction. | material | | | cycles/second | | | | noise- | manufactured by | |-----------------------------------|------|------|---------------|------|------|------|--------|----------------------------| | material | 128 | 256 | 512 | 1024 | 2048 | 4096 | | | | Corkoustic—B4 | 0.08 | 0.13 | 0.51 | 0.75 | 0.47 | 0.46 | 0.45 | Armstrong Cork Co. | | Corkoustic-B6 | 0.15 | 0.28 | 0.82 | 0.60 | 0.58 | 0.38 | 0.55 | Armstrong Cork Co. | | Cushiontone A-3 | 0.17 | 0.58 | 0.70 | 0.90 | 0.76 | 0.71 | 0.75 | Armstrong Cork Co. | | Koustex | 0.10 | 0.24 | 0.641 | 0.92 | 0.77 | 0.75 | 0.65 | David E. Kennedy, Inc. | | Sanacoustic (metal) tiles | 0.25 | 0.56 | 0.99 | 0.99 | 0.91 | 0.82 | 0.85 | Johns-Manville Sales Corp. | | Permacoustic tiles 1 in | 0.19 | 0.34 | 0.74 | 0.76 | 0.75 | 0.74 | 0.65 | Johns-Manville Sales Corp. | | Low-frequency element | 0.66 | 0.60 | 0.50 | 0.50 | 0.35 | 0.20 | 0.50 | Johns-Manville Sales Corp. | | Triple-tuned element | 0.66 | 0.61 | 0.80 | 0.74 | 0.79 | 0.75 | 0.75 | Johns-Manville Sales Corp. | | High-frequency element | 0.20 | 0.46 | 0.55 | 0.66 | 0.79 | 0.75 | 0.60 | Johns-Manville Sales Corp. | | Absorbatone A | 0.15 | 0.28 | 0.82 | 0.99 | 0.87 | 0.98 | 0.75 | Luse Stevenson Co. | | Acoustex 60R | 0.14 | 0.28 | 0.81 | 0.94 | 0.83 | 0.80 | 0.70 | National Gypsum Co. | | Econocoustic 1 in | 0.25 | 0.40 | 0.78 | 0.76 | 0.79 | 0.68 | 0.70 | National Gypsum Co. | | Fiberglas acoustical tiletype TW- | | | | | | | | | | PF 9D | 0.22 | 0.46 | 0.97 | 0.90 | 0.68 | 0.52 | 0.75 | Owens-Corning Fiberglas | | | | | | | | | | Corp. | | Acoustone D 11/6 In | 0.13 | 0.26 | 0.79 | 0.88 | 0.76 | 0.74 | 0.65 | U. S. Gypsum Company | | Acoustone F 18/6 In | 0.16 | 0.33 | 0.85 | 0.89 | 0.80 | 0.75 | 0.70 | U. S. Gypsum Company | | Acousti-celotex type C-6 11/4 in | 0.30 | 0.56 | 0.94 | 0.96 | 0.69 | 0.56 | 0.80 | The Celotex Corp. | | Absorbex type A 1 in | 0.41 | 0.71 | 0.96 | 0.88 | 0.85 | 0.96 | 0.85 | The Celotex Corp. | | Acousteel B metal facing 15% in | 0.29 | 0.57 | 0.98 | 0.99 | 0.85 | 0.57 | 0.85 | The Celotex Corp. | Courtesy Acoustics Materials Association # Public-address systems* ### Electrical power levels for public-address requirements Indoor power-level requirements are shown in Fig. 14. Outdoor power-level requirements are shown in Fig. 15. Note: Curves are for an exponential trumpet-type horn. Speech levels above reference—average 70 db, peak 80 db. For a loudspeaker of 25-percent efficiency, 4 times the power output would be required or an equivalent of 6 decibels. For one of 10-percent efficiency, 10 times the power output would be required or 10 decibels. ^{*} The noise-reduction coefficient is the average of the coefficients at frequencies from 256 to 2048 cycles inclusive, given to the nearest 5 percent. This average coefficient is recommended for use in comparing materials for noise-quieting purposes as in offices, hospitals, banks, corridors, etc. ^{*}H. F. Olson, "Elements of Acoustical Engineering," 2nd ed., D. Van Nostrand, New York, New York; 1941. ### Public-address systems continued Fig. 14—Room volume and relative amplifier power capacity. To the indicated power level depending on loudspeaker efficiency, there must be added a correction factor that may vary from 4 decibels for the most efficient horn-type reproducers to 20 decibels for less efficient cone loudspeakers. # Public-address systems continued Fig. 15—Distance from loudspeaker and relative amplifier power capacity required for speech, average for 30° angle of coverage. For angles over 30°, more loudspeakers and proportional output power are required. Depending on loudspeaker efficiency, a correction factor must be added to the indicated power level, varying approximately from 4 to 7 decibels for the more-efficient type of horn loudspeakers. # Sounds of speech and music* A large amount of data are available regarding the wave shapes and statistical properties of the sounds of speech and music. Below are given some of these data that are of importance in the design of transmission systems. #### Minimum-discernible-bandwidth changes Fig. 16 gives the increase in high-frequency bandwidth required to produce a minimum discernible change in the output quality of speech and music. Fig. 16—Table showing bandwidth increases necessary to give an even chance of quality improvement being noticeable. All figures are in kilocycles. | minus o | ne limen | reference | plus on | e limen | |---------|----------|-----------|---------|---------| | speech | music | frequency | music. | speech | | _ | _ | 3 | 3.0 | 3.3 | | 3.4 | 3.3 | 4 | 4.8 | 4.8 | | 4.1 | 4,1 | 5 | 6.0 | 6.9 | | 4.6 | 5.0 | 6 | 7.4 | 9.4 | | 5.1 | 5.8 | 7 | 9.3 | 12.8 | | 5.5 | 6.4 | 8 | 11.0 | i — | | 5.8 | 6.9 | 9 | 12.2 | . – | | 6.2 | 7.4 | 1.0 | 13.4 | l — | | 6.4 | 8.0 | 11 | 15.0 | I — | | 7.0 | 9.8 | 13 | _ | I — | | 7.6 | 11.0 | 15 | | l — | These bandwidths are known as difference-limen units. For example, a system transmitting music and having an upper cutoff frequency of 6000 cycles would require a cutoff-frequency increase to 7400 cycles before there is a 50-percent chance that the change can be discerned. (Curve B, Fig. 17.) Fig. 17 is based upon the data of Fig. 16. For any high-frequency cutoff along the abscissa, the ordinates give the next higher and next lower cutoff frequencies for which there is an even chance of discernment. As expected, one ob* H. Fletcher, "Speech and Hearing," 1st ed., D. Van Nostrand Company, New York, New York; 1929. S. S. Stevens, and H. Davis, "Hearing," J. Wiley and Sons, New York, New York, 1938. reference frequency in kilocycles Courtesy of Bell System Technical Journal Fig. 17 — Minimum-discerniblebandwidth changes. Curves show: A-Plus 1 limen for speech B-Plus 1 limen for music C-Minus 1 limen for music D-Minus 1 limen for speech #### Sounds of speech and music continued serves that, for frequencies beyond about 4000 cycles, restriction of upper cutoff affects music more appreciably than speech. #### **Peak factor** One of the important factors in deciding upon the power-handling capacity of amplifiers, loudspeakers, etc., is the fact that in speech very large fluctuations of instantaneous level are present. Fig. 18 shows the peak factor (ratio of peak to root-mean-square pressure) for unfiltered (or wideband) speech, for separate octave bandwidths below 500 cycles, and for separate $\frac{1}{2}$ -octave bandwidths above 500 cycles. The peak values for sound pressure of unfiltered speech, for example, rise 10 decibels higher than the averaged root-mean-square value over an interval of $\frac{1}{8}$ second, which corresponds roughly to a syllabic period. However, for a much longer interval of time, say the time duration of one sentence, the peak value reached by the sound pressure for unfiltered speech is about 20 decibels higher than the root-mean-square value averaged for the entire sentence. Fig. 18—Peak factor (ratio of peak/root-mean-square pressures) in decibels for speech in 1- and 1/2-octave frequency bands, for 1/8- and 75-second time intervals. ### Sounds of speech and music continued Thus, if the required sound-pressure output demands a long-time average of, say, 1 watt of electrical power from an amplifier, then, to take care of the instantaneous peaks in speech, a
maximum-peak-handling capacity of 100 watts is needed. If the amplifier is tested for amplitude distortion with a sine wave, 100 watts of peak-instantaneous power exists when the average power of the sine-wave output is 50 watts. This shows that if no amplitude distortion is permitted at the peak pressures in speech sounds, the amplifier should give no distortion when tested by a sine wave of an average power 50 times greater than that required to give the desired long-time-average root-mean-square pressure. The foregoing puts a very stringent requirement on the amplifier peak power. In relaxing this specification, one of the important questions is what percentage of the time will speech overload an amplifier of lower power than that necessary to take care of all speech peaks. This is answered in Fig. 19; the abscissa gives the probability of the $\frac{(peak)}{(long-time-average)}$ powers ex- ceeding the ordinates for continuous speech and white noise. When multiplied by 100, this probability gives the expected percent of time during which peak distortion occurs. If 1 percent is taken as a suitable criterion, Fig. 19—Statistical properties of the peak factor in speech. The abscissa gives the probability (ratio of the time) that the peak factor in the uninterrupted speech of one person exceeds the ordinate value. Peak factor = (decibels instantaneous peak value) — (decibels root-mean-square long-time average). ### Sounds of speech and music continued then a 12-decibel ratio of $\frac{\text{(peak)}}{\text{(long-time-average)}}$ powers is sufficient. Thus, the amplifier should be designed with a power reserve of 16 in order that peak clipping may occur not more than about 1 percent of the time. ### Speech-communication # systems In many applications of the transmission of information by speech sounds, a premium is placed on intelligibility rather flawless reproduction. than Especially important is the reduction of intelligibility as a function of both the backaround noise and the restriction of transmission-channel bandwidth. Intelligibility is usually measured by the percentage of correctly received monosyllabic nonsense words uttered in an uncorrelated sequence. Fig. 20—Relations between various measures of speech intelligibility. Relations are approximate; they depend upon the type of material and the skill of the talkers and listeners. This score is known as syllable articulation. Because the sounds are nonsense syllables, one part of the word is entirely uncorrelated with the remainder, so it is not consistently possible to guess the whole word correctly if only part of it is received intelligibly. Obviously, if the test speech were a commonly used word, or say a whole sentence with commonly used word sequences, the score would increase because of correct guessing from the context. Fig. 20 shows the inter-relationship between syllable, word, and sentence articulation. Also given is a quantity known as articulation index. The concept and use of articulation index is obtained from Fig. 21. The abscissa is divided into 20 bandwidths of unequal frequency interval. Each of these bands will contribute 5 percent to the articulation index when the speech spectrum is not masked by noise and is sufficiently loud to be above the threshold of audibility. The ordinates give the root-mean-square peaks and minimums (in $\frac{1}{8}$ -second intervals), and the average sound pressures created at 1 meter from a speaker's mouth in an anechoic (echo-free) chamber. The units are in decibels pressure per cycle relative to a pressure # Speech-communication systems continued of 0.0002 dynes/centimeter². (For example, for a bandwidth of 100 cycles, rather than 1 cycle, the pressure would be that indicated plus 20 decibels; the latter figure is obtained by taking 10 times logarithm (to the base 10) of the ratio of the 100-cycle band to the indicated band of 1 cycle.) An articulation index of 5 percent results in any of the 20 bands when a full 30-decibel range of speech-pressure peaks to speech-pressure minimums is obtained in that band. If the speech minimums are masked by noise of a higher pressure, the contribution to articulation is accordingly reduced to a value given by \frac{1}{6} [(decibels level of speech peaks) - (decibels level of average noise)]. Thus, if the average noise is 30 decibels under the speech peaks, this expression gives 5 percent. If the noise is only 10 decibels below the speech peaks, the contribution to articulation index reduces to $\frac{1}{2} \times 10 = 1.67$ percent. If the noise is more than 30 decibels below the speech peaks, a value of 5 percent is used for the articulation index. Such a computation is made for each of the 20 bands of Fig. 21, and the results are added to give the expected articulation index. Fig. 21—Bands of equal articulation index. 0 decibels = 0.0002 dyne/centimeter². A number of important results follow from Fig. 21. For example, in the presence of a large white (thermal-agitation) noise having a flat spectrum, an improvement in articulation results if pre-emphasis is used. A pre-emphasis rate of about 8 decibels/octave is sufficient. # Speech clipping While the presence of peak clipping is detectable as distortion, particularly with consonants, the articulation is not appreciably affected by even large amounts of peak clipping.* The deterioration from clipping is determined ^{*} J. C. R. Licklider and I. Pollack, "Effects of Differentiation, Integration, and Infinite Peak Clipping upon the Intelligibility of Speech," *Journal of the Acoustical Society of America*, vol. 20, pp. 42–51; January, 1946. #### Speech-communication systems continued apparently by the masking and smearing caused by the intermodulation frequencies produced by the nonlinear clipping circuit. Consequently, the articulation after clipping depends on whether the higher frequencies are preferentially amplified before (differentiation) or attenuated (similar to integration). The articulation resulting from sequences of clipping, differentiation, and integration in various orders are shown in Fig. 22. - B—Differentiation - C-Integration - D-Differentiation and clipping - E-Differentiation, clipping, and integration - F-Clipping and integration - G-Clipping - H-Clipping and differentiation - I-Integration and dipping - J-Integration, clipping, and differentiation Caurtesy af Journal of the Acoustical Society of America. Fig. 22—Effects of various types of distortion on intelligibility of speech. The column diagram indicates the over-all averages for each of the 10 circuit arrangements. #### Loudness Equal loudness contours: Fig. 23 gives average hearing characteristics of the human ear at audible frequencies and at loudness levels of zero to 120 decibels versus intensity levels expressed in decibels above 10⁻¹⁶ watt per square centimeter. Ear sensitivity varies considerably over the audible range of sound frequencies at various levels. A loudness level of 120 decibels is heard fairly uniformly throughout the entire audio range but, as indicated in Fig. 23, a frequency of 1000 cycles at a 20-decibel level will be heard at very nearly the same intensity as a frequency of 60 cycles at a 60-decibel level. These curves explain why a loudspeaker operating at lower-thannormal-level sounds as though the higher frequencies were accentuated and the lower tones seriously attenuated or entirely lacking; also, why music, speech, and other sounds, when reproduced, should have very nearly the same intensity as the original rendition. To avoid perceptible deficiency of lower tones, a symphony orchestra, for example, should be reproduced at an acoustical level during the loud passages of 90 to 100 decibels. # Loudness continued Fig. 23—Equal loudness contours. # **■** Digital computers #### Definition A digital computing machine is a device employing numbers composed of digits or discrete units (integers) in the representation of quantities undergoing manipulation in the computing process. Numbers being symbolic representations of quantity, the computer is designed to manipulate these symbols in a logical manner so as to produce a symbolic representation of the logical result. The precision with which a result may be defined is proportional to the number of digits the machine can handle, provided the manipulations are performed accurately. #### Numbers A number is a quantity represented by an ordered group of symbols or digits. A number system is made up of an ordered set of symbols, each representing an integer. The number of individual symbols in a number system, including the representation for zero, is called the *radix* of the system. The relationship between a number N, the digits d and the radix R can be expressed by the following equation: $$N = d_1 + d_2R + d_3R^2 + d_4R^3 + \dots + d_nR^{n-1}$$ It is usual practice to write the digits of a number in decreasing order of significance as one reads from left to right. Thus a number expressed in the decimal system (radix 10) appears as: $$1856 = (1 \times 10^3) + (8 \times 10^2) + (5 \times 10) + (6 \times 10^0)$$ Similarly the number 110110 expressed in the binary system (radix 2) appears as: $$N = (1 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0}) = 54$$ # Choice of radix Computers may be built employing virtually any radix but only a very few radixes are considered significant from the standpoint of computer design. If the assumption is made that the number of electron tubes or quantity of apparatus necessary to represent a number is proportional to the radix used, it can be shown that a minimum number of elements will be required #### Choice of radix continued if the radix R = e = 2.71828. It is difficult to conceive an arithmetic built on such a radix. Since the assumption is tenuous at best, and if, as in many practical cases, the apparatus used is capable of assuming either of 2 stable conditions (as
in relays, flip-flops, punched cards, punched tape, etc.), there is no radix more economical than radix 2, since none of the possible stable states is wasted. Radixes 4, 8, and 16 would be similarly economical. In electronic machines, the usual method is to represent the 10 decimal digits by means of some form of binary code. Four binary symbols are required to represent all of the 10 symbols of the decimal system. Some computers have input and output devices that work in the decimal system, but have internal machinery and arithmetic units that operate in the binary system. The conversion is made internally before the computation is performed and the result is translated back into decimal notation upon completion of the computation. A certain amount of time is taken for the conversions, but this time is short compared to the time required to operate mechanical printing devices that are frequently used as outputs. # Coding A code is a system of representation of a set of symbols by means of another different set of symbols. A binary code consists of the two symbols, one and zero. It should be distinguished from a number system based on radix 2, since the element of position is not necessarily weighted in a code as it is in a number system. This difference is illustrated in Fig. 1, where the decimal number 347 is expressed as a binary number, as a binary coded decimal (radix 10), and as a binary coded octal (radix 8). All of these numbers are representations of the same physical quantity. Because of the widespread use of the decimal system of numbers and because of the fact that most of the physical apparatus of computers is inherently binary or works best in a binary fashion (as in detecting the presence or absence of signal, the on or off condition of a tube, or the open or closed position of a relay), it has become common practice to represent the symbols of the decimal system in some form of binary code. Since there are more than 2⁸ symbols to be represented, it is Fig. 1—Expression of a number in different codes. | system | code | |----------------------|----------------| | Decimal | 347 | | Binary (radix 2) | 101011011 | | Binary coded decimal | 0011 0100 0111 | | Binary coded octal | 101 011 011 | | Octal (radix 8) | 533 | ### Coding continued necessary that the binary representation of each decimal symbol employ a minimum of 4 binary symbols (the term binary digit or bit is frequently used) to avoid ambiguity. Also, since there are 16 possible combinations of the 4 binary symbols representing the decimal numbers in such a case and since any one of the combinations may be used to represent any decimal symbol, the number of possible codes is 16!/6!, or slightly less than 3×10^{10} . Fig. 2 shows the representation of the 10 decimal symbols 0 through 9 in a 4-bit code. Fig. 2—Conversion of decimal system into binary code. Fig. 3—The excess-3 code. | character | binary coded representation | character | excess-3 binary coded representation | |-----------|-----------------------------|-----------|--------------------------------------| | 0 | 0000 | o | 0011 | | 1 | 0001 | 1 | 0100 | | 2 | 0010 | 2 | 0101 | | 3 | 0011 | 3 | 0110 | | 4 | 0100 | 4 | 0111 | | 5 | 0101 | 5 | 1000 | | 6 | 0110 | 6 | 1001 | | 7 | 0111 | 7 | 1010 | | 8 | 1000 | 8 | 1011 | | 9 | 1001 | 9 | 1100 | In some applications it is not desirable to have the symbol 0 represented by the absence of signal, since it cannot then be distinguished from lost signals. This is avoided by choosing 10 of the possible representations that do not include the position 0000. Such a code is given in Fig. 3. This code uses the binary notation for 3 as the representation for 0. Each of the other 9 symbols is represented by the binary equivalent of the symbol plus 3. For that reason, it is known as an "excess-3" code. It has the further property that it is "self-complementing"; that is, the 9's complement of the decimal symbol is formed by changing 1's to 0's and the 0's to 1's in the coded representation of the symbol. This property is useful in performing many of the arithmetic operations within the computer. The code given in Fig. 4 is one of a group of codes that is frequently used when mechanical analogs (position, shaft rotation, etc.) are converted into digital form for computer input purposes or for recording. This type of code obtains its usefulness from the property that one and only one digit #### Coding continued of the code changes in proceeding to the next higher or next lower number. The code shown is known as a reflected binary code, because of the inverted sequence in which the binary symbol 1 and 0 are used. Its conversion into the usual Fig. 4—The reflected binary code. binary number is trivially easy. It will be noted that the most significant digit is the _ same as the binary number; a comparison is then made with the digit at the next least significant position; if the two are alike, the digit in that position in the binary number is a 0; if the two are unlike, the digit in that position in the binary number is a 1. This digit in the binary number is then compared with the next least significant position in the reflected code. Again if the two are alike, the digit in that position in the binary number is a 0; if | character | reflected binary
representation | |-----------|------------------------------------| | 0 | 0000 | | 1 | 0001 | | 2 | 0011 | | 3 | 0010 | | 4 | 0110 | | 5 | 0111 | | 6 | 0101 | | 7 | 0100 | | 8 | 1100 | | 9 | 1101 | the two are unlike, it is a 1. The operation is diagramed in Fig. 5. An electronic circuit for making the conversion is shown in Fig. 6. Fig. 5—Sequence for comparing binary and reflected binary codes. The code given in Fig. 7 is a reflected binary, excess-3 representation of the 10 decimal symbols. This code, when converted into binary number, yields the binary excess-3 code given in Fig. 3. It has the property that only one digit change is required in advancing from the 9 to 0 representation, and that change occurs in the most significant position. This is a useful property for many applications. Fig. 6—Circuit for converting from reflected binary to binary code. # Coding continued Computers in business applications particularly may be required to handle information other than numbers. To encode all of the letters of the alphabet plus all of the arabic numerals requires a minimum of 6 binary digits if ambiguity is to be avoided. A typical code of this type is given in Fig. 8. Fig. 7-Reflected binary, excess-3 code. Fig. 9-Code including check bits. | character | reflected binary,
excess-3
representation | character | code | |-----------|---|-----------|----------| | 0 | 0010 | . 0 | 0010 001 | | 1 | 0110 | 1. | 0110 000 | | 2 | 1 0111 | 2 | 100 1110 | | 3 | 0101 | 3 | 0101_000 | | 4 | 0100 | 4 | 0100 001 | | 5 | 1100 | 5 | 1100 000 | | 6 | 1101 | 6 | 1101 001 | | 7 | 1111 | 7 | 1111 000 | | 8 | 1110 | 8 | 1110 001 | | 9 | 1010 | 9 | 1010 000 | Fig. 8—Code including alphabet for business-machine applications. | character | coded
representation | character | coded
representation | |-------------|-------------------------------|-------------|-------------------------------| | 0 | 0010 00 | J
K | 0110 01 | | 1
2
3 | 0110 00
0111 00
0101 00 | L | 0101 01 | | 4 | 0100 00
1100 00 | M
N
O | 0100 01
1100 01
1101 01 | | 5
6
7 | 1101 00 | P | 1111 01 | | 8
9 | 1110 00
1010 00 | Q
R | 1110 01
1010 01 | | A
B
C | 0110 11
0111 11
0101 11 | S
T
U | 0111 10
0101 10
0100 10 | | Ð
E
F | 0100 11
1100 11
1101 11 | v
W | 1100 10
1101 10 | | G
H
I | 1111 11
1110 11
1010 11 | X
Y
Z | 1111 10
1110 10
1010 10 | 885 #### Coding continued Additional bits are frequently used for the purpose of providing a check against errors. The 7-bit codes used in the Univac and the IBM machines are of this type. They are so constructed that the total number of 1's in the code for any character is either always odd or always even. For example, in the code of Fig. 8, a check bit (for even check) would make the code appear as in Fig. 9. # Switching circuits In the circuits shown in Fig. 10, the following notation applies: Only one of two states is permissible (1 or 0) The + symbol should be read "or" The X symbol should be read "and" Thus, $$A + B = A \text{ or } B$$ $$A \times B = A$$ and B $$AB = A$$ and B $$A(B + C) = A$$ and either B or C Since 1 and 0 are the only permissible representations, if $$A = 1$$ and $B = 1$ Then: $$A+B=1$$ $A\times B=1$ $$A \times B = 1$$ $$A + 0 = 1$$ $$A \times 0 = 0$$ $$0 + B = 1$$ $$0 \times B = 0$$ These functions are commutative and associative. The zero or negative is written \overline{A} , read, "not A". Thus, $$\overline{A} \times B = 0$$ $$\overline{A} \times \overline{B} = 0$$ # Switching circuits continued Fig. 10—Typical computer circuits. # Switching circuits continued Fig. 10-Continued ### General Atoms consist of a dense core or nucleus of particles surrounded by a "cloud" of negative electrons. The nucleus, the bulk of the atomic mass, has a radius of the order of 10^{-13} centimeter, as compared with 10^{-8} centimeter for the electronic shell. The nuclear particles are held together by forces very different from the well-known gravitational and electric forces: they are many orders of magnitude greater and come into play only when the interacting particles are extremely close together. Detection of effects involving this combination of short distance and powerful force necessitates the use of tools of corresponding smallness: waves of extremely short wavelength (X rays, gamma rays) or nuclear particles themselves. Bombarding particles of this kind occur naturally as cosmic rays or are produced artificially by high-energy particle accelerators. #### Fundamental particles Fig. 1 is a table of
subatomic particles based on present (1956) knowledge. The following are explanations of their constitution and qualities. **Electron:** A particle with negative electric charge. Beta (β) particles emitted by certain radioactive materials are high-speed electrons. The electron mass is 9.1 \times 10⁻²⁸ gram. **Proton:** A particle possessing a positive electric charge and a mass 1836 times the mass of an electron. The nucleus of a hydrogen atom consists of a single proton. Neutron: A particle, electrically neutral, with mass slightly greater than that of a proton. In simplified form, the atom has been pictured as a relatively compact nucleus built up of protons and neutrons surrounded by a cloud of electrons whose number is equal to the number of protons in the nucleus. Uranium²³⁸, for instance, contains 92 protons (balanced by its 92 electrons) and 146 neutrons. The chemical properties of the atom are determined only by the number and arrangement of the extranuclear electrons. The term nucleon is used to refer to either the neutron or proton when it is not necessary to distinguish between them. **Photon:** Although electromagnetic disturbances (X rays, radio waves, heat rays, light, etc.) behave like waves, their energy is transmitted in discrete bundles called photons. The energy E ergs carried by each photon is related to the frequency ν cycles per second of the associated wave by $E = h\nu$ where h = Planck's constant $= 6.62 \times 10^{-27}$ erg-seconds. The highenergy photons emitted by some radioactive materials are called gamma (γ) rays. | Fig. 1—Table of 11 | Fig. 1—Table of the fundamental particles (1956).* | *. | | | | continued Fund | continued Fundamental particles | |--------------------|--|---------------------|------------|--------------------|--------------------------------------|----------------|---------------------------------| | general | od Ticle | symbol | charge | \$\$0E | equivalent
energy
mc² in (mev) | ulds | mean life
In seconds | | | | | | | | | | | | Photon | ~ | 0 | 0 | 0 | _ | 8 | | | Neutrino | . 4 | 0 | 0 | 0 | 1/2 | 8 | | | Electron | Φ | ı
+ | _ | 0.511 | 1/2 | 8 | | Light | u-meson | 1 |
 +
 | 206 | 105.3 | 1/2 | (2.22±0.02) × 10 ⁻⁶ | | mesons | Charged # meson | × | ı
+ | 272.5 | 139.2 | 0 | $(2.5\pm0.1)\times10^{-8}$ | | (L particles) | Neutral # meson | π0 | 0 | 264 | 134.8 | 0 | $\leq 5 \times 10^{-16}$ | | | K _{±3} particle or τ meson | ı | +, + | 964 ± 3 | 493 | Integer | ≈ 10−8 | | | K ₂ , particle or x meson | × | 1
+ | 963±5 | 492 | Integer | 8_01 | | Heavy | K.,2 particle | K
L ₂ | (<u> </u> | 5 ∓ 096 | 490 | Integer | $0.81\pm0.07\times10^{-8}$ | | mesons | K ₄₃ particle or k meson | × | î
+ | 952 ± 9 | 486 | ∾- | ° 01 ≈ | | (K particles) | K, particle | χ, | (<u> </u> | 980 ± 25 | 200 | ∞- | و 01 ^ | | • | θ ⁰ particle | 8 | 0 | 964 ± 10 | 492 | Integer | $(1.5\pm0.5)\times10^{-10}$ | | | (Neutral τ meson) | 04 | 0 | ∞. | co- | Integer | 00- | | Nucleons | Proton | Q | ۱
+ | 1836.1 | 938.2 | 1/2 | 1 | | | Neutron | . c | 0 | 1838.6 | 939.5 | 1/2 | $1.08 \times 10^3 \pm 240$ | | | Λ^0 particle | V₀ | 0 | 2181 ± 2 | 1115 ± 1 | Half integer | $(3.7\pm0.6)\times10^{-10}$ | | Hyperons | 2 particle | M | 1
+ | 2327 ± 4 | 1189 ± 2 | Half integer | ≈ 10−10 | | | (Neutral 2 particle) | (X ₀ | 0 | с ъ- | 0. | (Half integer) | ≪ 10 ⁻¹⁰ | | | Cascade particle | Iч | İ | ≈ 2583 | ≈ 1320 | Half integer | ≈ 10 ⁻¹⁰ | * Courtesy of B. B. Rossi. # Fundamental particles continued **Neutrino:** A particle with negligible mass. The neutrino was hypothesized to account for certain features in the emission of the high-speed electrons— β particles—from radioactive nuclei. When a β -emitting nucleus disintegrates, it creates both an electron and a neutrino. The neutrino has never been detected directly, but its properties have been fairly well established by indirect experiment. **Positron:** A particle with the same mass as an electron but having positive electric charge. Positrons do not exist in normal atoms. They may appear in radioactive decay or be materialized when high-energy photons interact with nuclei. The ultimate fate of every positron is its conversion into electromagnetic energy. **Negative proton:** A particle with the same mass as the proton but having negative electrical charge. Like positrons, negative protons do not occur naturally but are produced as a result of high-energy interactions. They are converted into electromagnetic energy when they encounter normal protons. **Meson:** Mesons are observed among the products of nuclear disintegration when very-high-energy particles strike nuclei. Most prominent of the meson family are the pi (π) and mu (μ) mesons. Three kinds of π mesons exist. Two are electrically charged (\pm) and decay into the lighter μ meson about 10^{-8} second after their formation. The third has no charge and decays into two photons. The μ meson is also unstable and decays into an electron and two neutrinos about 10^{-6} second after it appears. Heavy elementary particles: Approximately a dozen different particles of this kind have been identified, classed as hyperons and heavy mesons; all are unstable, some being so short-lived that they decay even while in flight. **Deuteron;** α particle: These "particles" are nuclei of deuterium and of helium, respectively. The deuteron consists of 1 proton and 1 neutron; the alpha (α) particle of 2 protons and 2 neutrons. The latter is a particle emitted by some naturally radioactive materials. Both are used as bombarding particles in high-energy accelerators. # Terminology **Atomic nucleus:** Consists of protons and neutrons, Z and N in number. The number of protons Z is referred to as the atomic number. **Nuclear charge:** Carried by the protons, each of which has charge $e=1.6\times10^{-19}$ coulomb. Mass number: An integer A equal to the total number of neutrons and protons in the nucleus. A = N + Z. The complete symbolic representation ### Terminology continued of a nucleus is ${}_{Z}X^{A}$ where X is the appropriate chemical symbol: carbon, with 6 protons and 6 neutrons, is written ${}_{6}C^{12}$. Atomic mass unit, (amu): A unit of mass equal to 1.660×10^{-24} gram and equivalent to the mass of each of the particles of a fictitious substance whose molecular weight is 1 gram. One atomic mass unit is approximately the mass of the neutron or proton. Isotopes: Nuclei with common Z. Isotopes are chemically indistinguishable: the three naturally occurring isotopes of oxygen are ${}_8O^{16}$, ${}_8O^{17}$, and ${}_8O^{18}$. Nuclei with common A are called isobars; with common N, isotopes. Mass defect: The masses of nuclei are less than the sum of the masses of their separated constituent neutrons and protons. The difference is the mass defect: the proton and neutron masses are respectively 1.6723×10^{-24} and 1.6746×10^{-24} gram, whereas the mass of the deuteron is 3.3430×10^{-24} gram; the mass defect of the deuteron is thus 0.0039×10^{-24} gram. **Binding energy:** The energy required to separate all of the component neutrons and protons of the nucleus is called the total nuclear binding energy B. Binding energy and mass defect are equivalent according to the relativistic mass—energy relation. The fraction B/A is approximately 8×10^6 electron—volts for all but extremely light nuclei and represents on the average the energy required to remove a single neutron or proton from a nucleus. **Electron-volt:** A unit convenient for representing the energy of charged particles accelerated by electric fields. The electron-volt (ev) is equal to 1.6×10^{-19} joule and is the kinetic energy acquired by a particle bearing one unit of electric charge (1.6 \times 10⁻¹⁹ coulomb) that has been accelerated through a potential difference of 1 volt. According to the relativistic massenergy equation 1 (amu) = 931 (mev), where 1 (mev) = 10⁶ (ev). **Fission; fusion:** The breakup of nuclei into nuclear fragments that are themselves nuclei is fission. The coalescing of two nuclei to form a heavier one is fusion. The mass defect for middle-weight nuclei is greater than that of light or heavy nuclei; light and heavy nuclei in general both have nucleons of average weights greater than those of medium-weight nuclei into which they might fission or fuse. Thus, when uranium breaks into its fission fragments, or two deuterium nuclei fuse to form helium, there is a net loss in mass. The mass lost appears as an equivalent amount of kinetic energy of the nuclei or their decay products. In the fission of U^{235} , for example, each fissioning nucleus releases approximately 200 mev $\approx 10^{-4}$ erg of energy. # Terminology continued **Nuclear radius** of a nucleus of mass number A is given approximately by $R = r_0 A^{1/3}$. Experimental values quoted for r_0 range from 1.1 to 1.5 \times 10^{-13} centimeter. The unit of length, 10^{-13} centimeter is called the *fermi*. **Nuclear reaction:** A process in which a nucleus struck by a fast-moving particle combines with it to form an energetic aggregate. This briefly formed compound nucleus breaks up almost immediately either into the original nucleus and particle or into a different nucleus and one or more secondary particles, effecting a nuclear transmutation in the second case. A typical reaction represented in detail is: or in abbreviated form, $\text{Li}^7(p,n)Be^7$. The bombarding and emitted particles in this reaction are a proton and neutron, respectively. Cross section of a nuclear reaction is a measure of the probability of its occurrence. Quantitatively, the total cross section σ is the inverse of the number of particles that must strike 1 centimeter² of target material to induce
a nuclear reaction in 1 nucleus of the target. If the number of target nuclei/centimeter² = N, and there are F bombarding particles incident on each centimeter² of the target/unit time, the number of nuclear events n (per centimeter²/unit time) is given by $n = NF\sigma$. The barn = 10^{-24} centimeter² is commonly used to express cross-section values. Stable nucleus: One that retains its identity indefinitely unless disturbed by external forces. Radioactive nucleus or unstable nucleus: One which ultimately transforms spontaneously into a nucleus of a different kind. The transformation occurs through the emission of beta particles, alpha particles, or gamma rays (radioactive decay); through the breakup of the nucleus into one or more nuclear fragments (spontaneous nuclear fission); or through the absorption or capture of an extranuclear electron from the atomic shell (electron capture). Activity of a radioactive material: The number of its nuclei that decay in unit time. One Curie of a radioactive substance is that amount having an activity of 3.7×10^{10} disintegrations/second (= disintegration rate of 1 gram of radium). # Terminology continued Radioactive decay constant λ : The fraction of nuclei of a radioactive material disintegrating in unit time. The radioactive nuclei remaining after time t in a material consisting originally of N_0 nuclei is given by $N=N_0\exp(-\lambda t)$. **Half-life** τ of a radioactive material is the time until its original activity is reduced by half and is given in terms of the decay constant by $\tau = 0.693/\lambda$. Relativistic conceptions: Two concepts fundamental to the explanation of nuclear and atomic phenomena stem from the special theory of relativity. These are: **a.** Relativistic mass: The behavior of bodies moving at an appreciable fraction of the velocity of light can be explained only if they are assumed to have a mass that increases with velocity. The relativistic velocity-dependent mass, $$m = m_0/(1 - v^2/c^2)^{1/2}$$ where $m_0 = \text{mass of body at rest}$ v = velocity of the body c = velocity of light (all in consistent units), must be used in all accurate calculations of the behavior of energetic nuclear and atomic phenomena. The relativistic mass increase is important in the design of high-energy particle accelerators. **b.** Mass-energy equivalence. The kinetic energy of a moving body is given accurately by $(m - m_0)c^2$. (The familiar expression $m_0v^2/2$ is an approximation applicable only at low velocities.) By inference, a body at rest has associated with it the so-called rest energy $E = m_0c^2$. A striking example is the tremendous quantity of energy released during nuclear fission. Spin and magnetic moment. Fundamental particles appear to rotate about their axes like tops and, in addition, when grouped within the nucleus, move about each other continually. The angular momentum associated with these motions is called the *nuclear spin*; a measure of the magnetic effects produced by the rotating particles is the so-called nuclear magnetic moment. # **Nuclear-physics bibliography** #### Introductory - G. Gamow, "Atomic Energy in Cosmic and Human Life", Cambridge University Press; Cambridge, England: 1947. - H. D. Smyth, "Atomic Energy for Military Purposes", revised edition, Princeton University Press; Princeton, N. J.: 1947. - 3. K. K. Darrow, "Atomic Energy", John Wiley & Sons, Inc.; New York, N. Y.: 1948. - "The Effect of Atomic Weapons", U. S. Government Printing Office; Washington, D. C.: September, 1950. - S. Glasstone, "Sourcebook of Atomic Energy", D. Van Nostrand and Company, Inc.; New York, N. Y.: 1950. - 6. W. Heisenberg, "Nuclear Physics", Methuen & Company; London, England: 1953. #### Intermediate - J. D. Stranathan, "The Particles of Modern Physics", The Blakiston Company; Philadelphia, Pa.: 1942. - J. Mattauch and S. Fluegge, "Nuclear Physics Tables" and "An Introduction to Nuclear Physics", Interscience Publishers, Inc.; New York N. Y.: 1946. - F. Bitter, "Nuclear Physics", Addison-Wesley Publishing Company, Inc.; Combridge, Mass.: 1950. - J. M. Cork, "Radioactivity and Nuclear Physics", 2nd edition, D. Van Nostrand & Company, Inc.; New York, N. Y.: 1950. - E. C. Pollard and W. L. Davidson, "Applied Nuclear Physics", 2nd edition, John Wiley & Sons, Inc.; New York, N. Y.: 1951. - E. Bleuler and G. J. Goldsmith, "Experimental Nucleonics", Rinehart & Company, Inc.; New York, N. Y.: 1952. - J. Chadwick, "Radioactivity and Radioactive Substances", 4th edition, Sir Isaac Pitman & Sons, Ltd.; London, England: 1953. - R. E. Lapp and H. L. Andrews, "Nuclear Radiation Physics", 2nd edition, Prentice-Hall, Inc.; New York, N. Y.: 1954. - A. E. S. Green, "Nuclear Physics", McGraw-Hill Book Company, Inc.; New York, N. Y.: 1955. - D. Halliday, "Introductory Nuclear Physics", 2nd edition, John Wiley & Sons, Inc.; New York, N. Y.: 1955. - I. Kaplan, "Nuclear Physics", Addison-Wesley Publishing Company, Inc.; Cambridge, Mass.: 1955. #### Advanced and special - 1. H. A. Bethe, "Elementary Nuclear Theory", John Wiley & Sons, Inc.; New York, N. Y.: 1947. - M. Blatt, and V. F. Weisskopf, "Theoretical Nuclear Physics", John Wiley & Sons, Inc., New York, N. Y.: 1952. - 3. B. B. Rossi, "High-Energy Particles", Prentice-Hall, Inc.; New York, N. Y.: 1952. - K. Siegbahn, Editor "Beta and Gamma-Ray Spectroscopy", Interscience Publishers, Inc.; New York, N. Y.: 1955. #### High-energy particle accelerators #### General Particle accelerators use electric and magnetic fields to accelerate electrically charged particles or ionized atoms to high energy. Particle energies range from several hundred-thousand electron-volts (transformer-rectifier circuits) to several billion electron—volts (recently built proton synchrotrons). Particles most commonly accelerated are electrons, produced from thermionic cathodes; and protons, deuterons, and alpha particles, from ionized hydrogen, deuterium, and helium gases. All these particles are used in the study of nuclear reactions induced when they strike nuclei directly. Highspeed electrons are used also to produce high-energy X rays for bombarding nuclei. Electrons and X rays are in widespread medical and biological use and are also used in special chemical processes. Intense heavy-particle beams from cyclotrons are used to produce radioactive isotopes. Since energy and mass are equivalent, it is possible for part of the energy of a bombarding particle to be converted into matter: Mesons are created when nuclei are struck by particles of energy $> \approx 150$ mey. Intense proton beams are used to produce large quantities of mesons, used, in turn, to bombard secondary targets for the study of interaction of mesons with nuclei. At extremely high energies in the billion-volt region, hyperons and K-particles are produced and intensive studies are currently directed toward understanding these particles. #### Van de Graaff electrostatic generators Electric charge is sprayed on a travelina insulated belt (Fig. 2) carried to a rounded metallic terminal supported on an insulated column. Charaed particles are introduced into the end of an evacuated tube in the charged terminal. The particles, progressively accelated and focused as they pass through the tube away from the terminal, emerge from the machine in a sharp beam moving Fig. 2-A Van de Graaff generator. # High-energy particle accelerators continued with high velocity. By pressurizing the atmosphere around the generator, the machine can be made very compact—a modern 2-million-volt generator can be housed in a tank less than 6 feet long. Voltages range from about 0.5- to 10-million volts. Beam currents up to 1 milliampere can be produced. The energy of the beam can be controlled to high precision ($\approx 1/10$ percent) and can be made highly monoenergetic (e.g., (8 \times 10⁶) \pm 10⁴ electron–volts). A practical upper limit to the voltage attainable by existing design standards seems to be in the region of 12- to 15-million volts. Representative generators of this type are listed in Fig. 3. Fig. 3-Representative electrostatic accelerators. | characteristic | Massachusetts Institute of
Technology;
Cambridge, Mass. | University of Wisconsin;
Madison, Wisc. | | |---|---|--|--| | Column | Vertical | Horizontal | | | Length in feet | 18 | 11 | | | Insulation | Vycor glass disks | Textolite tubes | | | Belt | | | | | Material . | Rubberized cotton | Woven cotton | | | Width in inches | 20 | 26 | | | Speed in feet/minute | 3600 | 2700 | | | Tank | | | | | Size in feet
Filling | 32 high × 12 diameter 90 percent N ₂ , 10 percent CO ₂ to 250 pounds/inch ² (400 pounds/inch ² maximum) | 20 long × 5.5 diameter
Air-freon, 100 pounds/inch²
(maximum) | | | Voltage range in millions of electron-volts | 3-8.5 (designed for 12) | 0.150-4.6 | | | Limited by | Discharge in accelerating tube | Sparking to tank wall | | | Beam current in microamperes | ≈ 1 for protons | < 3 for protons | | | Energy resolution in percent | 0.1 | 0.05 to 0.1 | | # Cyclotrons The cyclotron (Fig. 4) uses a combination of a strong unipolar magnetic field and a high-frequency electric field. The heart of the machine consists of two hollow metal electrodes called dees. The dees are connected to the terminals of a high-power radio-frequency oscillator and are housed in an evacuated chamber between the poles of a large electromagnet. Charged particles are produced by introducing gas (hydrogen, deuterium, or helium) into a small discharge tube at the center of the gap between the continued dees. The acceleration process begins with the extraction of charged particles from this ion source by the electric field across the dee
gap. The particles receive an initial brief acceleration from the electric field, cross the gap, and enter one of the dees. The strong magnetic field causes the particles to move in a circular path. After traversing a semicircle they re-enter the gap, at which time, by proper choice of oscillator frequency, the electric field across the gap has been made to reverse; the particles are again accelerated, increasing their velocity further. This process is repeated over and over, the particles gaining in energy with each passage through the gap, moving in circles of ever increasing radius, and attaining very high energy, by the time they reach the outer circumference of the dees. At this point, the particles may be extracted from the dees by an electrostatic deflector and allowed to strike an external target. The time required for each semicircular traversal remains constant for particle velocities that are small compared to the velocity of light. This is the case in conventional cyclotrons of energy less than 20- to 30- Fig. 4-A cyclotron. million electron—volts, in which it is therefore possible to use a constantfrequency oscillator. At higher energies, the particle mass becomes appre- Fig. 5-Representative cyclotrons. | characteristics | Massachusetts Insti- | University of | University of | |--|--|--|------------------| | | tute of Technology; | California; | Chicago; | | | Cambridge, Mass. | Berkeley, Calif. | Chicago, III. | | Туре | Conventional cyclotron | Synchrocyclotron | Synchrocyclotron | | Magnet Pole diameter in inches Weight of iron in tons Field in gausses | 42 | 184 | 170 | | | 75 | 4,300 | 2,200 | | | 18,000 | 15,000 | 18,600 | | Particle energy in millions of electron—volts | 7.5 for protons 15 for deuterons 30 for α particles | 350 for protons
195 for deuterons
390 for α porticles | 450 for protons | ### High-energy particle accelerators continued ciably increased through the relativistic effect and the oscillator must be frequency modulated correspondingly. Synchrocyclotrons of this latter kind have been built to accelerate protons to very-high energies. Because of the relativistic effect, the cyclotron is a practical accelerator only for heavy charged particles and is not used to accelerate electrons. Beams of very-high intensity are produced (Fig. 5). #### **Betatrons** The betatron accelerates electrons through the use of a time-varying magnetic field (Fig. 6). A pulse of electrons is injected from an electron gun tangentially into a circular evacuated tube called the doughnut. A magnetic field perpendicular to the doughnut plane is simultaneously turned on and caused to rise rapidly to very-high intensity. This changing magnetic field induces a strong electric field that exerts a tangential force on the injected electrons. The magnetic field, which extends over the doughnut, acts also to constrain the moving electrons to circular paths. If the field strengths at and within the electron orbit are properly related, the orbit radius remains essentially constant through the acceleration cycle. The complete acceleration process involves several hundred thousand circular traversals and is accomplished in a fraction of a second. When the electrons have attained full energy, the magnetic field is purposely distorted, shifting the electron orbit and causing the electrons to strike a small target producing high-energy X rays. Techniques have also been developed for extracting part of the electron beam from the doughnut. Operation is usually at repetition rates ranging from 60 to 180 cycles/ second. Machines of energy up to 300-million electron-volts are use (Fig. 7). Fig. 6—A betatron. #### High-energy particle accelerators continued Fig. 7—Representative betatrons. | characteristics | General Electric
Research Laboratory;
Schenectady, N. Y. | University of Illinois;
Urbana, Ill. | |---|--|--| | Orbit radius in inches | 33 | 51 | | Injection Energy: in thousands of electron-volts By | 30-70
Electron gun | 100
Electron gun | | Magnet Over-all dimensions in feet Weight in tons Field at orbit (maximum in gausses) Magnet power (full load in kilowatts) | = 15 × 9 × 8.5 high
130
4000
200 | = 23 × 13 × 6 high
400
= 8000
170 | | Vacuum tube
Dimensions in inches | Oval-shaped
≈ 8 wide × 5 high | Oval-shaped
10 wide × 6 high | | Repetition rate in cycles/second | 60 | 6 | | Electron energy (maximum in millions of electron-volts) | 100 | 312 | | X-ray output in roentgens/minute at 1 meter | ≈ 2600 (at 100 mev) | = 12,000 (at 280 mev) | ### Synchrotrons The synchrotron accelerates protons or electrons by combining a timevarying magnetic field with a radiofrequency electric field. The machine (Fig. 8) consists essentially of an evacuated accelerating "doughnut" placed between the poles of an annular electromagnet. Particles injected into the doughnut are constrained to a circular path by the magnetic field. As in the cyclotron, the particles are accelerated briefly by a radio-frequency field each time they pass an electric gap in the accelerating tube. In the case of protons, which become relativistic only at energies in the billion electron-volt region, the proton velocity increases continually Fig. 8—Electron synchrotron. throughout the accelerating cycle. Successive revolutions around the doughnut occur in shorter times and the accelerating-field frequency must be increased correspondingly. Electrons, which are much lighter, are brought very quickly to the limiting velocity of light, becoming highly relativistic at energies of 2-million electron-volts or more. Above this energy, they revolve about the doughnut with essentially the same period. For this reason, electron synchrotrons are usually operated in two steps: an initial betatron phase; during which the electrons are accelerated by the time-changing magnetic field alone; and a synchrotron phase, after the electrons have reached the neighborhood of 2-million electron-volts when a constant-frequency accelerating field is turned on to carry out the remainder of the acceleration (and the magnetic field serves only to constrain the particles). An important advantage of the synchrotron over the betatron is the elimination of the central part of the magnetic field and the expensive and heavy magnetic material that this represents. Electron synchrotrons (Fig. 9) operate essentially in the same energy region as betatrons and have the same applications. Notable proton synchrotrons (Fig. 10) are the Brookhaven Cosmotron and the Berkeley Bevatron, which are used for the study of extremely high-energy phenomena in the billionelectron-volt region. Fig. 9-Representative electron synchrotrons. | characteristics | University of Cali-
fornia; Berkeley, Calif. | Cornell University;
Ithaca, N. Y. | | |---|---|--------------------------------------|--| | Orbit rodius in inches | 39.4 | 39.4 | | | Magnet | | | | | Weight of iron in tons | 135 | 75 | | | Weight of copper in tons | 1.75 | 1.8 | | | Peak field in gausses | 14,000 | 10,000 | | | Pole tip gap (pole-to-pole) in inches | 3.7 | 3.25 | | | Magnet power supply | | | | | Туре | Pulse | Alternator | | | Repetition rate in pulses/second | 6 | 30 | | | Peak voltage in kilovolts | 19 | 11.2 | | | Peak current in amperes | 3060 | 3500 | | | Oscillator | | | | | Frequency in megacycles | 47.7 | 47.5 | | | Peak power in kilowatts | 6 | 5.5 | | | Electron energy (maximum in millions of | | | | | electron-volts) | 300 | 320 | | | X-ray output in roentgens/minute at 1 meter | 1000 | 1600 | | Fig. 10-Representative protron synchrotrons. | characteristics | Brookhaven
National Laboratory;
Upton, N. Y. | University of
California;
Berkeley, Calif. | | |--|--|--|--| | Orbit radius in feet | 30 | 50 | | | Injection Energy in millions of electron-volts By | 3.6
Electrostatic generator | 9.9
Linear accelerator | | | Magnet Weight in tons Peak field in gausses Pole tip gap in inches Peak current in amperes | 2,000
14,000
9.5 high × 48 radially
7,000 | 10,000
15,000
≈ 13 high × 52 radially
8,300 | | | Frequency-modulated-oscillator frequency in kilocycles | 370 to 4200 | 350 to 2500 | | | Repetition rate in pulses/minute | 12 | 4-10 | | | Energy (maximum in billions of electron—volts) | 3 | 6.1 | | | Proton current (internal beam) in protons/pulse | 5 × 10 ¹⁰ | 1010 | | Strong-focusing synchrotron: Charged particles accelerated in circular machines like the synchrotron experience perturbing forces that displace them from their ideal orbits. To confine the particles within the accelerating tube, it is necessary to shape the magnetic field of the machine so that restoring forces are exerted on particles so displaced. The particles thus perform oscillations about some average path and remain within the accelerating tube, provided this has sufficiently large cross-sectional area. At very-high energies, however, the required tube cross section is very large and the amount of magnetic material needed to surround it becomes prohibitively great. For example, a 30-billion-electron-volt proton synchrotron of conventional design would require at least 100,000 tons of iron. Recent studies have revealed methods for shaping the confining magnetic field to
reduce the amplitude of the oscillations by a large factor. It is expected that the strong-focusing or alternating-gradient fields so devised would permit the construction of a 100-billion-electron-volt synchrotron with a magnet weighing 6000 tons. Two strong-focusing machines are currently under construction to operate at about 25 billion electron-volts, one at the Brookhaven National Laboratory (Fig. 11) and the other at the European Council for Nuclear Research (CERN) in Geneva. The principles of strong-focusing design are currently being extended to radio-type vacuum tubes employing linear electron beams.* Fig. 11-Preliminary design parameters for strong-focusing synchrotrons. | characteristics | Brookhaven
National Laboratory;
Upton, N. Y. | Harvard University,
Massachusetts Insti-
tute of Technology;
Cambridge, Mass.
(tentative 1956) | |--|--|--| | Orbit radius in feet | 280 | 91 | | Injection Energy: in millions of electron-volts By | 50
Linear accelerator | 40
Linear accelerator | | Magnet Weight of iron In tons Weight of copper in tons Peak field in gausses | 3000
35
14,000 | 323
65
9000 | | Oscillator Frequency in megacycles | fm, 1.4—4.5 | 406 | | Repetition rate in pulses/minute | 20 | 1800 | | Particle energy in billions of electron—volts | 25-35 for protons | 7.5 for electrons | #### Linear accelerators The linear accelerator moves charged particles along a straight path by means of a radio-frequency electric field. The machine's essential element, the accelerating tube, is a long waveguide, loaded periodically along its length with suitable field-perturbing obstacles. High-power radio-frequency energy passes into the waveguide and builds up an oscillating electromagnetic field of high amplitude within it. If waveguide and obstacle dimensions are properly chosen, one of the travelling waves of which the field is composed will have the characteristics necessary for linear acceleration. Such a wave must have a strong electric component along the accelerating-tube axis and must move along this axis with the velocity of the particles being accelerated. As particle velocity increases along the tube, ^{*} A. M. Clagston and H. Heffner, "Focusing of an Electron Beam by Periodic Fields, Journal of Applied Physics, vol. 25, pp. 436–447; April, 1954. the wave velocity must likewise change, and it is necessary, in general, to change the characteristics of the waveguide progressively along its length. For proton and other heavy-particle machines, this change is appreciable up to very-high energies. Electron accelerators, on the other hand, require a change in waveguide dimensions for, at most, only a very-short initial length of the accelerating tube. Charged particles injected along the accelerating-tube axis in correct phase with respect to the accelerating wave are increased in velocity so as to keep in step with it. The field conditions surrounding the particles thus remain essentially constant and the particles move almost as though they were in an unvarying field. Since accelerating-tube dimensions are proportional to the wavelength of the oscillator, operating frequencies in the very-high-frequency and micro- Fig. 12—Traveling-wave-type iris-loaded linear electron accelerator. wave regions are used. For example, almost all electron accelerators use multimegawatt pulsed (1–5-microsecond) magnetrons or klystrons of about 3000-megacycle frequency to operate accelerating tubes with diameters of 3 to 4 inches. Peak accelerated electron-beam currents up to 100 milliamperes are easily obtained at duty cycles of from 10⁻⁴ to 10⁻³, resulting in average beam currents of from 1 to 20 microamperes. Energies up to 4-million electron-volts/foot have been attained. A number of machines in the 10-to-40-million-electron-volt region are in use. The Stanford University linear electron accelerator (Fig. 13), 220-feet long, has already produced beams of 600-million, and will ultimately reach at least 1-billion electron-volts. The relatively high beam intensity of the linear accelerator and the ease with which the beam may be extracted from the accelerating tube are two of the machine's important advantages. Fig. 13—Representative linear accelerators. | characteristics | University of Cali-
fornia; Berkeley, Calif. | Stanford University; Palo Alto, Calif. | |---|---|---| | Туре | Proton—standing-wave | Electron—traveling-wave | | Injection
Energy in electron—volts
By | 4 × 10 ⁶ Electrostatic generator | 5-8 × 10 ⁴
Electron gun | | Accelerating tube Type Length in feet Excitation mode | Cylindrical cavity
40
TM | Disk-loaded circular waveguide
220
TM | | Power supply
Frequency in megacycles
Peak power/tube in megawatts | 9 power oscillators
202.5
2.1 | 21 kiystron power amplifiers
2856
10—20 | | Repetition rate in pulses/second | 15 | 60 | | Particle energy (maximum in millions of electron-volts | 31.5 | > 600 | | Beam current in microamperes
Peak
Average | 60 | 50,000 | ### Particle-accelerator bibliography #### Electrostatic generators - R. J. Van de Graaff, J. G. Trump, and W. W. Buechner, "Electrostatic Generators for the Acceleration of Charged Particles", Reports on Progress in Physics, vol. 11, The Physical Society, London, England: 1948. - B. Jennings, "Electronics and the Electrostatic Generator", Praceedings of the IRE, vol. 38, pp. 1126–1138; October, 1950. - R. L. Fortescue, "High-Voltage Direct-Current Generators", Progress in Nuclear Physics vol. 1, Academic Press; New York, N. Y.: 1950. #### Cyclic accelerators - M. S. Livingston, "Particle Accelerators", Advances in Electronics, vol. 1, pp. 269–316, Academic Press, Inc.; New York, N. Y.: 1948. - J. H. Fremlin and J. S. Gooden, "Cyclic Accelerators", Reports on Progress in Physics, vol. 13, The Physical Society; London, England: 1950. - T. G. Pickavance. "Cyclotrons", Progress in Nuclear Physics, vol. 1, Academic Press; New York, N. Y.: 1950. - M. S. Livingston, J. E. Thomas, Jr., W. L. Kraushaar, and I. Halpern, "High Energy Accelerators", Annual Review of Nuclear Science, vol. 1, Annual Reviews, Inc.; Stanford, Cal.: 1952. - 5. "Cosmotron Issue", Review of Scientific Instruments, vol. 24, pp. 723-870; September, 1953. - E. I. Chu and L. I. Schiff, "Recent Progress in Accelerators", Annual Review of Nuclear Science, vol. 2, Annual Reviews, Inc.; Stanford, Cal.: 1953. - M. S. Livingston, "High Energy Accelerators", Interscience Publishers, Inc., New York, N. Y.: 1954. (Also includes discussion of linear accelerators). #### Linear accelerators - J. C. Sloter, "The Design of Linear Accelerators", Reviews of Modern Physics, vol. 20, pp. 473–518; July, 1948. - P. W. Fry and W. Walkinshaw, "Linear Accelerators", Reports on Progress in Physics, vol. 12, The Physical Society; London, England: 1949. - J. C. Slater, "High Energy Accelerators: The Linear Accelerator", Annual Review of Nuclear Science, vol. 1, Annual Reviews, Inc.; Stanford, Cal.: 1952. - "Linear Accelerator Issue", Review of Scientific Instruments, vol. 26, pp. 111-231; February, 1955. #### Genera! - T. P. Mittelman and H. H. Goldsmith, "Particle Accelerators", Report BNL-L-101, Brookhaven National Laboratory; Brookhaven, N. Y.: July 1, 1948. - F. E. Frost and J. M. Putnam, "Particle Accelerators", Report UCRL 2672, University of California Radiation Laboratory; Berkeley, Cal.: November 16, 1954. ### **Nuclear instrumentation** #### **Particle detectors** Nuclear study is in large part carried out by observing the properties (e.g., number and kind, energy and angular distributions) of particles emitted by naturally radioactive nuclei, or by nuclei exposed to radiations of various kinds. The detection of such particles depends on the fact that a rapidly moving charged particle can produce an observable effect, such as fluorescence or ionization, in the medium through which it passes. **Particle track recorders:** A group of detectors exists in which the path of the particle can be observed visually in the form of a track in a super-saturated vapor or liquid, or in a photographic emulsion. Cloud chambers, either continuously or momentarily during an expansion phase, provide a gaseous atmosphere saturated with water vapor that condenses preferentially on molecules ionized by the particle. The vapor track is photographed stereoscopically. Energy and kind of ionizing particle are determined by the length, density, and shape of the track. Bubble chambers maintain a volatile liquid at critical temperature and pressure. When the pressure is instantaneously reduced, the ionized molecules produced by the particle act as the centers of a line of briefly visible vapor bubbles. Nuclear emulsions are thick photographic emulsions in which a track of developable silver-iodide grains marks the path of the ionizing particle. The developed tracks are viewed and measured by means of a microscope. Gas-filled counters are detectors in which the charged particle ionizes gas enclosed in an envelope containing two electrodes across which high voltage is maintained. The occurrence of the ionizing event is manifested as an electrical signal that is used to actuate various recording devices. Depending on the electric-field gradient and gas pressure, the counter is an ionization chamber, a proportional counter, or a Geiger-Müller counter. Ionization chambers are designed so that the charge collected by the high-voltage electrodes is at most the small charge liberated in the initial ionization process. If the ionizing source is steady, the charge produced in the
counter may be observed as an average current (Fig. 14A); or, with ap- propriate circuitry, single-particle ionization bursts may be used to produce small voltage pulses across the distributed capacitance of the chamber (Fig. 14B). The voltage pulses can be amplified electronically and recorded by auxiliary apparatus. ig. 14—Connections for an ionization chamber. The proportional counters function similarly to ionization chambers, except that electrode-voltage and gas-pressure conditions are chosen that multiply by a large factor the charge initially liberated by the ionizing particle. The charge collected at the electrodes as a result of this "gas-multiplication" process is thus much greater than in the ionization chamber. Weaker radiations can be detected and voltage pulse amplifiers of lower gain can be used. Although larger, the collected charge and output pulse remain proportional to the initial ionization and serve as a measure of the particle energy. Geiger-Müller counters use electrode voltage sufficiently great so that the gas multiplication factor is very large and an electric discharge is produced Fig. 15-Typical Gelger-Müller counter. in the counter whenever a charged particle enters, regardless of its energy. The counter (Fig. 15) is useful as an extremely sensitive detector of individual particles, producing large output pulses of uniform amplitude independent of the kind and energy of particle detected. Voltage pulses produced by gas counters have rise times in the order of 10^{-6} second. Random particles arriving at an average rate of up to $10^{5}/$ second can be counted accurately by a carefully designed proportional counter. The Geiger-Müller counter, however, after producing its output pulse, requires up to 200 microseconds to restore itself to its original undischarged condition and cannot be used for counting rates much greater than $10^{3}/$ second. Efficiency: All the gas counters detect charged particles with high efficiency. Counters with windows as thin as 2 or 3 milligrams/centimeter² are made which can be penetrated by charged particles of very low energy. X and γ rays penetrate thick-walled counters readily, but are detected only if they interact with one of the atoms in the counter gas or wall, releasing an energetic charged particle that is detected by the ionization it produces. Although γ -ray counters are purposely made thick-walled to increase the probability of this occurrence, which takes place infrequently, the efficiency of a typical gas-filled γ -ray counter is only 1 to 2 percent. Neutron detection: Two common neutron detectors are the neutron-recoil detector and the boron-trifluoride counter. Both are proportional counters. The former is filled with a gas such as hydrogen whose charged nuclei recoil energetically when struck by neutrons and produce a typical proportional counter pulse. The pulse size decreases with decreasing energy of the incident neutron, so that the counter is not satisfactory for the detection of neutrons of very-low energy. The boron-trifluoride counter depends on a nuclear reaction for its effect. Neutrons of extremely low energy are very strongly absorbed by isotope B^{10} of boron. An unstable nucleus is produced that breaks into a lithium nucleus and an energetic α particle. The α particle is then detected by the counter in the usual way. Slow neutrons (< 1 electron-volt) may be detected directly by the boron-trifluoride counter. The detection of fast neutrons requires that these first be reduced in energy (thermalized) by passing through hydrogen-containing material, such as paraffin, surrounding the counter tube. Crystal counters function qualitatively in the same way as an ionization chamber except that the medium between the high-voltage electrodes is a solid crystal instead of gas. The high density of the counter medium results in an advantageously small counter. A further advantage is the high velocity with which electrons produced by ionization travel through the crystal, resulting in fast counter pulses with rise times in the neighborhood o 10⁻⁷ second. However, the reproducibility of pulses is, in general, not good; and the crystals become polarized electrically after long exposure to radiation. Suitable crystals are silver chloride, zinc sulphide, diamond, cadmium sulphide, and the thallium halides. Scintillation counters (Fig. 16) involve the use of a light-sensitive detector, such as a photomultiplier tube, that is actuated by the visible fluorescence produced when charged particles strike certain transparent materials. The Fig. 16—Photomultiplier and scintillating-crystal assembly. method has been developed in recent years into a highly superior counting technique following the discovery of crystals producing fluorescent scintillations of high intensity and very-short duration, and with the application of fast, sensitive, photomultiplier tubes. (Descriptions of photomultiplier tubes and their circuits are given in the chapter, "Electron tubes".) An important advantage is the very-fast decay time of the fluorescence, as short as 2 to 3 \times 10 $^{-9}$ second, which allows the detection of events occurring very closely together in time. The light output is proportional to the energy of the exciting particle. Because the crystals are dense and can be used in comparatively large sizes, they are efficient as γ -ray detectors. Large inorganic crystals like sodium iodide can have γ -ray counting efficiencies approaching 100 percent. Large-volume scintillators have been constructed for the observation of particles and γ rays of very-high energy by using liquid solutions of organic scintillators. Solid plastic scintillators have been continued constructed by embedding scintillating material in clear plastic and possess the advantages of being easily machined and handled. See Fig. 17. Cerenkov counters make use of the visible light emitted by relativistic charged particles when they enter media with high dielectric constant. A fast electron or proton entering a clear plastic material like polystyrene or lucite will emit visible light in a narrow cone in the direction in which the particle is moving. The light pulse can be detected in the usual manner with photosensitive devices. The duration of the pulse is extremely short ($< 10^{-9}$ second). The application of the counter is limited by the small intensity of the light pulse and the fact that only particles of a very-high energy produce Cerenkov radiation. | | scintillator | relative light yield for β par- ticles | scintilla-
tion
decay time
at 25° C
in 10 ⁻⁹ sec | emission spectrum bands in angstrom units | density | quality of crystals | |----------------------------------|---|--|---|---|---------|--| | s | Anthracene | 1.0 | 30-40 (≈ 10
at - 196°C) | 4400 | 1.25 | Good | | Organic crystals | Stilbene | 0.6 | 6-12 | {4200 (weak)
4080 (strong) | 1.16 | Good | | rgani | Terphenyl | 0.65 | 5–12 | 3460 main band | 1.23 | Good | | 0 | Naphthalene | 0.25 | < 150 | 3450 | 1.15 | Good, but
crystals
sublime | | Inorganic crystals | Nal(TI) | ≈ 2.0 | 250 | 4100 | 3.67 | Excellent,
but crystals
hygro-
scopic | | Inorgan | ZnS(Ag) | ≈ 2.0 | > 1000 | Blue | 4.10 | Powder or
small crys-
tals only | | plastic
ors | Toluene + 3–5 grams/
liter terphenyl | 0.3-0.4 | < 3 | 3400 | 0.866 | Liquid scin-
tillator | | Liquid and plastic scintillators | Polystyrene or polyvinyl toluene + 3% terphenyl + 0.02% tetraphenyl butadiene | ≈ 0.5 | < 3 | ≈ 4300 | _ | Plastic
scintillator | ^{*} Data abstracted in large part from R. C. Sangster, "Technical Report No. 55", Massachusetts Institute of Technology Laboratory for Nuclear Science; Cambridge, Massachusetts; January 1, 1950. Also, R. F. Hofstadter, "Properties of Scintillation Materials", Nucleanics, vol. 6, pp. 70–73; May, 1950. Also, R. K. Swank and W. L. Buck, "Decay Times of Some Organic Scintillators", Review of Scientific Instruments, vol. 26, pp. 15–16; January, 1955. ## Electronic apparatus The nature of radiations incident on particle counters is reflected, in general, by the magnitude of the counter outputs and the frequency with which they occur. An important part of nuclear experimentation is the recording of such signals in a manner that will facilitate their interpretation. The problem, intrinsically one of sorting and measuring the counter outputs, reduces usually to one or more of the following: - **a.** Measurement of the number of output pulses occurring in a given interval of time. - **b.** Sorting of the output pulses in terms of their amplitudes. - **c.** Determination of the time interval occurring between pulses associated with related events; for example, between the artificial creation of a short-lived particle or nucleus and its subsequent disintegration. - **d.** Selection of events of a particular kind from among other simultaneously occurring events; for example, the detection of particles emitted by a feebly radioactive source from among the normally occurring "background" of cosmic radiations. Amplifiers: Pulse-recording instruments require input amplitudes in the 10-to-100-volt region for their operation. The output pulses of particle detectors are usually too small—fractions to hundreds of millivolts—and must be amplified electronically before being used to actuate such devices. Except where it is necessary to follow the rise times of extremely fast pulses, amplifiers in common use are of the resistance-coupled type employing negative feedback to enhance gain stability and linearity. Since the pulses passed are almost invariably of short duration,
low-frequency amplification (< 10³ cycles/second) is suppressed, greatly reducing the problems of microphonics and low-frequency pickup. Amplifier bandwidth is usually chosen to conform to the rise-time of the pulses amplified. Scaling circuit: The total number of pulses observed during a given interval is recorded ultimately by some form of mechanically driven register, so that for very-high counting rates it is necessary to reduce the number of pulses to be counted by a known factor. The electronic scaling circuit is a system designed to produce 1 output pulse for every k pulses supplied to it. The two common basic designs are the decade circuit and the binary or scale-of-2 circuit. Integral discriminator: A circuit designed to accept only pulses greater than a chosen minimum height. The circuit is usually designed to produce output pulses of constant amplitude for the actuation of further circuitry. ### Nuclear instrumentation continued The discriminator is often built as an integral part of other devices, such as scaling circuits. Differential discriminator: This circuit consists basically of two integral discriminators that pass pulses differing in voltage by a chosen amount and is designed to produce an output pulse only when the circuit set for the lower amplitude is actuated. If the input pulse is large enough to operate both circuits, no output pulse results and only a selected range or channel of pulse heights is transmitted by the circuit. Pulse-height analyzer: A circuit intended to select and record simultaneously the numbers of pulses of different height being produced by a particle detector. Most pulse-height analyzers are based on the straightforward use of a large number of differential discriminators each set to accept a different channel of pulse heights. Each of the channels usually actuates a separate scaling circuit. Multichannel differential discriminators using up to 100 channels are in common use. Coincidence and anticoincidence circuits: These circuits are used to signal when two or more separate events under observation occur simultaneously in time. The coincidence circuit is designed to record such occurrences and the anticoincidence circuit to reject them. The most commonly used coincidence circuit is a set of normally conducting electron tubes connected through a common resistance to a power supply. Each of the events under observation (e.g., pulses from several particle detectors) goes to one of the tube inputs. Whenever an event occurs, it cuts off the associated tube. As long as any one of the tubes remains conducting, the voltage across the common resistor changes very little. However, if all of the tubes are actuated simultaneously, no current flows through the resistor and the large resulting voltage change is used to actuate further circuits that are insensitive to the smaller voltage changes produced when total coincidence does not occur. It is sometimes desirable, on the other hand, to exclude events from the data being recorded when these occur at the same time as some other kind of event. The anticoincidence circuit, actuated by the system observing the unwanted event, prevents the recording of such occurrences by applying a strong cutoff bias to some element of the recording system. # Nuclear-instrumentation bibliography #### Particle detectors - S. C. Brown, "Theory and Operation of Geiger-Muller Counters", Nucleonics, vol. 2, pp. 10–22; June, 1948: vol. 3, pp. 50–64; August, 1948: pp. 46–61; October, 1948. - J. A. Victoreen, "Ionization Chambers", Proceedings of the IRE vol. 37, pp. 189–199; February, 1949. - R. R. Wilson, D. R. Corson, and C. P. Baker, "Particle and Quantum Detectors", Preliminary Report No. 7, Notional Research Council; Washington, D. C.: January, 1950. - 4. R. Hofstater, "Crystal Counters", Proceedings of the IRE, vol. 38, pp. 726-740; July, 1950. - 5. J. Rotblat, "Photographic Emulsion Technique", Progress in Nuclear Physics, vol. 1, Academic Press; New York, N. Y.: 1950. - S. A. Korff, "Proportional Counters", Nucleonics, vol. 6, pp. 5–10, 36; June, 1950: vol. 7, pp. 46–52; November, 1950: vol. 8, pp. 38–43; January, 1951. - J. G. Wilson, "The Principles of Cloud-Chamber Technique", Cambridge University Press; Cambridge, England: 1951. - G. F. J. Garlick, "Luminescent Materials for Scintillation Counters", Progress in Nuclear Physics, vol. 2, Academic Press, Inc.; New York, N. Y.: 1952. - 9. W. H. Jordan, "Detection of Nuclear Particles", Annual Review of Nuclear Science, vol. 1, Annual Reviews, Inc.; Stanford, Cal.: 1952. - J. B. Birks, "Scintillation Counters", McGraw-Hill Book Company, Inc.; New York, N. Y.: 1953. - F. C. Champion, "Solid Conduction Counters", Progress in Nuclear Physics, vol. 3, Academic Press; New York, N. Y.: 1953. - S. C. Curran, "Luminescence and the Scintillation Counter", Academic Press, Inc.; New York, N. Y.: 1953. - J. V. Jelley, "Cerenkov Radiation", Progress in Nuclear Physics, vol. 3, Academic Press, Inc., New York, N. Y.: 1953. - 14. "Scintillation Counting Today", Nucleonics, vol. 12, pp. 13-56; March, 1954. - 15. D. A. Glaser, "The Bubble Chamber", Scientific American, vol. 192, pp. 46-50; February, 1955: - W. B. Fretter, "Nuclear Particle Detection", Annual Review of Nuclear Science, vol. 5, pp. 145–178; Annual Reviews, Inc., Stanford, Cal.: 1955. ### Electronic apparatus - W. C. Elmore, "Electronics for the Nuclear Physicist", Nucleonics, vol. 2, pp. 4–17; February. pp. 16–36; March: pp. 43–55; April: pp. 50–58; May: 1948. - W. C. Elmore and M. Sands, "Electronics: Experimental Techniques", McGraw-Hill Book Co., Inc., New York, N. Y.: 1949. - J. S. Allen, "Recent Applications of Electron Multiplier Tubes", Proceedings of the IRE, vol. 38, pp. 346–358; April, 1950. - F. H. Wells, "Fast Pulse Circuit Techniques for Scintillation Counters", Nucleonics, vol. 10, pp. 28–33; April, 1952. - A. B. van Rennes, "Pulse Amplitude Analysis in Nuclear Research", Nucleonics, vol. 10, pp. 20–27; July: pp. 22–28; August: pp. 32–38; September: pp. 50–56; October: 1952. - A. B. Gillespie, "Signal, Noise and Resolution in Nuclear Counter Amplifiers", McGraw-Hill Book Company, Inc.; New York, N. Y.: 1953. - I. A. D. Lewis and F. H. Wells, "Millimicrosecond Pulse Techniques", McGraw-Hill Book Company, Inc.; New York, N. Y.: 1954. #### General - 1. "Nuclear Instrument Handbook", Nucleonics, vol. 4, pp. 97-152; May, 1949. - B. B. Rossi and H. H. Staub, "Ionization Chambers and Counters", McGraw-Hill Book Company, Inc.; New York, N. Y.: 1949. - D. H. Wilkinson, "Ionization Chambers and Counters", Combridge University Press; Cambridge, England: 1950. - H. H. Staub, "Detection Methods", Experimental Nuclear Physics, vol. 1, John Wiley & Sons, Inc.; New York, N. Y.: 1953. - R. E. Bell, R. K. Swank, and J. Marshall, "Nuclear Particle Detection", Annual Review of Nuclear Science, vol. 5, pp. 145–178; Annual Reviews, Inc., Stanford, Cal.: 1955. - S. A. Korff, "Electron and Nuclear Counters", 2nd edition, D. Van Nostrand Company, Inc.; New York, N. Y.: 1955. # Radiation safety #### **Biological radiation damage** Damage to living tissues results from the physical and chemical changes that occur when energetic particles or photons dissipate energy in body tissue. Harmful results can occur either through brief, severe exposures that cause extensive tissue damage, or as the result of constant exposure to low-level radiation of sufficient intensity to destroy tissue cells faster than the body can replace them. It is important to note that these radiations are not detected by the senses and that symptoms of radiation sickness may not appear for hours or days after even severe exposures. It is therefore extremely important to monitor carefully all radiations to which personnel may be exposed and to adhere closely to established radioisotope handling procedures and radiation tolerance limits. Hazardous radiations occur commonly in work involving the use of radio-active and fissionable materials, nuclear reactors, X-ray generators and high-energy particle accelerators. Radioisotopes emit energetic γ rays, β and α particles. High-energy accelerators can produce intense primary beams of protons, electrons, deuterons, α particles (and X rays and neutrons as secondary radiations when the beams are allowed to strike matter). The fissioning materials of nuclear reactors produce enormous amounts of all radiations, particularly neutrons, as well as large volumes of radioactive waste materials. Radiation intensities encountered range from those of small microcurie amounts of radioisotopes used in the laboratory to those of the megacurie radioactive wastes that must be removed periodically from nuclear reactors. #### Radiation units **Roentgen:** The accepted quantitative measure of energy dissipation in matter by X or γ rays is the roentgen r, which is defined in terms of the ionization produced by X radiation in a standard amount of air. (One roentgen is the amount of radiation that releases by ionization 1 electrostatic unit of charge of either sign in 1 centimeter³ of air at normal temperature and pressure.) For biological purposes, the effects on body tissue of all radiations is expressed in terms of the radiation energy (in ergs) absorbed by 1 gram of tissue. Radiation dosage units are derived, in fact, on the basis of the energy absorption (93 ergs/gram) corresponding to the irradiation of body tissue by 1 roentgen of X radiation. Roentgen equivalent physical (rep) unit, now obsolete, corresponds to energy absorption of 93 ergs/gram by tissue through which ionizing radiation passes. The rad unit replaces the rep unit, 1 (rad) = (100/93) (rep), and corresponds to energy absorption of 100 ergs/gram of body tissue. Relative biological effectiveness (rbe) is a weighting factor, equal to unity for X rays, that expresses how much more or less effectively a given radiation produces biological effects than do X rays of the
same rad. The assignment of a number for rbe is clearly not straightforward, since a number of biological effects must be considered, and there are not as yet well established values of rbe in man. Some currently accepted qualitative values are tabulated in Fig. 18. Fig. 18—Relative biological effectiveness (rbe). | particle | rbe | |--|--------------| | X and γ rays, β particles
Protons
α particles (low energy)
Neutrons | 1
5
20 | | Slow
Fast | 5
10 | Roentgen equivalent mammal (rem) unit, defined originally in terms of the rep, is the amount of any given radiation producing the same biological effect as 1 rep of X rays. The current definition is given properly as 1 (rem) = [1/(rbe)] (rad) but is for practical purposes unchanged because of the small difference (< 10 percent) between the rep and rad units. # Radiation dosimetry A number* of calibrated portable radiation detection instruments have been designed using standard particle detectors in conjunction with count-integrating and count-rate circuitry. The devices are usually designed for specific applications, such as the detection of small amounts of radioactive contamination or the measurement of radiation from high-energy accelerators and use particle detectors (Geiger-Müller, ionization chamber, etc.) suited to the application. Pocket dosimeters and photographic films that may be worn on the body constitute very-important protection methods and are in almost universal use. The former are small ionization chambers, usually of the shape and size of a pocket pen, that can be charged from an external battery. The dosimeter charge leaks off in the presence of ionizing radiations and the amount of charge lost is a measure of the radiation to which the chamber has been exposed. The exposure is read on ^{*} See, for example, "Annual Buyer's Guide", Nucleonics, vol. 12, p. D-26; November, 1954. ### **Radiation safety** continued a calibrated electrometer that is usually part of the dosimeter. Calibrated photographic film prepared by carefully controlled methods shows, by the amount of blackening, the amount of γ radiation to which it has been exposed. When used with suitable types and thicknesses of metal, the film also provides an estimate of the radiation spectrum and detects the presence of β particles. Neutrons can be detected by films that record the track of recoiling hydrogen nuclei. The films are examined by microscope to determine the neutron exposure. Film-badge services are provided by several of the national laboratories and in a number of areas by private agencies. ### Handling radioactive isotopes The hazard presented by radioisotopes is dependent on a number of factors. If the isotope is external to the body, important considerations—besides isotope amount, its distance from the body, and the area of the body irradiated—are the energy and kind of particle emitted. γ rays and neutrons can penetrate deeply into the body and affect vital organs. Charged particles cannot penetrate to great depths and constitute a hazard to the extent that they damage the body surface. In this respect, electrons are more damaging than α particles of the same energy. The human tolerances to external radiation exposure are indicated in Fig. 19.* By far the greatest problem presented by radioisotopes is the possibility of their being taken into the body through inhalation, ingestion, or through breaks in the skin. Radiations originating within the body present an entirely different and more-serious problem; in particular, energetic α and β particles are very damaging. Important additional considerations are the lifetime of the radioisotope and its chemical character and form. These determine the extent to which it is absorbed, the organs to which it preferentially migrates, the ease with which it is excreted by the body, and its effective lifetime within the body. Certain isotopes, for example of radium, strontium, and plutonium, are long-lived and are also retained in critical body tissue for long periods. These isotopes are dangerous in very-small amounts: absorption into the body of 0.1 microcurie (10^{-13} gram) of radium is considered to be a maximum permissible amount and plutonium is estimated to be up to 10 times as hazardous. Short-lived isotopes (minutes to days of half-life) are in general not of concern unless there is chronic daily exposure or they are handled in ^{*} From, "Permissible Dose from External Sources of Ionizing Radiation", National Bureau of Standards Handbook No. 59, U. S. Government Printing Office; Washington 25, D. C.: September 24, 1954. It is recommended that this handbook be consulted for appropriate interpretation and extension of the data presented. Fig. 19—Maximum permissible exposure to external radiation. | radiation | exposure | magnitude | |--|---|---| | X , γ rays less than 3 meV | Long-term maximum per-
missible weekly dose | Whole body 0.3 roentgen measured in air at point of highest weekly dose in region occupied by person | | | Accidental or emergency
exposure (once in life-
time) | Whole body 25 roentgens—total dose measured in air Local Hands, forearms, feet, ankless 100 roentgens—dose meas- ured in air in addition to whole-body dose | | | Planned emergency expo-
sure (once in lifetime) | Dose not greater than one-half
those specified under "Acci-
dental" | | $ extbf{X}, extbf{\gamma}$ rays, any energy | Long-term maximum per-
missible weekly dose | Local Hands, forearms, feet, ankles: 1.5 roentgens for skin Head, neck: 1.5 roentgens for skin 0.45 roentgen for lenses of eye | | Neutrons, of energy 2.0-20 × 10 ⁶ electron-volts 0.5-2 × 10 ⁶ electron-volts Thermal (< 1 electron-volt) | For 40-hour week | 30 neutrons/cm²/sec
50 neutrons/cm²/sec
1200 neutrons/cm²/sec | | Radiation of very-low penetra-
tion power (half-value layer
< 1 millimeter of tissue) | Long-term maximum per-
missible weekly dose | Whole body 1.5 rem for skin 0.3 rem for lenses of eye | | lonizing radiations, any type(s) | Long-term maximum per-
missible weekly dose | Whole body 0.3 rem for bloodforming organs, gonads, lenses of eye 0.6 rem for skin Local Hands, forearms, feet, ankles: 1.5 rem for skin Head, neck: 1.5 rem for skin 0.3 rem for lenses of eye | | Any type | Weekly fluctuations | In 1 week, accumulated dose in any organ may exceed by 3 the basic permissible weekly dose, provided that total dose accumulated in any 13 consecutive weeks does not exceed by 10 the respective basic permissible weekly dose | extremely large amounts. Caution should in any case be exercised in the handling of all radioisotopes. Isotopes with half-lives from a few years to about 100 years are especially dangerous, since they are long-lasting and because very small amounts possess high activities. Tolerances for internally absorbed radioactive material are indicated in Fig. 20. The general biological effects of radiation is shown in Fig. 21. In general, it is to be stressed that no attempt should be made by untrained personnel to handle unsealed radioactive materials or perform any operations with them, either chemical or physical. Attention is drawn to the excellent detailed references and discussions listed in the following bibliography. Fig. 20—Maximum permissible amounts of radioisotopes in total body.* | radioisotope | where concentrated | permissible amount in total body in microcuries | |------------------------------------|--------------------|---| | Ra ²²⁶ | Bone | 0.1 | | Sr ⁹⁰ | Bone | 1.0 | | Co ⁶⁰ + Y ⁹⁰ | liver | 3.0 | | P ³² | Bone | 10.0 | | Ca ⁴⁵ | Bone | 65.0 | | $Cs^{137} + Ba^{137}$ | Muscle | 90.0 | ^{* &}quot;Maximum Permissible Amounts of Radioisotopes in the Human Body and Maximum Permissible Concentrations in Air and Water", National Bureau of Standards Handbook No. 52, U. S. Government Printing Office; Washington, D. C.: March 20, 1953. # Health physics, radioisotopes, radioactivity bibliography - Handbooks of the National Bureau of Standards available by purchase from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. - 23-Radium Protection: 1938. - 41-Medical X-ray Protection up to Two Million Volts: 1949. - 42-Safe Handling of Radioactive Isotopes: 1949. - 47—Recommendations of the International Commission on Radiological Protection and of the International Commission on Radiological Units: 1950. - 48-Control and Removal of Radioactive Contamination in Laboratories: 1951. - 50-X-ray Protection Design: 1952. - 51-Radiological Monitoring Methods and Instruments: 1952. - 52—Maximum Permissible Amounts of Radioisotopes in the Human Body and Maximum Permissible Concentrations in Air and Water: 1953. - 54-Protection Against Radiations from Radium, Cobalt-60, and Cesium-137: 1954. - 57-Photographic Dosimetry of X- and Gamma-Rays: 1954. - 59-Permissible Dose from External Sources of Ionizing Radiation: 1954. - R. D. Evans, "Fundamentals of Radioactivity and Its Instrumentation", Advances in Biological and Medical Physics, vol. 1, Academic Press, Inc.; New York, N. Y.: 1948. Fig. 21—Chart of radiation effects. After R. D. Evans and C. R. Williams. # Radiation safety "Tabulation of Available Data Relative to Radiation Biology", Report 1019-1ER-17, NEPA Project, U. S. Atomic Energy Commission; Oak Ridge, Tenn.: 1949. continued - "Guide for
Selection of Equipment for Radioactivity Laboratories", Nucleonics, vol. 7, p. R-1; November, 1950. - 5. O. Glasser, Editor, "Medical Physics, II", Year Book Publishers, Inc.; Chicago, III.: 1950. - R. E. Zirkle, Editor, "Biological Effects of External Beta Radiation", McGraw-Hill Book Co., Inc.; New York, N. Y.: 1951. - A. Haddaw, Editor, "Biological Hazards of Atomic Energy", Clarendon Press; Oxford, England: 1952. - J. R. Bradford, Editor, "Radioisotopes in Industry", Reinhold Publishing Corp.; New York, N. Y.: 1953. - 9. F. G. Spear, "Radiation and Living Cells", John Wiley & Sons, Inc.; New York, N. Y.: 1953. - "General Handbook for Radiation Monitoring", Report LA1835, Los Alamos Scientific Laboratory; Los Alamos, N. M.: September, 1954. - 11. H. A. Blair, Editor, "Biological Effects of External Radiation", McGraw-Hill Book Co., Inc.; New York, N. Y.: 1954. - L. D. Marinelli, "Rodiation Dosimetry and Protection", Annual Review of Nuclear Science, vol. 3, Annual Reviews, Inc.; Stanford, Cal.: 1954. - R. E. Zirkle, Editor, "Biological Effects of Externa. X- and Gamma Rodiation, Part 1", McGraw-Hill Book Co., Inc.; New York, N. Y.: 1954. - C. L. Comar, "Radioisotopes in Biology and Agriculture", McGraw-Hill Book Company, Inc.; New York, N. Y.: 1955. ### ■ Miscellaneous data # Pressure-altitude graph Design of electrical equipment for aircraft is somewhat complicated by the requirement of additional insulation for high voltages as a result of the decrease in atmospheric pressure. The extent of this effect may be determined from the chart below and the information on the opposite page. 1 inch mercury = 25.4 mm mercury = 0.4912 pounds/inch² Table of multiplying factors. | pressure | | pressure | | temperature in de | | | | |----------|-------|----------|------|-------------------|------|------|------| | in Hg | mm Hg | -40 | 20 | 0 | 20 | 40 | 60 | | 5 | 127 | 0.26 | 0.24 | 0.23 | 0.21 | 0.20 | 0.19 | | 10 | 254 | 0.47 | 0.44 | 0.42 | 0.39 | 0.37 | 0.34 | | 15 | 381 | 0.68 | 0.64 | 0.60 | 0.56 | 0.53 | 0.50 | | 20 | 508 | 0.87 | 0.82 | 0.77 | 0.72 | 0.68 | 0.64 | | 25 | 635 | 1.07 | 0.99 | 0.93 | 0.87 | 0.82 | 0.77 | | 30 | 762 | 1.25 | 1.17 | 1.10 | 1.03 | 0.97 | 0.91 | | 35 | 889 | 1.43 | 1.34 | 1.26 | 1.19 | 1.12 | 1.05 | | 40 | 1016 | 1.61 | 1.51 | 1.42 | 1.33 | 1.25 | 1.17 | | 45 | 1143 | 1.79 | 1.68 | 1.58 | 1,49 | 1.40 | 1.31 | | 50 | 1270 | 1.96 | 1.84 | 1.73 | 1.63 | 1.53 | 1.44 | | 55 | 1397 | 2.13 | 2.01 | 1.89 | 1.78 | 1.67 | 1.57 | | 60 | 1524 | 2.30 | 2.17 | 2.04 | 1.92 | 1.80 | 1.69 | The graph above is for a voltage that is continuous or at a frequency low enough to permit complete deionization between cycles, between needle points, or clean, smooth spherical surfaces (electrodes ungrounded) in # Sparkgap breakdown voltages continued dust-free dry air. Temperature is 25 degrees centigrade and pressure is 760 millimeters (29.9 inches) of mercury. Peak kilovolts shown in the chart should be multiplied by the factors given below it for atmospheric conditions other than the above. An approximate rule for uniform fields at all frequencies up to at least 300 megacycles is that the breakdown gradient of air is 30 peak kilovolts/centimeter or 75 peak kilovolts/inch at sea level (760 millimeters of mercury) and normal temperature (25-degrees centigrade). The breakdown voltage is approximately proportional to pressure and inversely proportional to absolute (degrees-Kelvin) temperature. Certain synthetic gases have higher dielectric strengths than air. Two such gases that appear to be useful for electrical insulation are sulfur hexafluoride (SF_6) and Freon 12 ($CC1_2F_2$), which both have about 2.5 times the dielectric strength of air. Mixtures of sulfur hexafluoride with helium and of perfluoromethylcyclohexane (C_7F_{14}) with nitrogen have good dielectric strength as well as other desirable properties. #### Weather data* ### **Temperature extremes** #### United States | Lowest temperature | − <i>7</i> 0° F | Rodgers Pass, Montana (Jan- | |---------------------|-----------------|--| | | | uary 20, 1954) | | Highest temperature | 134° F | Greenland Ranch, Death Valley,
California (July 10, 1933) | | | | Gamerina 1881, 10, 1788, | #### Alaska | Lowest temperature | −76° F | Tanana (January, 1886) | |---------------------|--------|----------------------------| | Highest temperature | 100° F | Fort Yukon (June 27, 1915) | #### World | Lowest temperature | −90° F | Oimekon, | Siberia | (February, | |---------------------|--------|-----------|---------|------------| | | | 1933) | | | | Highest temperature | 136° F | Azizia li | hva No | eth Africa | Highest temperature 136° F Azizia, Libya, North Atrica (September 13, 1922) Lowest mean temperature (annual) -14° F Framheim, Antarctica Highest mean temperature (annual) 86° F Massawa, Eritrea, Africa ^{*} Compiled from "Climate and Man," Yearbook of Agriculture, U. S. Dept. of Agriculture, 1941. Obtainable from Superintendent of Documents, Government Printing Office, Washington 25, D. C. ### Weather data ### Precipitation extremes continued #### United States Wettest state Dryest state Maximum recorded Louisiana—average annual rainfall 57.34 inches Nevada—average annual rainfall 8.60 inches Camp Leroy, California (January 22-23, 1943)— 26.12 inches in 24 hours Minimums recorded Bagdad, California (1909–1913)—3.93 inches in 5 years Greenland Ranch, California—1.76 inches annual average World Maximums recorded Cherrapunji, India (July, 1861)—366 inches in 1 month. (Average annual rainfall of Cherrapunji is 450 inches) Bagui, Luzon, Philippines, July 14-15, 1911—46 inches in 24 hours Minimums recorded Wadi Halfa, Anglo-Egyptian Sudan and Aswan, Egypt are in the "rainless" area; average annual rainfall is too small to be measured ## World temperatures | NORTH AMERICA | | | | °F | °F | |----------------------|-------|------------|---------------------------|-------|---------| | | | l | ASIA continued | | | | Alaska | 100 | -76 | India | 120 | 19 | | Canada | 103 | -70 | Iraa | 125 | 19 | | Canal Zone | 97 | 63 | Japan | 101 | l –ź | | Greenland | 86 | -46 | Malay States | 97 | 66 | | Mexico | 118 | l ii l | Philippine Islands | 101 | 58 | | U. S. A. | 134 | -70 l | Sigm | 106 | 52 | | West Indies | 102 | 45 | Tibet | 85 | -20 | | | | | Turkey | 1111 | -22 | | SOUTH AMERICA | | | U. S. S. R. (Russia) | 109 | 90 | | Argenting | 115 | -27 | or or or managed | 1 ''' | 1 ~ | | Bolivia | 82 | 25 | AFRICA | 1 | l | | Brazil | 108 | 21 | Algeria | 133 | 1 | | Chile | 99 | Īġ | Anglo-Egyptian Sudan | 126 | 28 | | Venezuela | 102 | 45 | Angola | 91 | 33 | | | | | Belgian Congo | 97 | 34 | | EUROPE | 1 | | Egypt | 124 | 31 | | British Isles | 100 | 4 1 | Ethiopla | l iîî | 32 | | France | 107 | -14 | French Equatorial Africa | 118 | 46 | | Germany | 100 | -16 | French West Africa | 122 | 41 | | Iceland | 71 | -6 | Italian Somaliland | 93 | 61 | | Italy | 114 | 4 | libya | 136 | 35 | | Norway | 95 | -26 | Morocco | 119 | 5 | | Spain | 124 | 10 | Rhodesia | liiź | 5
18 | | Sweden | 92 | -49 | Tunisia | 122 | 28 | | Turkey | 100 | iž | Union of South Africa | iii | 21 | | U. S. S. R. (Russia) | 1 110 | 61 | Children of Coolin Affice | 1 | 1 - | | | 1 | " | AUSTRALASIA | } | ì | | ASIA | 1 | | Australia | 127 | 19 | | Arabia | 123 | 35 | Hawaii | 91 | 5í | | China | iii | -10 l | New Zealand | 94 | 23 | | East Indies | 101 | 60 | Samoan Islands | 96 | 61 | | French Indo-China | l iii | 33 | Solomon Islands | 97 | 70 | ### Weather data continued # Wind-velocity and temperature extremes in North America Maximum corrected wind velocity (fastest single mile). | | | temperature des | grees fahrenheit | |---|--------------------|-----------------|------------------| | station | wind
miles/hour | maximum | minimum | | UNITED STATES, 1871-1955
Albany, New York
Amarillo, Texas | 71
84 | 104
108 | -26
-16 | | Buffalo, New York | 91 | 99 | -21 | | Charleston, South Carolina | 76 | 104 | 7 | | Chicago, Illinois | 87 | 105 | -23 | | Bismarck, North Dakota | 72 | 114 | 4 5 | | Hatteras, North Carolina | 110 | 97 | 8 | | Miami, Florida | 132 | 95 | 2 7 | | Minneapolis, Minnesota | 92 | 108 | -34 | | Mobile, Alabama | 87 | 104 | -11 | | Mt. Washington, New Hampshi re | 188* | 71 | -46 | | Nantucket, Massachusetts | 91 | 95 | -6 | | New York, New York | 99 | 102 | -14 | | North Platte, Nebraska | 72 | 112 | -35 | | Pensacola, Florida | 114 | 103 | 7 | | Washington, D.C. | 62 | 106 | -15 | | San Juan, Puerto Rico | 149† | 94 | 62 | | CANADA, 1955
Banff, Alberta
Kamloops, British Columbia | 52‡
34‡ | 97
107 | -60
-37 | | Sable Island, Novia Scotia | 64‡ | 86 | -12 | | Toronto, Ontario | 48‡ | 105 | -46 | ^{*} Gusts were recorded at 231 miles/hour (corrected). † Estimated. ‡ For a period of 5 minutes. # Useful numerical data | 1 cubic foot of water at 4° C (weight) | 62.43 lb | |--|---| | I foot of water at 4° C (pressure) | 0.4335 lb/in² | | Velocity of light in vacuum, c | $-186,280 \text{ mi/sec} = 2.998 \times 10^{10} \text{ cm/sec}$ | | Velocity of sound in dry air at 20° C, 76 cm Hg | 1127 ft/sec | | Degree of longitude at equator- | 69.173 miles | | Acceleration due to gravity at sea-level, 40° Latitude | | | √2g | 8.020 | | 1 inch of mercury at 4° C | 1.132 ft water = 0.4908 lb/in^2 | | Base of natural logs e | 2.718 | | 1 radian | | | 360 degrees | $_{}$ 2 π radians | | π | | | Sine 1' | | | Arc 1° | 0.01745 radian | | Side of square | 0.707 × (diagonal of square) | | dry bulb | centigrade | 12 8 | 2282 | 54
58
58 | 30
34
34 | 38
40 | 4 8 5 2 | % 00 C | 888 |
--|----------------------------|--|--------------------|----------------|-----------------------------|-------------------|----------------------|----------------------|----------------| | | - | | | - | 5 1 | | p | V 2 | 47 | | | | | | | | | | | = 26 | | 7 | g | | | | | | | | 2 8 2 | | ; | <u> </u> | | | | | | | = | 582 | | 3 | <u></u> | | | | | | | 7 | 833 | | | R | | | | | | | =1= | 288 | | | 8 | | | | | | | 17 8 | 3282 | | ; | <u> </u> | | | | | | = | 25 82 | 32 33 | | P : | <u> </u> | | | | | | 22 | 253 | 38.33 | | difference botween readings of wet and dry bulbs in degrees centigrade | 72 24 26 28 30 32 34 36 38 | - | | | , | | 822 | 383 | 33 | | 8 | R | | | | | 55 | 17 | 888 | 423 | | 5 | <u> </u> | | | | 0 | 525 | 828 | 888 | 644 | | - E | 2 | | | | 15 12 | 282 | 888 | 864 | 822 | | 10 | = = | | | <u> </u> | 222 | 288 | 888 | 644 | 888 | | ,
b | * | | | 222 | 888 | 888 | 887 | 548 | 88.83 | | ָּדָּ
ק | 2 | | = | 48 2 | 322 | 888 | 844 | \$ \$ \$ | 888 | | 5 | 12 | | = 2 | 883 | 333 | 884 | & & & | 888 | 63 | | | Ξ | | 7
17
21 | 388 | 3833 | 444 | 51 44 | 23.52.82 | 243 | | 50 | 9 10 11 12 13 14 15 16 18 | 4 | 48 8 | 989 | 84 43 | 348 | S & S | 57
58
61 | 27.8 | | B | | 12 | 888 | 42 33 | 4 4 8 | \$ 2.5 | 2,3,8 | 828 | 288 | | 5 | • | 72 | 888 | 5.4.4 | 82.8 | 232 | 59
62
62 | 4 3 8 | 222 | | <u> </u> | 28 15 | 34 | 244 | # 22 £2 | \$ \$ \$ | 8,82 | 333 | 887 | 4%7 | | <u>.</u> | <u>• 2</u> | 38 | 2 2 2 8 | \$25 | 223 | 2 23 | 885 | 23
23
25
25 | 844 | | Ě | | 8 8 | 288 | 848 | 288 | 885 | 27.2 | 378 | 833 | | ŧ | 93 85 77 70 63 56 48 41 34 | 2 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε | 8 2 4 | 828 | 827 | 222 | 222 | 87
81
81 | 83 | | | 4 4 | 88 | 238 | 828 | 277 | 288 | 282 | 828 | \$ 88 8 | | | <u>6</u> 8 | \$8 | 225 | 448 | 222 | 228 | 82.88 | 888 | 8838 | | | <u>8</u> 8 | 28 | <u> </u> | 833 | 882 | 8288 | 822 | 888 | 888 | | | 2 8 | 38 | 288 | 828 | 888 | 222 | 888 | 888 | 828 | | | 2 2 | 74 | 222 | 888 | 888 | 8838 | 888 | 882 | 288 | | | - [| 20.20 | 842 | 888 | 888 | 882 | 222 | 888 | 95.5 | | | <u>:</u> ~ % | 89 | 828 | 222 | 888 | 844 | 222 | 888 | 926 | | | _ | 22 | 288 | *** | 886 | 888 | 97 6 | 98 8 | 886 | | dry bulb | centigrade
4 | 128 | 22 20 2 | 88,575 | 3423 | 88.0 4 | 4 8 8 | 3900 | 8 % 0
00 | Example: Assume dry-bulb reading (thermometer exposed directly to atmosphere) is 20° C and wet-bulb reading is 17° C, or a difference of 3° C. The relative humidity at 20° C is then 74%. # Materials and finishes for tropical and marine use #### Corrosion Ordinary finishing of equipment fails in meeting satisfactorily conditions encountered in tropical and marine use. Under these conditions corrosive influences are greatly aggravated by prevailing higher relative humidities, and temperature cycling causes alternate condensation on, and evaporation of moisture from, finished surfaces. Useful equipment life under adverse atmospheric influences depends largely on proper choice of base materials and finishes applied. Especially important in tropical and marine applications is avoidance of electrical contact between dissimilar metals. Dissimilar metals, widely separated in the galvanic series,* should not be bolted, riveted, etc., without separation by insulating material at the facing surfaces. The only exception occurs when both surfaces have been coated with the same protective metal, e.g., electroplating, hot dipping, galvanizing, etc. Aluminum, steel, zinc, and cadmium should never be used bare. Electrical contact surfaces should be given copper—nickel—chromium or copper—nickel finish, and, in addition, they should be silver plated. Variable-capacitor plates should be silver plated. An additional 0.000015 to 0.000020 electroplating of hard, bright gold over the silver will greatly improve resistance to tarnish and oxidation and to attack by most chemicals; will lower electrical resistance; and will provide long-term solderability. # Fungus and decay The value of fungicidal coatings or treatments is controversial. When # Finish application table† | material | Anish | remarks | |----------------|-----------|---| | Aluminum alloy | Anodizing | An electrochemical-oxidation surface treatment, for improving corrosion resistance; not an electroplating process. For riveted or welded assemblies specify chromic acid anodizing. Do not anodize parts with nonaluminum inserts. Colors vary: Yellowgreen, gray or black. | | | "Alrok" | Chemical-dip oxide treatment. Cheap. Inferior in abrasion and corrosion resistance to the anodizing process, but applicable to assemblies of aluminum and nonaluminum materials. | [†] By Z. Fox. Reprinted by permission from Product Engineering, vol. 19, p. 161; January, 1948. ^{*} The galvanic series is given on p. 42. # Materials and finishes for tropical and marine use continued | material | Anish | remarks | |--|------------------------|---| | Copper and zinc alloys | Bright acid dip | Immersion of parts in acid solution. Clear lacquer applied to prevent tarnish. | | Brass, bronze, zinc die-
casting alloys | Brass, chrome, nickel, | As discussed under steel, | | Magnesium alloy | Dichromate treatment | Corrosion-preventive dichromate dip. Yellow color. | | Stainless steel | Passivating treatment | Nitric-acid immunizing dip. | | Steel | Cadmium | Electroplate, dull white color, good corrosion resistance, easily scratched, good thread antiselze. Poor wear and galling resistance. | | | Chromium | Electroplate, excellent corrosion resistance and lustrous appearance. Relatively expensive. Specify hard chrome plate for exceptionally hard abrasion-resistive surface. Has low coefficient of friction. Used to some extent on anoferrous metals particularly when die-cast. Chrome plated objects susually receive a base electroplate of copper, then nickel, followed by chromium. Used for build-up of parts that are undersized. Do not use on parts with deep recesses. | | | Blueing | Immersion of cleaned and polished steel into heated saltpeter or carbonaceous material. Part then rubbed with linseed oil. Cheap. Poor corrosion resistance. | | | Silver plate | Electroplate, frosted appearance; buff to brighten. Tarnishes readily. Good bearing lining. For electrical contacts, reflectors. | | | Zinc plate | Dip in molten zinc (galvanizing) or electroplate of low-carbon or low-alloy steets. Low cost. Generally inferior to cadmium plate. Poor appearance. Poor wear resistance: electroplate has better adherence to base metal than hot-dip coating. For improving corrosion resistance, zinc-plated parts are given special inhibiting treatments. | | | Nickel plate | Electroplate, dull white. Does not protect steel from galvanic corrosion. If plating is broken, corrosion of base metal will be hastened. Finishes in dull white, polished, or black. Do not use on parts with deep recesses. | | | Black oxide dip | Nonmetallic chemical black oxidizing treatment for steel, cast iron, and wrought iron. Inferior to electroplate. No buildup, Suitable for parts with close dimensional requirements as gears, worms, and guides. Poor abrasion resistance. | | | Phosphate treatment | Nonmetallic chemical treatment for steel and iron products. Suitable for protection of internal surfaces of hollow parts. Small amount of surface buildup. Inferior to metallic electroplate. Poor abrasion resistance. Good paint base. | | | Tin plate | Hot dip or electroplate. Excellent corrosion resistance, but if broken will not protect steel from galvanic corrosion. Also used for copper, bross, and bronze parts that must be soldered after plating. Tin-plated parts can be severely worked and deformed without rupture of plating. | | | Brass plate | Electroplate of copper and zinc. Applied to brass and steel parts where uniform appearance is desired. Applied to steel parts when bonding to rubber is desired. | | | Copper plate | Electroplate applied preliminary to nickel or chrome plates
Also for parts to be brazed or protected against carburization
Tarnishes readily. | ### Materials and finishes for tropical and marine use continued equipment is to operate under tropical conditions, greater success can be achieved by the use of materials that do not provide a nutrient medium for fungus and insects. The following types or kinds of materials are examples of nonnutrient mediums that are generally considered acceptable. Metals Glass Ceramics (steatite, glass-bonded mica) Mica **Polyamide** Cellulose acetate Rubber (natural or synthetic) Plastic materials using glass, mica, or asbestos as a filler Polyvinylchloride Polytetrafluoroethylene Monochlortrifluorethylene The following types or kinds of materials should not be used, except where such materials are fabricated into completed parts and it has been determined that their use is acceptable to the customer concerned. Linen Cellulose nitrate Regenerated cellulose Wood lute Leather Cork Paper and cardboard Organic
fiberboard Hair or wool felts Plastic materials using cotton, linen or wood flour as a filler Wood should not be used as an electrical insulator and the use of wood for other purposes should be restricted to those parts for which a superior substitute is not known. When used, it should be pressure-treated and impregnated to resist moisture, insects, and decay with a water-borne preservative (as specified in Federal Specification TT-W-571), and should also be treated with a suitable fire-retardant chemical. # Principal low-voltage power supplies in foreign countries* | ferritory | dc volts | ac volts | frequency | |------------------------|----------------------|--|-------------------------| | NORTH AMERICA | | | | | Alaska | 1 _ | 110, 220 | 60 | | Bermuda | | 110, 220 | 1 | | British Honduras | 110, 220 | 110, 220 | 60 | | Canada | 110, 220 | 110, 115, 120, 220, 230 | 40.05 | | Costa Rica | _ | 110, 220 | 60, 25 | | El Salvador | 110 | 110, 220 | | | Guatemala | 220 | 110, 220 | 60
60, 50 | | Honduras | 120, 220 | 110, 220 | 60 | | Mexico | 120, 220 | 110, 115, 120, 125, 220 | 60, 50 | | Nicaragua | 110, 125 | 110, 220 | 60 | | Panama (Republic) | | 110, 220 | 60, 50 | | Panama (Canal Zone) | _ | 115 | 25, 60 | | WEST INDIES | | | | | Antiqua | 220 | _ | l – | | Aruba | I | 115, 220 | 60 | | Bahamas | _ | 110, 115, 120, 220 | 60 | | Barbados | | 110 | 50 | | Cuba | l — | 110, 115, 220 | 60 | | Curacao | l — | 115, 125, 220 | 50 | | Dominican Republic | l — | 110, 120, 220, 240 | 60 | | Guadeloupe | l — | 110 | 50 | | Jamaica | l — | 110, 220 | 40, 60 | | Martiniaue | 1 — | 110, 220 | 50 | | Puerto Rico | _ | 115, 230 | 60 | | Trinidad | l — | 110, 230 | 60 | | Virgin Islands | _ | 115, 230 | 60 | | SOUTH AMERICA | | | | | Argentina | 220 | 220, 225 | 25, 50, 60 | | Bolivia | 110, 220 | 110, 220, 230, 240 | 50, 60 | | Brazil | 220 | 110, 120, 127, 220 | 50, 60 | | British Gulana | - | 110, 115 , 230 | 50, 60 | | Chile | 220 | 110, 220 | 50, 60 | | Colombia | _ | 110 , 115, 150 , 220, 230, 260 | 50, 60 | | Ecuador | - | 110, 220 | 60 | | French Guiana | | 110 | 50 | | Paraguay
Peru | 220 | 220 | 50 | | Surinam (Neth, Guiana) | 220 | 110, 220 , 240 | 50, 60
50, 60 | | Uruguay | - | 1 25, 220
220 | 50, 80 | | Venezuela | _ | 110, 120, 220 | 50, 60 | | EUROPE | | | | | Albania | | 125, 220 , 230 | 50 | | Austria | 110 | 110, 120, 220 | 50 | | Azores | 220 | 110, 220 | 50, 60 | | Balearic Islands | 1 — | 110, 125, 220 | 50 | | Belgium | 110, 220 | 110, 115, 127, 130, 190, 220 | 50 | | Bulgaria | - | 150, 220 | 50 | | Canary Islands | _ | 110, 115, 190, 220 | 50 | | Cape Verde Islands | 220, 230, 240 | _ | l – | | Corsica | - | 120, 127, 200, 220 | 50 | | Crete | 220 | 127, 220 | 50 | | Czechoclovakia | - | 110, 200, 220 | 50 | | Denmark | 110, 220, 240 | 220 | 50 | | Dodecanese Islands | 110 | 127, 220 | 50 | | Estonia | 110, 220 | 200, 220 | 50 | ^{*} See footnotes on page 931. # Principal low-voltage power supplies in foreign countries* continued | territory | de voits | ac volts | frequency | |---------------------------------|---|-------------------------------------|---------------------| | EUROPE—continued | | | | | finland | 110, 127 | 110, 127, 220, 230 | 50 | | france | 110, 220 | 110, 115, 120, 190, 200, 220 | 25, 50 | | Germany | 110, 240 | 110, 120, 127, 220 | 50 | | Gibraltar | 440 | 110, 240 | 50, 76 | | Greece | 220 | 127, 220 | 50 | | Hungary | - | 105, 110, 120, 220 | 42, 50 | | Iceland | - | 220 | 50 | | Ionian Islands | 220 | 127, 220 | 50 | | Ireland (Republic of) | | 200, 220, 250 | 50 | | Italy | - | 127, 150, 160, 220, 260, 280 | 42, 50 | | latvia | - | 220
220 | 50
50 | | Lithuania | 220
110, 220 | 110, 220 | 50, 60 | | Luxembourg
Madeira Islands | 110, 220 | 220 | 50, 80 | | Malta | 110, 220 | 100, 220 | 50 | | Monaco | _ | 110 | 42 | | Netherlands | 220 | 120, 127, 150, 208, 220, 260 | 50 | | Norway | | 130, 150, 220, 230 | 45, 50 | | Poland | 110, 120, 220 | 110, 220 | 50 | | Portugal | - | 110, 190, 220 | 50 | | Rumania | 220 | 110, 150, 208, 220 | 42, 50 | | Spain | 110, 130, 150, 220, 260 | 110, 127, 220 | 50 | | Sweden | 127, 220 | 110, 127, 220 | 25, 50 | | Switzerland | 160, 220 | 110, 125, 190, 220, 250 | 50 | | Trieste | - | 100, 120, 220 | 42, 50 | | Turkey | | 110, 190, 220 | 50
50 | | United Kingdom | 200, 220, 230, 240 | 200, 230 , 240, 250 | 50 | | U.S.S.R. (Russia)
Yugoslavia | 110, 220 | 110, 120, 127, 220 | 50 | | 1 ogosia via | | 220 | 30 | | ASIA | | | | | Aden | 1 — | 230 | 50 | | Afghanistan | 1 — | 115, 200, 220, 230 | 50, 60 | | Bahrein | | 230 | 50 | | Burma | l — | 220 | 50, 60 | | Cambodia | - | 110, 190, 220 | 50 | | Ceylon | 230 | 220, 230, 240 | 50 | | China | _ _ | 110, 135, 190, 220, 23 0 | 50, 60 | | Cyprus | 220 | 110, 220 | 50 | | Formosa (Taiwan) | - | 110 | 60
50, 60 | | Hong Kong | 220, 230 | | 50, 60 | | India | 220, 230 | 220, 230
127, 220 | 50 | | Indonesia | 110 | 110, 220 | 50, 60 | | Iran
Irag | 220 | 200, 220, 230 | 50 | | Israel | - | 220 | 50 | | Japan | 1 — | 100, 110, 200, 220 | 40, 50, 60 | | Jordan | - | 220 | 50 | | Korea | - | 100, 110, 200, 220 | 50, 60 | | Kuwait | = | 220, 240 | 50, 60 | | laos | i — | 115 | 50 | | Lebanon | - | 110, 190, 220 | 50 | | Malayan Federation | 230 | 230 | 50 | | Nepal | - | 120, 220 | 60 | | Okinawa | 200 | 110 | 60 | | Pakistan | 220 | 220, 230 | 50 | | Philippines | _ | 110, 220
230 | 60
50 | | Sarawak | 1 = | 110, 220 | 60 | | Saudi Arabia | | 220 | 50 | | Singapore
Syria | | 110, 190 | 50, 60 | | Thailand | 110, 220 | 110, 220 | 50, 60 | # Principal low-voltage power supplies in foreign countries* contin | territory | dc volts | ac volts | frequency | |-----------------------------------|----------------|--------------------------------|-------------------| | ASIA—continued | | | | | Vietnom | i _ | 115, 120, 208, 210 | 50 | | Yemen | l | 127, 220 | 50 | | | | | 1 | | | | | | | AFRICA | | | | | Algeria | 1 – | 110, 127, 220 | 50 | | Angola | · · | 220 | 50 | | Belgian Congo | 220 | 220 | 50 | | Dahomey | 220 | 230 | 50 | | Egypt | 220 | 110, 200, 220 | 40, 42, 50 | | Ethiopia | - | 110, 127, 220 | 50 | | French Guinea | - | 115, 230 | 50 | | Gold Coast | 220 | 230 | 50 | | Ivory Coast | 220 | 230 | 50 | | Kenya | - | 220, 240 | 50 | | Liberia | l — | 110, 200, 220 | 50, 60 | | Libya | - | 125, 130, 220 | 50 | | Madagascar | - - | 110, 115, 120, 200, 208, 220 | 50 | | Mauritania | _ | 115, 200 | 50 | | Mauritius | - | 230 | 50 | | Morocco (French) | <u> </u> | 110, 115, 127, 220 | 50 | | Morocco (Spanish) | - | 127, 220 | 50 | | Mozambique | 240 | 220 | 50 | | Niger | _ | 230 | 50 | | Nigeria | | 230 | 50 | | Northern Rhodesia | | 220, 230 | 50 | | Nyasaland | _ | 230 | 50 | | Senegal | - | 115, 127, 200, 220 | 50 | | Sierra Leone | | 230 | 50 | | Somaliland (British) | 110 | i — | - | | Somaliland (French) | 220 | | I - | | Southern Rhodesia | - | 220, 230 | 50 | | Sudan (French) | | 115, 200 | 50 | | Tanganyika | 230 | 220, 230, 240 | 50 | | Tangier | _ | 110, 220
110, 127, 190, 220 | 50 | | Tunisia | - | 240 | 50 | | Uganda | 220, 230 | 120, 200, 220, 240, 250 | 50 | | Union of South Africa Upper Volto | 220, 230 | 230 | 50
50 | | Opper voito | | 230 | 30 | | OCEANIA | | | | | Australia | 200 240 | 110 000 040 050 | 10 | | Australia
E::: Islands | 220, 240 | 110, 230, 240, 250 | 40, 50 | | Fiji Islands
Hawaii | 240 | 240 | 50 | | New Caledonia | | 110, 120 , 208, 240 | 60 | | New Guineo (British) | _ | 110, 120 | 50 | | New Zealand | 230 | 110, 220, 240 | 50 | | Samoa | 250 | 220, 230
110, 220 | 50
50 | | Society Islands | | 110, 220 | | | occiony isiunus | 1 | 110 | 60 | ^{*} From "Electric Current Abroad" issued by the U. S. Department of Commerce, April 1954. **Bold** numbers indicate the predominate voltages and types of supply where different kinds of supply exist. Caution: The listings in these tables represent electrical supplies most generally used in each country. For power supply characteristics of particular cities, refer to the preceding reference, which may be obtained at nominal cost from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. #### Electric-motor data # Wiring and fusing data* | mom | AWG | | duit
il diam
ches† | maxi-
mum |
--|----------|-----------------------|--------------------------|----------------------------| | hp current of rating type to t | | type:
R or T | type‡
RH | running
fuse
amperes | | single phase—115 volts single phase— | →230 vol | ts | | | | 1/2 7.4 14 14 1/2 1/2 10 3.7 14 | 14 | ½ | 1/2 | 6 | | 34 10.2 14 14 ½ ½ 15 5.1 14 | 14 | 1/2 | <i>Y</i> ₂ | 8 | | 1 13 12 12 1/2 1/2 20 6.5 14 | 14 | 1/2 | 1/2 | 10 | | 11/2 18.4 10 10 34 34 25 9.2 14 | 14 | 1/2 | 1/2 | 12 | | 2 24 10 10 34 34 30 12 14 | 14 | 1/2 | 1/2 | 15 | | 3 34 6 8 1 34 45 17 10 | 10 | 3/4 | 3/4 | 25 | | 5 56 4 4 11/4 11/4 70 28 8 | 8 | 3/4 | 3/4 | 35 | | 71/2 80 1 3 11/2 11/4 100 40 6 | 6 | 1 | 1 | 50 | | 10 100 1/0 1 1 1/2 11/2 125 50 4 | 6 | 11/4 | 1 1 | 60 | | 3-phase induction—220 volts 3-phose induc | ction—44 | 0 volts | | | | 1/2 2 14 14 1/2 1/2 3 1 14 | 14 | 1/2 | 1/2 | 2 | | 3/4 2.8 14 14 ½ ½ 4 1.4 14 | 14 | 1/2 | 1/2 | 2 | | 1 3.5 14 14 1/2 1/2 4 1.8 14 | 14 | <i>У</i> ₂ | 1/2 | 3 | | 11/2 5 14 14 1/2 1/2 8 2.5 14 | 14 | 1/2 | 1/2 | 4 | | 2 6.5 14 14 1/2 1/2 8 3.3 14 | 14 | 1/2 | 1/2 | 4 | | 3 9 14 14 1/2 1/2 12 4.5 14 | 14 | 1/2 | 1/2 | 6 | | 5 15 12 12 12 12 12 12 1 | 14 | 1/2 | 1/2 | 10 | | 71/2 22 10 10 34 34 30 11 14 | 14 | 1/2 | 1/2 | 15 | | 10 27 8 8 8 1 34 1 35 14 12 | 12 | 1/2 | 1/2 | 20 | | direct current—115 volts direct current— | —230 vol | ts | | | | 1/2 4.6 14 14 1/2 1/2 6 2.3 14 | 1 14 | ½ | 1/2 | 3 | | 3/4 6.6 14 14 1/2 1/2 10 3.3 14 | 14 | 1/2 | 1/2 | 4 | | 1 8.6 14 14 1/2 1/2 12 4.3 14 | 14 | 1/2 | 1/2 | 6 | | 11/2 12.6 12 12 1/2 1/2 15 6.3 14 | 14 | 1/2 | 1/2 | 8 | | 2 16.4 10 10 14 14 20 8.2 14 | 14 | 1/2 | 1/2 | 12 | | 3 24 10 10 34 34 30 12 14 | 14 | 1/2 | 1/2 | 15 | | 5 40 6 6 1 1 50 20 10 | 10 | 3/4 | 3/4 | 25 | | 7½ 58 3 4 1¼ 1¼ 70 29 8 | 8 | 3/4 | 3/4 | 40 | | 10 76 2 3 11/4 11/4 100 38 6 | 6 | ı î | ı i | 5 0 | ^{*} Reprinted by permission from General Electric Supply Corp. Catalog; 94WP. Adopted from 1947 National Electrical Code. #### ‡ Cable types: R = tinned-copper conductor, natural- or synthetic-rubber insulation, 1 or 2 nonmetallic braids RH = type R with special heat-resistant insulation T = untinned-copper conductor, polyvinyl insulation, no jacket or braid [†] Conduit size based on three conductors in one conduit for 3-phase alternating-current motors, and on two conductors in one conduit for direct-current and single-phase motors. ### Electric-motor data continued #### Torque and horsepower Torque varies directly with power and inversely with rotating speed of the shaft, or $$T = KP/N$$ where T = torque in inch-pounds P = horsepower N = revolutions/minute K = 63,000 (constant) # Transmission-line sag calculations* For transmission-line work, with towers on the same or slightly different levels, the cables are assumed to take the form of a parabola, instead of their actual form of a catenary. The error is negligible and the computations are much simplified. In calculating sags, the changes in cables due to variations in loads and temperature must be considered. Supports at same elevations For supports at same level: The formulas used in the calculations of sags are $$H = WL^2/8S$$ $$S = WL^2/8H = [(L_c - L) 3L/8]^{\frac{1}{2}}$$ $$L_c = L + 8S^2/3L$$ ^{*} Reprinted by permission from "Transmission Towers," American Bridge Company, Pittsburgh, Pa.; 1923: p. 70. # Transmission-line sag calculations continued where L = length of span in feet $L_c = length of cable in feet$ S = sag of cable at center of span in feet H = tension in cable at center of span in pounds = horizontal component af the tension at any point W = weight of cable in pounds per lineal foot Where cables are subject to wind and ice loads, W = the algebraic sum of the loads. That is, for ice on cables, W = weight of cables plus weight of ice; and for wind on bare or ice-covered cables, W = the square root of the sum of the squares of the vertical and horizontal loads. For any intermediate point at a distance x from the center of the span, the sag is $$S_x = S(1 - 4x^2/L^2)$$ For supports at different levels $$S = S_0 = \frac{WL_0^2 \cos \alpha}{8T} = \frac{WL^2}{8T \cos \alpha}$$ $$S_1 = \frac{WL_1^2}{8H}$$ $$S_2 = \frac{WL_2^2}{8H}$$ $$\frac{L_1}{2} = \frac{L}{2} - \frac{hH\cos\alpha}{WL}$$ $$\frac{L_2}{2} = \frac{L}{2} + \frac{hH\cos a}{WL}$$ $$L_{e} = L + \frac{4}{3} \left(\frac{S_{1}^{2}}{L_{1}} + \frac{S_{2}^{2}}{L_{2}} \right)$$ where W= weight of cable in pounds per lineal foot between supports or in direction of L_0 T = tension in cable direction parallel with line between supports ### Transmission-line sag calculations continued The change l in length of cable L_c for varying temperature is found by multiplying the number of degrees n by the length of the cable in feet times the coefficient of linear expansion per foot per degree fahrenheit c. This is* $$l = L_c \times n \times c$$ A short approximate method for determining sags under varying temperatures and loadings that is close enough for all ordinary line work is as follows: Supports at different elevations. - **a.** Determine sag of cable with maximum stress under maximum load at lowest temperature occurring at the time of maximum load, and find length of cable with this sag. - **b.** Find length of cable at the temperature for which the sag is required. - c. Assume a certain reduced tension in the cable at the temperature and under the loading combination for which the sag is required; then find the decrease in length of the cable due to the decrease of the stress from its maximum. - **d.** Combine the algebraic sum of (b) and (c) with (a) to get the length of the cable under the desired conditions, and from this length the sag and tension can be determined. - e. If this tension agrees with that assumed in (c), the sag in (d) is correct. If it does not agree, another assumption of tension in (c) must be made and the process repeated until (c) and (d) agree. ^{*} Temperature coefficient of linear expansion is given on pp. 56-57. ### Structural standards for steel radio towers * #### Material - **a.** Structural steel shall conform to American Society for Testing Materials "Standard Specifications for Steel for Bridges and Buildings," Serial Designation A-7, as amended to date. - **b.** Steel pipe shall conform to American Society for Testing Materials standard specifications either for electric-resistance welded steel pipe, Grade A or Grade B, Serial Designation A-135, or for welded and seamless steel pipe, Grade A or Grade B, Serial Designation A-53, each as amended to date. #### Loading - **a.** 20-Pound design: Structures up to 600 feet in height except if to be located within city limits shall be designed for a horizontal wind pressure of 20 pounds/foot² on flat surfaces and 13.3 pounds/foot² on cylindrical surfaces. - **b.** 30-pound design: Structures more than 600 feet in height and those of any height to be located within city limits shall be designed for a horizontal wind pressure of 30 pounds/foot² on flat surfaces and 20 pounds/foot² on cylindrical surfaces. - **c.** Other designs: Certain structures may be designed to resist loads greater than those described in paragraphs a and b just above. Fig. 1 of American Standard A58.1-1955 shows sections of the United States where greater wind pressures may occur. In all such cases, the pressure on cylindrical surfaces shall be computed as being 2/3 of that specified for flat surfaces. - **d.** For open-face (latticed) structures of square cross section, the wind pressure normal to one face shall be applied to 2.20 times the normal projected area of all members in one face, or 2.40 times the normal projected area of one face for wind applied to one corner. For open-faced (latticed) structures of triangular cross section, the wind pressure normal to one face shall be applied to 2.00 times the normal projected area of all members in one face, or 1.50 times the normal projected area for wind
parallel to one face. For closed-face (solid) structures, the wind pressure ^{*} Abstracted from "American Standard Minimum Design Loads in Buildings and Other Structures, A58.1-1955," American Standards Association; 70 East 45th Street; New York 17, N. Y.: \$1.50 per copy. Also from Radio-Electronics-Television Manufacturers Association Standard TR-116; October, 1949. Sections on manufacture and workmanship, finish, and plans and marking of the standard are not reproduced here. The section on "Wind velocities and pressures" is not part of the standard. ### Structural standards for steel radio towers continued shall be applied to 1.00 times the normal projected area for square or rectangular shape, 0.80 for hexagonal or octagonal shape, or 0.60 for round or elliptical shape. - **e.** Provisions shall be made for all supplementary loadings caused by the attachment of guys, antennas, transmission and power lines, ladders, etc. The pressure shall be as described for the respective designs and shall be applied to the projected area of the construction. - **f.** The total load specified above shall be applied to the structure in the directions that will cause the maximum stress in the various members. - **g.** The dead weight of the structure and all material attached thereto, shall be included. #### Unit stresses a. All parts of the structure shall be so designed that the unit stresses resulting from the specified loads shall not exceed the following values in pounds/inch² Axial tension on net section = 20,000 pounds/inch² Axial compression on gross section: For members with value of L/R not greater than 120, $$= 17,000 - 0.485 L^2/R^2 \text{ pounds/inch}^2$$ For members with value of L/R greater than 120, $$= \frac{18,000}{1 + L^2/18,000 R^2} \text{ pounds/inch}^2$$ where L = unbraced length of the member R = corresponding radius of gyration, both in inches. Maximum L/R for main leg members = 140 Maximum L/R for other compression members with calculated stress = 200 Maximum L/R for members with no calculated stress = 250 Bending on extreme fibre = 20,000 pounds/inch2 Single shear on bolts = 13,500 pounds/inch² Double shear on bolts = 27,000 pounds/inch² ### Structural standards for steel radio towers continued Bearing on bolts (single shear) = 30,000 pounds/inch² Bearing on bolts (double shear) = 30,000 pounds/inch² Tension on bolts and other threaded parts, on nominal area at root of thread $= 16,000 \text{ pounds/inch}^2$ Members subject to both axial and bending stresses shall be so designed that the calculated unit axial stress divided by the allowable unit axial stress, plus the calculated unit bending stress, divided by the allowable unit bending stress, shall not exceed unity. - **b.** Minimum thickness of material for structural members: Painted structural angles and plates = 3/16 inch Hot-dip galvanized structural angles and plates = 1/8 inch Other structural members to mill minimum for standard shapes. - **c.** Where materials of higher quality than specified under "Material" above are used, the above unit stresses may be modified. The modified unit stresses must provide the same factor of safety based on the yield point of the materials. #### **Foundations** - **a.** Standard foundations shall be designed for a soil pressure not to exceed 4000 pounds/foot² under the specified loading. In uplift, the foundations shall be designed to resist 100-percent more than the specified loading assuming that the base of the pier will engage the frustum of an inverted pyramid of earth whose sides form an angle of 30 degrees with the vertical. Earth shall be considered to weigh 100 pounds/foot³ and concrete 140 pounds/foot³. - **b.** Foundation plans shall ordinarily show standard foundations as defined in paragraph a just above. Where the actual soil conditions are not normal, requiring some modification in the standard design and complete soil information is provided to the manufacturer by the purchaser, the foundation plan shall show the required design. - **c.** Under conditions requiring special engineering such as pile construction, roof installations, etc., the manufacturer shall provide the necessary information so that proper foundations can be designed by the purchaser's engineer or architect. - **d.** In the design of guy anchors subject to submersion, the upward pressure of the water should be taken into account. #### Structural standards for steel radio towers continued ### Wind velocities and pressures | | indicated velocity | Vi in miles/hour | pressure P in | pounds/foot ² | |--|---------------------|---------------------|--|----------------------------------| | actual
velocity V _a
in miles/hour | 3-cup
anemometer | 4-cup
anemometer | cylindrical surfaces projected areas* P = 0.0025 V ² _a | flat surfaces $P = 0.0042 V_a^2$ | | 10 | 9 | 10 | 0.25 | 0,42 | | 20 | 1 | 23 | | | | 30 | 20 | | 1.0 | 1.7 | | 30 | 31 | 36 | 2.3 | 3.8 | | 40 | 42 | 50 | 4.0 | 6.7 | | 50 | 54 | 64 | 6.3 | 10.5 | | 60 | 65 | 77 | 9.0 | 15.1 | | 00 | 0.5 | " | 7.0 | 15.1 | | 70 | 76 | 91 | 12.3 | 20.6 | | 80 | 88 | 105 | 16.0 | 26.8 | | 90 | 99 | 119 | 20.3 | 34.0 | | | | | | | | 100 | 110 | 132 | 25.0 | 42.0 | | 110 | 121 | 146 | 30.3 | 50.8 | | 120 | 133 | 160 | 36.0 | 60.5 | | | 1 | | | | | 130 | 144 | 173 | 42.3 | 71.0 | | 140 | 155 | 187 | 49.0 | 82.3 | | 150 | 167 | 201 | 56.3 | 94.5 | ^{*} Although wind velocities are measured with cup anemometers, all data published by the U. S. Weather Bureau since January 1932 includes instrumental corrections and are actual velocities. Prior to 1932 indicated velocities were published. In calculating pressures on structures, the "fastest single mile velocities" published by the Weather Bureau should be multiplied by a gust factor of 1.3 to obtain the maximum instantaneous actual velocities. See p. 924 for fastest single mile records at various places in the United States and Canada. The American Bridge Company formulas given here are based on a ratio of 25/42 for pressures on cylindrical and flat surfaces, respectively, while the Radio-Electronics-Television Manufacturers Association specifies a ratio of 2/3. The actual ratio varies in a complex manner with Reynolds number, shape, and size of the exposed object. ### Vibration and shock isolation #### Symbols b = damping factor d = static deflection in inches E = relative transmissibility = (force transmitted by isolators) / (force transmitted by rigid mountings) F =force in pounds F_0 = peak force in pounds f = frequency in cycles per second (cps) f_0 = resonant frequency of system in cycles per second G = acceleration of gravity ≈ 386 inches per second² g = peak acceleration in dimensionless gravitational units $=\ddot{X}_0/G$ $j = (-1)^{\frac{1}{2}}$, vector operator k = stiffness constant; force required to compress or extend isolators unit distance in pounds per inch r = coefficient of viscous damping in pounds per inch per second t = time in seconds W = weight in pounds x = displacement from equilibrium position in inches $X_0 = \text{peak displacement in inches}$ \dot{x} = velocity in inches per second = dx/dt \dot{X}_0 = peak velocity in inches per second $\ddot{x} = acceleration in inches per second²$ $= d^2x/dt^2$ \ddot{X}_0 = peak acceleration in inches per second² ϕ = phase angle in radians $\omega =$ angular velocity in radians per second $= 2\pi f$ ### Equations The following relations apply to simple harmonic motion in systems with one degree of freedom. Although actual vibration is usually more complex, the equations provide useful approximations for practical purposes. $$F = W(\ddot{x}/G) \tag{1}$$ $$F_0 = Wg \tag{2}$$ $$x = X_0 \sin (\omega t + \phi) \tag{3}$$ $$X_0 = 9.77g/f^2 (4)$$ $$\dot{X}_0 = \omega X_0 = 6.28 f X_0 = 61.4 g/f \tag{5}$$ $$\ddot{X}_0 = \omega^2 X_0 = 39.5 f^2 X_0 = 386g \tag{6}$$ $$E = \frac{r - j(k/\omega)}{r + j\left[(\omega W/G) - k/\omega\right]}$$ (7) $$f_0 = 3.13(k/W)^{1/2} (8)$$ $$b = 9.77r/(kW)^{\frac{14}{5}}$$ (9) For critical damping, b = 1. Neglecting dissipation (b = 0), or at $f/f_0 = (2)^{\frac{1}{2}}$ for any degree of damping, $$E = \left| \frac{1}{(f/f_0)^2 - 1} \right| \tag{10}$$ When damping is neglected, $$k = W/d \tag{11}$$ $$f_0 = 3.13/d^{3/2} (12)$$ $$E = 9.77/(df^2 - 9.77) \tag{13}$$ #### Acceleration The intensity of vibratory forces is often defined in terms of g values. From (2), it is apparent, for example, that a peak acceleration of 10g on a body will result in a reactionary force by the body equal to 10 times its weight. When an object is mounted on vibration isolators, the accelerations of the vehicle are transmitted to the object (or vice versa) in an amplitude and phase that depends on the elastic flexing of the isolators in the directions in which the accelerations (dynamic forces) are applied. ### Magnitudes The relations between X_0 , \dot{X}_0 , \ddot{X}_0 , and f are shown in Fig. 1. Any two of these parameters applied to the graph locates the other two. For example, suppose f=10 cycles per second and peak displacement $X_0=1$ inch. From Fig. 1, peak velocity $\dot{X}_0=63$ inches per second and peak acceleration $\ddot{X}_0=10$ g. Fig. 1—Relation of frequency and peak values of velocity, displacement, and acceleration. ### **Natural frequency** Neglecting damping, the natural frequency f_0 of vibration of an isolated system in the vertical direction can be calculated from (12) from the static deflection of the mounts. For example, suppose an object at rest causes a 0.25-inch deflection of its supporting springs. Then, $f_0 = 3.13/(0.25)^2 = 6.3$ cycles per second #### Resonance In Fig. 2, E is plotted against f/f_0 for various damping factors. Note that resonance occurs when $f_0 \approx f$ and that the vibratory forces are then increased by the isolators. To reduce vibration, f_0 must be
less than 0.7f and it should be as small as 0.3f for good isolation. Fig. 2—Relative transmissability E as a function of the frequency ratio f/f_0 for various amounts of damping b. By permission from "Vibration Analysis," by N. O. Myklestad. Copyright 1944. McGraw-Hill Book Company, Inc. #### Vibration and shock isolation continued It is not possible to secure good isolation at all vibrational frequencies in vehicles and similar environments where several different and varying exciting frequencies are present and where the isolators may have to withstand shock as well as vibration. In such cases, f_0 is often selected as about 1.5 to 2 times the predominant f. Vibration in typical vehicles is shown in Fig. 3. Although all supporting structures have compliance and may reduce the effects of vibration and shock, the apparent stiffness of many "rigid" mountings is merely a matter of degree, and in conjunction with the supported mass, they can also give rise to resonance effects, thus magnifying the amplitude of certain vibrations. #### **Damping** Damping is desirable in order to reduce vibration amplitude during such times as the exciting frequency is in the vicinity of f_0 . This will occur occasionally in most installations. Any isolator that absorbs energy provides damping. It is seldom practical to introduce damping as an independent variable in the design of vibration isolators for relatively small objects. The usual practice is to rely on the inherent damping characteristics of the rubber or other elastic material employed in the mounting. Damping achieved in this way seldom exceeds 5 percent of the amount needed to produce a critically damped system. In vibration isolators for large objects, such as variable-speed engines, the system often can be designed to produce nearly critical damping by employing fluid dash pots or similar devices. Fig. 3-Vibration in typical vehicles. | vehicle | frequencies mate peak in cycles amplitude per second in inches | range of approxi-
requencies mate peak
in cycles amplitude
ser second in inches | nature of excitation | usual choice of
Isolator resonant frequency | |---------|--|--|--|---| | Ships | 0 to 15 | 0.02 | Engine vibration in diesel or reciprocating steam drive | 6 cycles/second for vibration isolation in com- | | | 0 to 33 | 0.01 | Propeller-blade frequency = (propeller rpm) X (number of isolation on naval vessels. These latter mounts blades)/60 amplify most vibrations to some extent. | inercial vessels. 27 to 30 cycles, second for stock isolation on naval vessels. These latter mounts amplify most vibrations to some extent. | | | | | | | | | | | | | | | | | | | WISCI | ELLANEOU | DA | IA 010 | |---|--|--|---|---|---|---------------------------------------|--|--|--|-----------------------------|-----------------------------|--|-----------------------|---| | Above 20 cycles/second. Amplitude of vibrations | varies with location in directiff, tanging silock can be neglected | 9 cycles/second | | 9 cycles/second | 25 cycles/second will usually avoid resonance with wheel hop and suspension resonant fre- | describes | | Above 20 cycles/second and should not corre- | spond will any structural resolution. It is not advisable to attempt to isolate suspension and | displaing wargin resonances | Similar to automobile truck | | | 20 cycles/second has been successful in railroad applications. Shock with velocity changes up to 100 inches/second in direction of train occurs when coupling cars or starting freight trains | | Engine vibrations | Propeller vibrations. Aerodynamic vibrations due to buffeting | Engine vibrations = (engine rpm)/60 Also aerodynamic vi- | Propeller vibrations ing and turbulence | Audible noise frequencies due to jet wake and combustion turbulence; very little engine vibration | Suspension resonance | Unspring weight resonance (wheel hop) | Irregular transient vibrations due to resonances of structural members with road roughnesses | Suspension resonance | Unsprung weight resonance | Structural resonances | Suspension resonance | (speed in mph) Track-laying frequency ≈ 17.6 tread spacing in inches) | Structural resonances | Similar to automobiles with additional excitations from rail joints and from side slop in rail trucks and draft gear | | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 9 | 0.02 | 0.002 | 5 | 0.05 | 0.005 | 2 | 1 | 0.001 | | | 09 01 0 | 0 to 100 | 0 to 60 | 0 to 100 | Up to 500 | - | 8 to 12 | 20+ | 4 - | 50 | +08 | 1 to 3 | Depends
on speed | +001 | Broad and
erratic | | Piston- | engine | Turboprop | | Jet
Aircraft | Passenger
automobiles | | | Automobile | rucks | | Military | Tonks | | Railroad
trains | #### Practical application Vibration can be accurately precalculated only for the simplest systems. In other cases the actual vibration should be measured on experimental assemblies using electrical vibration pickups. Complex vibration is often described by a plot of the g values against frequency. These plots usually show several frequencies at which the largest accelerations are present. The patterns will vary from place to place in a complicated structure and will also depend on the direction in which the acceleration is measured. After measuring and plotting vibration in this way, attention can be devoted to reduction of the predominant components using the equations and principles given above as guides in selecting the size, stiffness, damping characteristics, and location of isolators. #### Shock In many practical situations, vibration and shock occur simultaneously. The design of isolators for vibration should anticipate the effects of shock and vice versa. When heavy shock is applied to a system using vibration isolators, there is usually a definite deflection at which the isolators snub or at which their stiffness suddenly becomes much greater. These actions may amplify the shock forces. To reduce this effect, it is generally desirable to use isolators that have smoothly increasing stiffness with increasing deflection. Shock protection is improved by isolators that permit large deflections in all directions before the protected equipment is snubbed or strikes neighboring apparatus. The amplitude of vibration resulting from shock can be reduced by employing isolators that absorb energy and thus damp oscillatory movement. Probabilities of damage to the apparatus itself from impact shock can be minimized by: - a. Making the weight of equipment components as small as possible and the strength of structural members as great as possible. - **b.** Distributing rather than concentrating the weights of equipment components and avoiding rigid connections between components. - c. Employing structural members that have high ratios of stiffness to weight, such as tubes, I beams, etc. - **d.** Avoiding, so far as practical, stress concentrations at joints, supports, discontinuities, etc. - e. Using materials such as steel that yield rather than rupture under high stress. ### Graphical symbols American Standard Graphical Symbols for Electrical Diagrams Y32.2–1954* covers both the communication and power fields. Excerpts of primary interest to communications workers will be found on the following pages. #### **Diagram types** Block diagrams consist of simple rectangles and circles with names or other designations within or adjacent to them to show the general arrangement of apparatus to perform desired functions. The direction of power or signal flow is often indicated by arrows near the connecting lines or arrowheads on the lines. Schematic diagrams show all major components and their interconnections. Single-line diagrams, as indicated by that name, use single lines to interconnect components even though two or more conductors are actually required. It is a shorthand form of schematic diagram. It is always used for waveguide diagrams. Wiring diagrams are complete in that all conductors are shown and all terminal identifications are included. The contact numbers on electron-tube sockets, colors of transformer leads, rotors of variable capacitors, and other terminal markings are shown so that a workman having no knowledge of the operation of the equipment can wire it properly. #### Orientation Graphical symbols are no longer considered as being coarse pictures of specific pieces of equipment but are true symbols. Consequently, they may be rotated to any orientation with respect to each other without changing their meanings. Ground, chassis, and antenna symbols, for instance, may "point" in any direction that is convenient for drafting purposes. ^{*}American Standards Association, 70 East 45th Street, New York 17, N.
Y.; \$1.25 per copy. ### Graphical symbols #### continued ac source wafer Thermistor Thermocouple Transmission path # Vacuum (electron) tubes deflecting electrode cathode-roy tube Waveguide and coaxial components #### Discontinuities having properties of inscribed symbols (examples) shunt elements Directional coupler H-plane aperture coupling of 30-decibel loss. Arrows indicate direction of power flow ### Coupling means Resonator Mode suppressor Rectangular waveguide E-pione operture coupled to modesuppressed resonator that is loop coupled to coaxial line. Direct-current connection between waveguide and cooxial line. ### Graphical symbols continued #### **Detached elements** Switches and relays often have many sets of contacts and these may be separated and placed in the parts of the drawing to which they apply. Each separated element should be suitably identified. The winding of a relay may be labelled K2/4 to indicate that relay K2 has 4 sets of contacts separated from the winding symbol. Each separated set of contacts will then be designated K2-1 through K2-4 to permit individual identification. #### **Terminals** The terminal symbol need not be used unless it is needed. Thus, it may be omitted from relay and switch symbols. In particular, the terminal symbol often shown at the end of the movable element of a relay or switch should not be considered as the fulcrum or bearing but only as a terminal. #### Associated or future equipment Associated equipment, such as for measurement purposes, or additions that may be made later, are identified as such by using broken lines for both symbols and connections. ### Radio-signal reporting codes * The Comité Consultatif International Radio (CCIR) recommends that the SINPO and SINPFEMO codes be used instead of the older Q, FRAME, RAFISBENQO, and RISAFMONE codes. A signal report consists of the code word SINPO or SINPFEMO followed by a 5- or 8-figure group respectively rating the 5 or 8 characteristics of the signal code. The letter X is used instead of a numeral for characteristics not rated. Although the code word SINPFEMO is intended for telephony, either code word may be used for telegraphy or telephony. The over-all rating for telegraphy is interpreted as follows: ^{*} From Recommendation number 141 of the Comité Consultatif International Radio, London, 1953. ### Radio-signal reporting codes continued | | symbol | mechanized operation | Morse operation | |---|-----------|---|---| | 5 | Excellent | 4-channel time-division multiplex | High-speed Morse | | 4 | Good | 2-channel time-division multiplex | 100 words/minute Morse | | 3 | Foir | Marginal. Single start-stop printer | 50 words/minute Morse | | 2 | Poor | Equivalent to 25 words/minute Morse | 25 words/minute Morse | | 1 | Unusable | Possible breaks and repeats; call letters distinguishable | Possible breaks and repeats; call letters distinguishable | The over-all rating for telephony is interpreted as follows: | | symbol | operating condition | quality | |---|-----------|--|-----------------------| | 5 | Excellent | Signal quality unaffected | Commencial | | 4 | Good | Signal quality slightly affected | Commercial | | 3 | Fair | Signal quality seriously affected. Channel usable by operators or by experienced subscribers | Marginally commercial | | 2 | Poor | Channel just usable by operators | | | 1 | Unusable | Channel unusable by operators | Not commercial | ### Sinpo signal-reporting code | | S | 1 | N | P | 0 | |-----------------|--------------------|-----------------------|-----------------|----------------------------|----------------------------------| | | | | degrading effec | t of | | | rating
scale | signal
strength | interference
(QRM) | noise
(QRN) | propagation
disturbance | over-all
readability
(QRK) | | 5 | Excellent | Nil | Nil | Nil | Excellent | | 4 | Good | Slight | Slight | Slight | Good | | 3 | Fair | Moderate | Moderate | Moderate | Fair | | 2 | Poor | Severe | Severe | Severe | Poor | | 1 | Barely audible | Extreme | Extreme | Extreme | Unusable | continued Radio-signal reporting codes Sinpfemo signal-reporting code | rii de | S | - | Appropriate of the total | • | L | modulation | M | 0 | |--------|--------------------|-----------------------|--------------------------|----------------------------|------------------------|------------|-------------------------------|--------------------| | scale | signal
strength | interference
(QRM) | noise
(QRN) | propagation
disturbance | frequency
of fading | quality | depth | over-all
rating | | 5 | Excellent | Ī | Ē | ΞŽ | Ē | Excellent | Maximum | Excellent | | 4 | Good | Slight | Slight | Slight | Slow | Good | Good | Good | | e e | Fair | Moderate | Moderate | Moderate | Moderate | Fair | Fair | Fair | | 2 | Poor | Severe | Severa | Severe | Fast | Poor | Poor or nil | Poor | | _ | Barely audible | Extreme | Extreme | Extreme | Very fast | Very poor | Continuously
overmodulated | Unusable | Passing heavy line denotes change of date. { When passing the heavy line going to the right ADD one day. | Wellington*
Auckland* | 11:30am | 12:30pm | 1:30pm | 2:30pm | 3:30pm | 4:30pm | 5:30pm | 6:30pm | 7:30pm | 8:30pm | 9:30pm | | 11:30pm | | | 2:30am | 3:30am | 4:30am | 5:30am | 6:30am | 7:30am | 8:30am | 9:30am | 10:30am | 11:30am | |---|---------------|------------|---------------------|---------|---------------|---------------|----------------|---------------------------|------------------------|---------|--------------------|-----------------------|---------|---------------|---------------|---------------|---------------|--------------|---------------|----------------|--------------|----------------|-------------|---------------|---------------| | Solomon Islands
New Caledonia | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | | Brisbane, Guam
Melbourne, New Guinea
Sydney, Khaborovsk | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | #d00:9 | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | | Korea, Japan
Manchuria
Adelaide | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | | Celebes, Hong Kong
Manila, Shanghai | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | | Chungking
Chengtu, Kunming | 7:00am | 8:00am | 9:00 a m | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | | Bombay, Ceylon
New Delhi | 5:30am | 6:30am | 7:30am | 8:30am | 9:30am | 10:30am | 11:30am | 12:30pm | 1:30pm | 2:30pm | 3:30pm | 4:30pm | 5:30pm | 6:30pm | 7:30pm | 8:30pm | 9:30pm | 10:30pm | 11:30pm | 12:30am | 1:30am | 2:30am | 3:30am | 4:30am | 5:30am | | Ethiopia, Iraq
Madagascar | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | | Cairo, Copelown
Istanbul, Moscow, Israel | 2:00am | 3:00a⊞ | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00gm | 2:00am | | Bengasi, Berlin, Oslo
Rome, Tunis, Tripoli
Warsaw, Slockholm | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | | Greenwich Civil
Time (GCT)
or
Universal Time (UT) | 0000 | 0100 | 0200 | 0300 | 0400 | 0200 | 0090 | 0200 | 0800 | 0060 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 | 2400 | | Algiers, Lisbon
London, Paris
Madrid | Midnite | 800 | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00gm | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | | Iceland
Dakat | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | | Buenos Aires
Rio de Janeiro, Sontas
Sao Paulo | 9:00pm | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00 am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | #d00:9 | 7:00pm | 8:00pm | 9:00pm | | Santiago, Puerto Rico
Lapaz, Asuncion | 8:00pm | 9:00рш | 10:00pm | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | 5:00pm | 6:00pm | 7:00pm | 8:00pm | | Bogota, Bermuda, Havana
Lima, Montreal
New York, Panama | 7:00pm | 8:00pm | 9:00рш | 10:00pm | 11:00pm | Midnite |
1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00gm | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00рш | 5:00pm | 6:00pm | 7:00pm | | | E | 7:00pm | 8:00pm | 9:00pm | П0:00ы | 11:00pm | Midnite | 1:00am | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00am | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00рш | 5:00pm | #d00:9 | | Chlcago, Central America
(except Panama)
Mexico, Winnipeg | 6:00pm | | | | _ | | | _ | - | ء ا | _ | _ | - | - | - | E | E | Ε | Ε | _ | | _ | | _ | - | | San Froncisco and
Pacific Coost
(Alcago, Central America
(except Panama)
Maxico, Winnipeg | 4:00pm 6:00 | 5:00pm 7:0 | 6:00pm 8 | 7:00pm | 8:00pm | 9:00pm | 10:00pm | 11:00pm | Midnite | | 2:00am | 3:00am | 4:00am | 5:00am | 6:00am | 7:00am | 8:00am | 9:00am | 10:00am | 11:00gm | Noon | 1:00pm | 2:00pm | 3:00pm | 4:00pm | | Pacific Coost Chicago, Central America (except Panama) | _ | | | _ | 6:00pm 8:00pm | 7:00pm 9:00pm | 8:00pm 10:00pm | B:00pm 9:00pm 11:00pm | 9:00pm 10:00pm Midnite | | Midnite | Midnite 1:00am 3:00ar | 2:00am | 3:00am 5:00an | 4:00am 6:00an | 5:00am 7:00ar | 6:00am 8:00ar | 7:00am 9:00a | 8:00am 10:00a | 9:00am 11:00an | 10:00аш Noon | 11:00am 1:00pm | Noon 2:00pm | 1:00pm 3:00pm | 2:00pm 4:00pn | This chart is based on STANDARD TIME. • Permanent DAYLIGHT SAVING TIME. ### Patent coverage of inventions A patent in the United States confers the right to the inventor for a period of 17 years to exclude all others from using his claimed invention. After the 17-year period the patented invention normally passes into the public domain and may be practiced by others thereafter without permission of the patentee. The issuance of a patent does not confer to the patentee the right to manufacture his invention, since an earlier unexpired patent may have claims dominating the later invention. Besides the 17-year patent for invention, there are design patents for shorter periods that cover the outward artistic configuration of an article of manufacture and patents for new plants. The following material applies generally to patents for inventions and not to design patents nor to patents for horticultural plants. #### What is patentable A patent can be obtained on any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. The invention must not be obvious to one ordinarily skilled in the art to which the invention relates. In his patent application the inventor must make the disclosure of his invention sufficiently clear and complete to enable one skilled in the art to build and practice the invention. ### Recognizing inventions If the improvement or other development is new to the originator and appears either basic or commercially feasible, he should submit a disclosure to his patent attorney for advice. This should include disclosures of new products in the mechanical, chemical, and electrical fields; of new combinations of new and/or old elements that produce a new result, or an old result but with fewer elements; and, in fact, any new improvement in these fields that appears to present a commercial advantage in either cost, durability, or operation. The question of whether the disclosure is a sufficient advancement to be the basis of patent claims depends on a novelty investigation and appraisal by a patent attorney. ### Who may be an inventor The inventor is the person who originates the idea and causes his mental picture of an embodiment to be reduced to physical form such as a written description or drawings or model. He may draw on the skill of others to #### Patent coverage of inventions continued complete this physical form of his invention so long as ideas, hints, and suggestions of others are in the regular course of their work as skilled technicians. Contributions by others beyond ordinary mechanical skill make the contributor a coinventor. Employers or supervisors who do not contribute more than ordinary skill should not be identified as coinventors. On the other hand, a supervisor may convey an idea to another employee and direct its development into a patentable invention and do none of the physical work and yet he, the supervisor, is the true inventor. However, when two or more persons by cross-suggestion conceive and reduce an invention to a physical form, they thereby become joint inventors. Where there is real doubt as to whether an invention is sole or joint, the doubt should be resolved in favor of joint. ### Making patentable inventions The usual steps of making an invention are: - a. A desired result or problem is first recognized. - **b.** A conception of an embodiment capable of producing the desired result is visualized. This mental conception should then be followed with a written record of the physical form visualized (drawings and descriptions). - **c.** Reduction to practice. This may be "constructive" by filing a patent application, or "actual" by building a full-size working embodiment. ### Obtaining a patent For one to obtain a patent in the United States, the invention must have been made before: - a. It was known or used by others in this country, or - **b.** It was patented or described by others in any printed publication in this or any foreign country; and an application for patent must be filed: - **a.** Within one year from the first date of public use or offer of sale of the invention in this country or any publication in this or any foreign country disclosing the invention, or - **b.** Prior to the issuance of a foreign patent based upon an application filed by the same inventor more than one year prior to his filing the application for U. S. patent. ### Patent coverage of inventions continued ### Assignment of inventions The patent rights to an invention can be assigned and transferred and this may be done either before or after a patent application is filed or a patent is obtained. #### Effect of publication—foreign patents No public disclosure of an invention should be made before an application for patent is filed on it. The reason for this is that in certain foreign countries, e.g., France, Holland, and Brazil, the law provides that the publication or public use of the invention anywhere in the world before the date of filing of an application for patent makes the idea available to the public and thereby deprives the inventor of any right to a patent in those countries. However, in the United States, one year is allowed following the date of the first publication, or first public use or sale of the invention during which the application for patent may be filed. Since inventors or assignees are often interested in obtaining foreign patents as well as United States patents, the inventor should make certain as a general policy that no publication or public use is made of his invention before a patent application is filed. The benefit of the United States filing date applies to the obtaining of patents in most important foreign countries, provided the foreign application is filed within one year of the date of filing of the United States application. #### Interferences Occasionally two or more applications are filed by different inventors claiming substantially the same patentable invention. Thus, while a patent application is pending, an interference may be declared by the Patent Office with respect to the application or patent of another inventor. This proceeding is to determine who is rightfully the first inventor and proof of dates, diligence, and reduction to practice must be established by recorded evidence, such as sketches, description, test data, models, and witnesses. ### Engineer's notebook The keeping of formal notebook records by engineers facilitates patent applications and prosecution of any subsequent interference cases. The permanently bound type of notebook is preferred and the engineer should make his original entries therein. Adherence to the following procedures will make the notebook more useful as evidence in legal proceedings: ### Patent coverage of inventions continued - a. Make entries chronologically. Use ink. - **b.** Do not leave blank spaces. Draw a line diagonally across unused space on a page. Use both sides of each sheet. Do not skip or remove any notebook pages. - **c.** Do not erase. Draw a single line through any entries to be cancelled and initial and date changes made. - **d.** Make entries directly in notebook. If separate charts, graphs, etc., are a necessary part of an entry, they should be properly signed, witnessed, and dated as well as being referenced on the applicable pages of the notebook. These separate sheets should be securely fastened in the notebook. - e. Make each entry clear and complete. - f. Sign and date each entry on the day it is made. - **g.** Any entry believed to be sufficiently novel to become the subject of a patent application should be signed and dated by witnesses who understand the subject matter. Sketches, graphs, test data, or other materials related to the invention should be similarly witnessed. ### Summary of military nomenclature system* In the AN system for communication-electronic equipment, nomenclature consists of a name followed by a type number. The type number consists of indicator letters shown in the following tables and an assigned number. The type number of an independent major unit, not part of or used with a specific set, consists of a component indicator, a number, the slant, and such of the set or equipment indicator letters as apply. Example: SB-5/PT would be the type number of a portable telephone switchboard for independent use. The system indicator (AN) does not mean that the Army, Navy, and Air Force use the equipment, but simply that the type number was assigned in the AN system. ^{*} Adapted from "Summary of Joint Nomenclature System ("AN") System for Communication Electronic Equipment," Communications—Electronics Nomenclature Subpanel of the
Joint Communications—Electronics Committee; Washington 25, D. C.: January 30, 1955. ### Summary of military nomenclature system continued #### Nomenclature policy AN nomenclature will be assigned to: - a. Complete sets of equipment and major components of military design. - **b.** Groups of articles of either commercial or military design that are grouped for a military purpose. - c. Major articles of military design that are not part of or used with a set. - **d.** Commercial articles when nomenclature will facilitate military identification and/or procedures. AN nomenclature will not be assigned to: - **a.** Articles cataloged commercially except in accordance with paragraph (d) above. - **b.** Minor components of military design for which other adequate means of identification are available. - c. Small parts such as capacitors and resistors. - **d.** Articles having other adequate identification in joint military specifications. Nomenclature assignments will remain unchanged regardless of later changes in installation and/or application. #### Modification letters Component modification suffix letters will be assigned for each modification of a component when detail, parts and subassemblies used therein are no longer interchangeable, but the component itself is interchangeable physically, electrically, and mechanically. Set modification letters will be assigned for each modification not affecting interchangeability of the sets or equipment as a whole, except that in some special cases they will be assigned to indicate functional interchangeability and not necessarily complete electrical and mechanical interchangeability. Modification letters will only be assigned if the frequency coverage of the unmodified equipment is maintained. The suffix letters X, Y, and Z will be used only to designate a set or equipment modified by changing the power input voltage, phase or frequency. X will indicate the first change, Y the second, Z the third, XX the fourth, etc., and these letters will be in addition to other modification letters applicable. ## Summary of military nomenclature system continued ### Set or equipment indicator letters | _ | Airborne (installed and operated in aircraft) | A | Invisible light, heat radiation | A | Auxiliary assemblies (not complete operating sets used with or part of two or more sets or sets series) | |-----|---|---|---|---|---| | 3 (| Underwater mobile, submarine | В | Pigeon | В | Bombing | | | Air transportable linactivated, do not use) | С | Carrier | С | Communications (receiving and transmitting) | |) F | Pilotless carrier | D | Radiac | D | Direction finder and/or reconnaissance | | | | E | Nupac | E | Ejection and/or release | | F | Fixed | F | Photographic | | | | | Ground, general ground use lin-
cludes two or more ground type
installations) | G | Telegraph or teletype | G | Fire control or searchlight directing | | | | | | Н | Recording and/or reproducing (graphic meterological and sound) | | | | ı | Interphone and public address | | | | | <u>.</u> | J | Electro-mechanical (not otherwise covered) | | | | ۲. | Amphibious | K | Telemetering | | | | | | L | Countermeasures | L | Searchlight control linactivated, use "G") | | | Ground, mobile finstalled as operating unit in a vehicle which has no function other than transporting the equipment! | м | Meterological | М | Maintenance and test assemblies (including tools) | | | | Z | Sound in air | Z | Navigational aids fincluding alti-
meters, beacons, compasses, ra-
cons, depth sounding approach,
and fanding) | | P | Pack or portable (animal or man) | Р | Radar | Р | Peproducing (inactivated, do not use) | | | | Q | Sonar and underwater sound | Q | Special, or combination of purposes | | | | R | Radio | R | Receiving, passive detecting | | s | Water surface craft | S | Special types, magnetic, etc., or combinations of types | 5 | Detecting and/or range and bearing | | T | Ground, transportable | T | Telephone (wire) | Т | Transmitting | | U | General utility (includes two or
more general installation classes,
airborne, shipboard, and ground) | | | | | | ٧ | Ground, vehicular linstalled in vehicle designed for functions other than carrying electronic equipment, etc., such as tanks) | ٧ | Visual and visible light | | | | w | Water surface and underwater | ٧ | Armament (peculiar to arma-
ment, not otherwise covered) | W | V Control | ### Summary of military nomenclature system continued ### Table of component indicators | indicator | family name | indicator | family name | |-----------|------------------------------|-----------|----------------------------------| | AB | Supports, Antenna | oc | Oceonographic Devices | | AM | Amplifiers | ÖS | Oscilloscope, Test | | AS | Antennas, Complex | PD | Prime Drivers | | AT | Antennas, Simple | PF | Fittings, Pole | | BA | Battery, primary type | PG | Pigeon Articles | | BB | Battery, secondary type | PH | Photographic Articles | | BZ | Signal Devices, Audible | PP | Power Supplies | | C | Controls | PT | Plotting Equipments | | ČA | Commutator Assemblies, Sonar | PU | Power Equipments | | CB | Capacitor Bank | R | Receivers | | CG | Cable Assemblies, rf | RC | Reels | | CK | Crystal Kits | RD | Recorder-Reproducers | | CM | Comparators | RE | Relay Assemblies | | CN | Compensators | RF . | Radio Frequency Component | | CP | Computers | * RG | Cables, rf, Bulk | | CR | Crystals | RL | Reeling Machines | | ĊÜ | Couplers | RO | Recorders | | CV | Converters (electronic) | RP | Reproducers | | CW | Covers | RR | Reflectors | | CX | Cable Assemblies, non-rf | RT | Receiver and Transmitter | | CY | Cases and Cabinets | S | Shelters | | D | Dispensers | SA | Switching Devices | | DA | Load, Dummy | SB | Switchboards | | DT | Detecting Heads | SG | Generators, Signal | | DY | Dynamotors | SM | Simulators | | E | Hoists | SN | Synchronizers | | F | Filters | ST | Straps | | FN | Furniture | T | Transmitters | | FR | Frequency Measuring Devices | TA | Telephone Apparatus | | G | Generators, Power | TB | Towed Body | | GO | Goniometers | TC | Towed Cable | | GP | Ground Rods | TD | Timing Devices | | Н | Head, Hand, and Chest Sets | TF | Transformers | | HC | Crystal Holder | TG | Positioning Devices | | HD | Air Conditioning Apparatus | TH | Telegraph Apparatus | | ID | Indicating Devices, non-crt | TK | Tool Kits | | łL | Insulators | TL | Tools | | M | Intensity Measuring Devices | TN | Tuning Units | | ΙP | Indicators, Cathode-Ray Tube | TR | Transducers | | J | Junction Devices | TS | Test Items | | KY | Keying Devices | TT | Teletypewriter and Facsimile App | | ιc | Tools, Line Construction | TV | Tester, Tube | | LS | Loudspeakers | TW | Tapes, Recording Wires | | M | Microphones | U | Connectors, Audio and Power | | MA | Magazines | UG | Connectors, rf | | MD | Modulators | V | Vehicles | | ME | Meters | VS | Signaling Equipment, Visual | | MF | Magnets or Mag-field Gens | WD | Cables, Two-Conductor | | MK | Miscellaneous Kits | WF | Cables, Four-Conductor | | ML | Meteorological Devices | WM | Cables, Multiple-Conductor | | MT | Mountings | WS | Cables, Single-Conductor | | MX | Miscellaneous | WT | Cables, Three-Conductor | | 0 | Oscillators | ZM | Impedance Measuring Devices | | OA | Operating Assemblies | l | l | ### Summary of military nomenclature system continued #### Additional indicators **Experimental sets:** In order to identify a set or equipment of an experimental nature with the development organization concerned, the following indicators will be used within the parentheses: - XA Communications-Navigation Laboratory, Wright Air Development Center, Dayton, Ohio. - XB Naval Research Laboratory, Washington, D. C. - XC Coles Signal Laboratory, Fort Monmouth, N. J. - XD Cambridge Research Center, Cambridge, Mass. - XE Evans Signal Laboratory, Fort Monmouth, N. J. - XF Frankford Arsenal, Philadelphia, Pa. - XG U.S. Navy Electronic Laboratory, San Diego, Calif. - XH Aerial Reconnaissance Laboratory, Wright Air Development Center, Dayton, Ohio. - XJ Naval Air Development Center, Johnsville, Pa. - XK Flight Control Laboratory, Wright Air Development Center, Dayton, Ohio. - XL Signal Corps Electronics Research Unit, Mountain View, Calif. - XM Squier Signal Laboratory, Fort Monmouth, N. J. - XN Department of the Navy, Washington, D. C. - XO Redstone Arsenal, Huntsville, Ala. - XP Canadian Department of National Defense, Ottawa, Canada. - **XR** Engineer Research and Development Laboratory, Fort Belvoir, Va. - XS Electronic Components Laboratory, Wright Air Development Center-Dayton, Ohio. - XU U.S. Navy Underwater Sound Laboratory, Fort Trumbull, New London, Conn. - XW Rome Air Development Center, Rome, N. Y. - XY Armament Laboratory, Wright Air Development Center, Dayton, Ohio. ### Summary of military nomenclature system continued **Example:** Radio Set AN/ARC-3 () might be assigned for a new airborne radio communication set under development. The cognizant development organization might then assign AN/ARC-3(XA-1), AN/ARC-3(XA-2), etc., type numbers to the various sets developed for test. When the set was considered satisfactory for use, the experimental indicator would be dropped and procurement nomenclature AN/ARC-3 would be officially assigned thereto. **Training sets:** A set or equipment designed for training purposes will be assigned type numbers as follows: - **a.** A set to train for a specific basic set will be assigned the basic set type number followed by a dash, the letter T, and a number. Example: Radio Training Set AN/ARC-6A-T1 would be the first training set for Radio Set AN/ARC-6A. - **b.** A set to train for general types of sets will be assigned
the usual set indicator letters followed by a dash, the letter T, and a number. Example: Radio Training Set AN/ARC-T1 would be the first training set for general airborne radio communication sets. Parentheses indicator: A nomenclature assignment with parentheses, () following the basic type number is made to identify an article generally, when a need exists for a more general identification than that provided by nomenclature assigned to specific designs of the article. Examples: AN/GRC-5(), AM-6()/GRC-5, SB-9()/GG. A specific design is identified by the plain basic type number, the basic type number with a suffix letter, or the basic type number with an experimental symbol in parentheses. Examples: AN/GRC-5, AN/GRC-5A, AN/GRC-5(XC-1), AM-6B/GRC-5, SB-9(XE-3)/GG. The letter V within the parentheses is used to identify systems with varying parts list. ### Examples of AN type numbers | AN/SRC-3() | General reference set nomenclature for water surface | |------------|--| | | craft radio communication set number 3. | | AN/SRC-3 | Original procurement set nomenclature ap | pplied | against | |----------|--|--------|---------| | | AN/SRC-3(). | | | AN/APQ-13-T1() General reference training set nomenclature for the AN/APQ-13 set. | Summary of military nomenclature system continued | | | | | | |---|---|--|--|--|--| | AN/APQ-13-T1 | Original procurement training set nomenclature applied against AN/APQ-13-T1(). | | | | | | AN/APQ-13-T1A | Modification training set nomenclature applied against AN/APQ-13-T1. | | | | | | AN/UPT-T3() | General reference training set nomenclature for general utility radar transmitting training set number 3. | | | | | | AN/UPT-T3 | Original procurement training set nomenclature applied against AN/UPT-T3(). | | | | | | AN/UPT-T3A | Modification training set nomenclature applied against AN/UPT-T3. | | | | | | T-51()/ARQ-8 | General reference component nomenclature for transmitter number 51, part of or used with airborne radio special set number 8. | | | | | | T-51/ARQ-8 | Original procurement component nomenclature applied against T-51()/ARQ-8. | | | | | | T-51A/ARQ-8 | Modification component nomenclature applied against $T-51/ARQ-8$. | | | | | | RD-31()/U | General reference component nomenclature for recorder-reproducer number 31 for general utility use, not part of a specific set. | | | | | | RD-31/U | Original procurement component nomenclature applied against RD-31()/U. | | | | | Modification component nomenclature applied against RD-31A/U RD-31/U. ### **■** Information theory ### **General** Information theory concerns the process of communication. The central problem is evaluation of the maximum speed and accuracy of communication that can be achieved with a given transmission facility. The model of the communication process is depicted in Fig. 1. Fig. 1-Process of communication. The measure of information does not reflect meaning or purpose in communication: these are the domain of a user of a communication system; the relative frequency of a message and its reproduction are the domain of the system designer. The process of communication is: - **a.** Sequential selection of elements from a set of possible elements defined a priori: that is, in advance of communication. - **b.** Encoding of the selected elements as symbols or signals appropriate to the transmission system. - **c.** Reception and resolution of the symbols or signals into elements of the predefined set, though not always correctly. Typical elements are words, letters, sounds, levels of light intensity, voltages. A set is usually composed of elements of the same kind, e.g., a set of letters. Some elements of a set are more likely to appear for communication than others. Successive selections of elements are not ordinarily independent—word selections are constrained to make meaningful phrases, sounds to fuse into words, levels of light to form recognizable images. Sets composed only of discrete elements are considered in the following. A set such as a continuous range of amplitudes can usually be approximated to desired accuracy by considering an adequate number of discrete levels instead. ### Symbols, messages The elements of a set are denoted as $x_1 ldots x_n$. The a-priori probabilities of $x_1 ldots x_n$ are $p_1 ldots p_n$ satisfying #### General continued $$\sum_{i=1}^{n} p_i = 1$$ The x_4 will be called source symbols; sequences of x_4 are called messages. A message formed of two elements is called a digram, and one formed of N elements an Ngram. **Ensemble:** A set of elements together with their probabilities p_4 . An ensemble with elements x_4 is denoted by x. #### Amount of information Amount of information generated in any selection from the ensemble x: $$H(x) = \sum_{i}^{n} p_{i} \log (1/p_{i}) = -\sum_{i}^{n} p_{i} \log p_{i}$$ **a.** If an element of x has unity probability, then H(x) = 0. **b.** If all elements are equiprobable, $p_i = 1/n$, then H(x) is maximum and equal to $\log n$. **Uncertainty:** H(x) is also called the uncertainty of x; uncertainty is greatest for equiprobable events; uncertainty is zero when any one event is certain. **Entropy:** H(x) is also called entropy by analogy with the quantity of the same mathematical form encountered in statistical mechanics. H(x) and other quantities of this form are often referred to as ensemble entropies. Information content of a symbol (or message): The information generated in the selection of a specific symbol (or message). It is equal to $(-\log p_4)$, where p_4 is the symbol (or message) probability. Average information content per symbol (or message): The average information content (above) of symbols (or messages). (Average information content per symbol is the same as H(x), and equals the amount of information generated on the average in successive, independent selections from the ensemble.) ### Information units The amount of information H(x) is measured in bits, hartleys, or nits according as logarithms are taken to the base 2, 10, or e. 1 bit (from binary digit) is defined by a choice between 2 equiprobable events. ### Information units continued 1 hartley is defined by a choice among 10 equiprobable events (= 3.32 bits). 1 nit is defined by a choice among e equiprobable events (= 1.44 bits). In Fig. 2 is plotted ($-p \log_2 p$) bits and $-[p \log_2 p + (1-p) \log_2 (1-p)]$ bits versus p, probability expressed in percent from 1 to 99 percent. (Tables for $\log_2 x$ and 2^x are found on page 1110.) Fig. 2—Curves for computing entropies in bits. ### **Entropy of joint events** A pair of events x_i and y_j from the sets $(x_1 \ldots x_n)$ and $(y_1 \ldots y_m)$ may be considered as a composite event (x_i, y_j) . Such pairs arise when successive symbols emitted by a single source are considered (digram), or when symbols from two sources are considered simultaneously (multiplexing), or when x represents the input to a channel or encoder and y the output. Denoting the probability of (x_t, y_j) by p_{tj} , and the ensemble of joint events by x, y, Entropy of x, y is $$H(x, y) = -\sum_{i,j}^{n,m} p_{ij} \log p_{ij}$$ 967 ### Entropy of joint events continued If only x is observed, i.e., without regard to y, then probability of x_4 is $$\rho_i = \sum_{j=1}^m \rho_{ij}$$ and the entropy of x is $$H(x) = -\sum_{i=1}^{n} p_{i} \log p_{i}$$ Similarly, the probability of y_j , with no regard to x, is $$q_j = \sum_{i=1}^{n} p_{ij}$$ and the entropy of y is $$H(y) = -\sum_{j=1}^{m} q_j \log q_j$$ Upon observing x_i , the probability (conditional probability) of y_j is $$c_{ij} = \rho_{ij}/\rho_{ij}$$ The entropy (uncertainty) of y when x_4 is observed is $$-\sum_{i}^{m}c_{ij}\log c_{ij}$$ which when averaged over x defines the Conditional entropy of y given x: $$H_x(y) = \sum_{i}^{n} p_i \left(- \sum_{j}^{m} c_{ij} \log c_{ij} \right) = - \sum_{i,j} p_{ij} \log c_{ij}$$ Similarly, denoting the probability of x_i given y_i as $$c_{ij}' = \rho_{ji}/q_i$$ the conditional entropy $$H_{\nu}(x) = -\sum_{i,j} p_{ji} \log c_{ij}'$$ Relation between these entropies: $$H(x,y) = H(x) + H_x(y) = H(y) + H_y(x)$$ ### Entropy of joint events continued **Numerical example:** Let n = 3, m = 2. Arranging the joint probabilities p_{ij} in a rectangular array or matrix as in Fig. 3, then, Fig. 3—Joint probability matrix. | Pu | y 1 | у ₂ | Уз | |----------------|-------------|----------------|-----------------------------| | x ₁ | 0.1 | 0.2 | $0.3 \rightarrow p_1 = 0.6$ | | X2 | 0.2 | 0.0 | $0.2 \rightarrow p_2 = 0.4$ | | - ! | 1 | \downarrow | \downarrow | | | $q_1 = 0.3$ | $q_2 = 0.2$ | $q_3 = 0.5$ | - a. p. is the sum of the elements in row i. - **b.** q_i is the sum of the elements in column j. - **c.** Dividing each element of the matrix by the p_4 in the same row yields the matrix c_{4} . - **d.** Dividing each element of the matrix by the q_j in the same column and transposing yields c_{ji} (Bayes' theorem). The entropies defined above may be obtained in bits from Fig. 2: $$H(x) = -0.6 \log_2 0.6 - 0.4 \log_2 0.4 = 0.97$$ $H(y) = -0.3 \log_2 0.3 - 0.2 \log_2 0.2 - 0.5 \log_2 0.5 = 1.49$ $H(x, y) = -0.1 \log_2 0.1 - 3(0.2) \log_2 0.2 - 0.3 \log_2 0.3 = 2.25$ $H_x(y) = H(x,y) - H(x) = 1.28$ $H_y(x) = H(x,y) - H(y) = 0.76$ ### Statistical independence The events x_i and y_j are said to be statistically independent when $p_{ij} = p_i q_j$. Then, $c_{ij} = q_j$ and $c_{ji}' = p_i$. In terms of the entropies, independence means $$H(x,y) = H(x) + H(y)$$ $$H_x(y) = H(y)$$ $$H_{\nu}(x) = H(x)$$ When there is dependence, these relations are replaced by inequalities H(x,y) < H(x) + H(y) $$H_x(y) < H(y)$$ $$H_{\nu}(x) < H(x)$$ ### Entropy of joint
events continued ### Multiple events The preceding can be generalized to any number of events. Let, for instance, (x_i, y_j, z_k) represent a composite event from the ensemble x_i , y_i , z_i and let p_{ijk} denote its probability. The joint entropy is $$H(x,y,z) = -\sum_{ijk} p_{ijk} \log p_{ijk}$$ From the array of numbers p_{ijk} , it is possible to deduce the probability of occurrence of any single event or of any pair of events and also the conditional probabilities. For instance, is the probability that z_k will occur if x_k and y_j have been observed. The conditional entropy $H_{xy}(z)$ is the average over all pairs $\{x_iy_j\}$ of the entropy of z given $x = x_i$ and $y = y_j$. Alternatively, regarding x,y as a composite ensemble w, then from $$H_{so}(z) = H(w,z) - H(w)$$ there results, on replacing w by x,y, $$H_{x,y}(z) = H(x,y,z) - H(x,y)$$ Similarly, it can be found, for example, that $$H_{x,y,z}(u,v) = H(x,y,z,u,v) - H(x,y,z)$$ ### Information source A source of information is a system that produces messages by successive selections from an ensemble of symbols. #### Information rate of a source Information rate of a source is the amount of information generated per symbol or per second. The information per symbol (symbol entropy) is denoted by H. The information per second (time entropy) is H' = rH where r is the average number of symbols selected per second. Independent selections H = the entropy of the symbol ensemble, H(x). Selection dependent on preceding Ngram: H = the conditional entropy of x with respect to the ensemble of Ngrams. ### Information source continued Alternatively, when successive selections are not independent, the source may be regarded as changing state with each selection. If a selection depends only on the N preceding, then after a sequence of N selections, the source is said to be in a state S_4 . With he next selection there is a transition to some state S_7 determined by the element selected and the preceding (N-1). The probability of transition from S_4 to S_7 is denoted by t_{ij} (transitional probability). (When N=1, t_{ij} is the conditional probability c_{ij} and the number of states is the number of source symbols). Denoting the probability of state i as s_4 $$H = \sum_{i} s_{i} \left(- \sum_{j} t_{ij} \log t_{ij} \right)$$ (From the latter standpoint, a source is said to be a Markoff process.) Estimate of information rate: H is less than but approximately equal to 1/N times the information per N-gram generated by the source, the difference diminishing with N. In this way, information per letter of English may be approximated from information per word, information per M-gram of M-gram information per letter, etc. Various approximations to the English language have been studied from this point of view. Taking letters as the elementary source symbols; if letters were equiprobable and independent of each other, the rate would be $H_0=4.75$ bits per letter. Using the actual letter frequencies, it would be $H_1=4.03$ bits per letter. Using frequencies of occurrence of the digrams and trigrams, it becomes, respectively, $H_2=3.32$ and $H_3=3.1$ bits per letter. If English words are ordered according to decreasing frequencies it is found that the probability of occurrence of the word in the mth position (rank m) is approximately $p_m \approx 1/10m$ (limiting m to 8727 to make $\Sigma p_m = 1$). The resulting entropy is 11.82 bits per word or 2.14 bits per letter based on an average of 5.5 letters per word. ### Binary encoding of information source - **a.** The output of every source with rate H bits per symbol can be encoded reversibly into sequences of binary digits averaging H binary digits per source symbol; no lesser average number of digits allows reversible encoding. - **b.** The time entropy of reversibly encoded source sequences cannot exceed H', the time entropy of the source. ### Binary encoding of information source continued **c.** If different sources have the same H', then messages from any one of them can be encoded into messages from any other without loss of information rate. These are illustrated in Fig. 4. Typical messages in 4 different "languages" are shown "translated" into the same binary sequence. Each letter individually has its own binary code (rather than coding long sequences of letters as a whole). The notation A: $\frac{1}{2} \sim 0$, etc., means "A, of probability $\frac{1}{2}$, is encoded by 0." Since all 4 messages are reversibly encoded into the same binary sequence, any one message is a reversible code for any other, though with no direct letter-for-letter correspondence. The method of forming the codes in the special cases illustrated is: The $x_{\rm t}$ are listed in order of decreasing probability $p_{\rm t}$. The uppermost group of events with cumulative probability 1/2 is assigned 0; the lowermost group is assigned 1. Each group is further divided into upper and lower parts of equal cumulative probability, which are assigned respectively 0 and 1. This is continued until groups contain | | | 11 | | 111 | | |---|-----------------------|--------|-------------|-----------------------|--| | A: | $\frac{1}{2} \sim 0$ | W: ½ ∼ | ~ 00 a: | $\frac{1}{2} \sim 0$ | a: ½ ~ 0 | | B: | ½ ~ 10 | X: ½ ∼ | ~ 01 β: | $\frac{1}{4} \sim 10$ | $b: \frac{1}{8} \sim 100$ | | C: | $\frac{1}{4} \sim 11$ | Y: ¼ ~ | ~ 10 γ: | ½ ~ 110 | c: ½ ~ 101 | | | | Z: ½ ~ | ~ 11 δ: | ½ ~ 111 | d: ½ ~ 110 | | | | | | | e: $\frac{1}{8} \sim 111$ | | lan-
gauge letter escond message binary sequence | | | | | ary sequence | | ı | 1.50 • 2 | 8 = 42 | ABAABBCAACB | | | | II. | 2.00 • 2 | 1 = 42 | xwxxxxxz |

}0100010101 | 1001110 | | III | 1.75 • 2 | 4 = 42 | αβααββγαδα | | $= 1 \frac{\text{bit}}{\text{digit}} \cdot 42 \frac{\text{digits}}{\text{second}}$ | | IV | 2.00 • 2 | 1 = 42 | abacadaea | H | = 42 bits second | Fig. 4—Four sources generating equal bits per second. A: $\frac{1}{2}$ ~ 0 means "A, of probability $\frac{1}{2}$ is encoded by 0". ### Binary encoding of information source continued only one event. The code is automatically reversible. It is efficient (non-redundant), in that more-probable events are assigned longer representations than less-probable ones in such a way that typical source sequences have the least possible number of binary digits. The symbol probabilities are generally not integral powers of 1/2, and symbols generally not independent. An approximation to H code digits per symbol can still be obtained as outlined above if for "equal cumulative probability" is understood approximately equal cumulative probability. To obtain a good approximation, it is usually required to apply the procedure to a list of Ngrams, rather than of the symbols. The Ngrams provide a smoother gradation of probabilities and lessen the effect of symbol dependences. ## Redundancy A source is redundant if H is less than the maximum entropy $H_M = \log n$ possible for the same number n of symbols. The selection of symbols in a redundant source is either not independent or, if independent, not equiprobable. **Amount of redundancy** is the fractional departure of the source rate from this maximum: $(H_M - H)/H_M$. From another viewpoint, redundancy indicates the predictability of the source: When the uncertainty H is zero, the redundancy is one and the symbols are completely predictable. Experimental trials at predicting English sentences give an estimated redundancy of at least 75 percent. Compression by coding is the representation of information generated in source sequences by shorter sequences of code symbols. The maximum possible percent compression of source sequences when properly coded in an alphabet numbering the same as source events equals the source redundancy. Languages II and III of Fig. 4 illustrate elimination of redundancy by coding into alphabets the same size. With language III as a source with entropy 1.75 bits per symbol, the redundancy is 1/8. Encoding of III into II achieves the full reduction in redundancy since, on the average, in one second it takes 1/8 fewer symbols to convey 42 bits. This compression could mean a 1/8 bandwidth reduction factor for III. Or, II could be transmitted as the code for III with a saving of 1/8 of the time. Languages IV and II offer what may be called "amplitude compression", since information rate and symbol speed remain the same but the alphabet "range" is reduced from 5 to 4 symbols. ### Channel Communication channel: A transmission facility; defined by a set of constraints. These limit the rate and accuracy with which information can pass from a source to a destination. Every physical facility is subject to random variations—component drift with temperature, crosstalk, mechanical imperfections, electrical noises, imperfect resolution. Noiseless channel: One where these effects are negligible; the facility is essentially free of random error. In a noiseless channel, accuracy is not an issue. Every permissible channel input is at once identifiable at the output. The objective is to evaluate the maximum-possible rate of transfer of information through the channel in the presence of constraints of exactly specified nature (as opposed to random influences), often economic in origin, or attributable to limitations in the state of the art. Noisy channel: One where randomness cannot be dismissed. Constraints may be classified as those pertaining to the channel symbols (or signals) and those pertaining to the channel noise. The basic channel symbols available for transmission are limited in number and maximum speed of use. There are also restrictions on sequences formed of the basic symbols: e.g., a "spacing" symbol may be required between symbols. There may be an average-power limitation on sequences. The channel noise is a constraint on
transmission in that no more than a certain maximum rate can be achieved if error-free reception is to be approached. ## Noiseless channel Binary channel: Transmission constrained to use of 2 symbols, 0 and 1, each of duration T_0 . The maximum possible transmission rate is 1 selection between 2 possibilities every T_0 seconds. Thus the channel capacity is $C=1/T_0$ bits per second. A binary source that produces 0's and 1's of duration T_0 can drive the channel directly. If, further, 0 and 1 are equiprobably produced at each selection, then the source rate equals the capacity and the source is said to be matched to the channel. **Channel with S available symbols** all of duration T_0 can in time T handle any of $N(T) = S^{T/T_0}$ different sequences of symbols: capacity is $C = (1/T) \log_2 N(T) = (1/T_0) \log_2 S$ bits per second. If the minimum duration is the result of limited bandwidth $W=1/2T_0$, then $C=2W\log_2 S$ Channel with dynamic range D quantized in steps of equal size d has S = (D/d) + 1 amplitude levels available for transmission: ## Noiseless channel continued $$C = 2W \log (1 + D/d)$$ or, in terms of average power in channel sequences, when \boldsymbol{D} is centered on zero, $$C = W \log_2 (1 + 12 V^2/d^2),$$ where V^2 = mean-square amplitude level, or "power" $$= d^2 (S^2 - 1)/12$$ ### Capacity of the noiseless channel is defined in general as $$C = \lim_{T \to \infty} \frac{1}{T} \log_2 N(T) \text{ bits per second}$$ N(T) is the number of permissible channel sequences that can be formed in time T. Two cases are illustrated. a. Binary channel, duration of 0 twice that of 1: The N(T) permissible sequences of length T terminate in 0 or 1. Letting the duration of 1 be 1 second, the number ending in 1 is N(T-1); number ending in 0 is N(T-2). Thus N(T) satisfies the difference equation $$N(T) = N(T - 1) + N(T - 2),$$ with characteristic (algebraic) equation $$X^0 = X^{-1} + X^{-2}$$ or $$X^2 - X - 1 = 0.$$ If X_{max} = largest real root of the characteristic equation, then $$C = \log X_{max}$$ In this case $X_{max} = 1.62$, and C = 0.70 bits per second. **b.** Binary channel, duration of 0 and 1 each second, with added constraint that after 1 is used then 0 must follow (though 1 or 0 can follow 0): $$N(T) = N(T - 1) + N(T - 2)$$, as in a above. These binary channels have the same capacity but can not handle the same binary sequences. If a proper encoder is placed between them, the over-all capacity of the two in series remains the same as either one alone. #### Noiseless channel continued #### Fundamental theorem for noiseless channel Sequences of source symbols, of entropy H bits per symbol, when properly encoded in permissible sequences of a channel with capacity C bits per second, can be transmitted through the channel provided that the source does not produce symbols at an average number per second greater than C/H. ### **Noisy channel** Transmission through a noisy channel is subject to processes interfering at random with the channel symbols. The interference is itself a source of erroneous information. A noisy channel (or random transducer) is defined by: a set of input symbols x_t , a set of output symbols y_t , a matrix of probabilities c_{ty} that x_t is converted to y_t during transmission, and an average number of inputs per second. An instance of a noisy channel is a facility for transmitting a 1-volt or 0-volt signal per second along a pair of wires, where the wires are short-circuited at random 10-percent of the time. The possible inputs are $x_0 = 0$, $x_1 = 1$, the outputs $y_0 = 0$, $y_1 = 1$ with $c_{00} = 1$, $c_{01} = 0$ and $c_{10} = 0.1$, $c_{11} = 0.9$. If the channel interference produces symbols at the output that are not in the set of inputs, a decoder performing a "decision function" can be introduced to resolve all outputs into possible inputs. The decoder can be regarded as part of the channel. ### Dispersion, equivocation When x_i are used with probabilities u_{ψ} then the joint probability of x_{ψ} y_j $(p_{ij} = u_i \ c_{ij})$, the probability of y_j at the output, the ("inverse") probabilities c_{ij} , and associated entropies can be established as shown in the section on joint events. **Dispersion** is the conditional entropy $H_x(y)$. It is a measure of the uncertainty of the output, on the average, given the input. **Equivocation** is the conditional entropy $H_{\nu}(x)$. It is a measure of the uncertainty of the input, on the average, having observed the output. When the channel is driven directly by a source (i.e., the input symbol probabilities u_i equal the source symbol probabilities p_i), then $$R = H(x) - H_y(x) = H(y) - H_x(y)$$ is often referred to as the rate of transmission through the channel. **Example:** Binary source of rate 1 bit per digit driving symmetric binary channel defined by probabilities $c_{10} = c_{01} = \rho$ (1 and 0 are mistaken for each other with probability ρ). $$R = 1 - \left[p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1 - p} \right]$$ bits per digit The 1 is the source or channel symbol entropy and would be the information rate in the absence of errors. The bracketed term is the equivocation (and also dispersion in this symmetrical case). ### Capacity of noisy channel Of all possible assignments of probabilities u_{ℓ} to the channel symbols, there is a set that results in a maximum value of the difference $H(x) - H_{\nu}(x)$. This maximum difference is defined as the capacity of the noisy channel: $$C = \max_{u_{\ell}} [H(x) - H_{\nu}(x)]$$ where $\Sigma u_i = 1$ and $u_i \geqslant 0$. (This maximization is sometimes described as matching the channel symbol usage to the channel noise). # Fundamental theorem for noisy channel A channel of capacity C can be driven by any properly coded source of rate up to C with practically zero probability of error in recovering the input. This is not possible if the source rate exceeds C. Underlying principle of theorem: Let long sequences, or blocks of input symbols be regarded as the basic transmission units (rather than the individual symbols), and let the symbols x_i within blocks be used with frequencies u_i . Each block will upon transmission give rise to one of a group of possible responses associated with it. The groups of responses to all such blocks overlap. If there were no overlap at all, every such block would be ideal for transmission, since the noisy responses would fall into completely separable groups, each one identified with a definite input. However, by limiting the number of possible input blocks to a certain number M, the response groups associated with these M become nearly separable, and still more so as the length of block considered increases. For any probabilities u_{ν} and number of symbols N per block, the number of blocks M must satisfy: $$(1/N) \log M < R = H(x) - H_y(x)$$ If such blocks of channel symbols are then associated with output sequences from a source of rate $H=(1/N)\log M$ (a noiseless coding procedure), then coded messages from the source can be identified at the channel output with virtually no error and at the rate H. The maximum source rate for which this still holds is the maximum value of R, or the channel capacity. The theorem does not define any specific encoding of the source but rather a class of codes that in general are difficult to apply. There is presently much effort devoted to developing codes with a systematic structure, e.g., self-checking codes, and to evaluating explicit relations between code length and probability of error. #### Channel with additive noise Output y is the sum of the input x and channel noise n, $$y = x + n$$ When n and x are statistically independent, $$H_{\bullet}(x + n) = H(n)$$ since probabilities of (x + n) given x are the probabilities of n. Thus, R = H(x + n) - H(n) Since H(n) is fixed by the channel, maximum R occurs when H(x + n) is maximum. **Illustration:** A binary facility for transmitting a-2- or +2-volt pulse once a second disturbed by crosstalk. The crosstalk consists of a-1- or +1-volt pulse occurring equally frequently at an average rate of 1 per second. The noise entropy H(n) is 1 bit per second. If the ± 2 -volt pulses are used equally frequently, $u_i = 1/2$, then the entropy of signal plus noise H(x+n) is 2 bits per second, (4 equiprobable output levels: -3, -1, +1, +3). Thus, R=1 bit per second. In this simple case, the rate R is easily achieved without error by noting that a positive output can only mean that +2 is intended and a minus output must mean -2. 1 bit per second is also the capacity of the channel, since H(x+n) is already maximum. # Noisy binary channel Defined by probabilities $c_{01} = p$ and $c_{10} = q$, these error probabilities implicitly determining the severity of interference present. The channel capacity is $$C = \log_2 \left\{ 2^{[qH_p - (1-p)H_q]/[1-(p+q)]} + 2^{[pH_q - (1-q)H_p]/[1-(p+q)]} \right\}$$ bits per digit where $$H_p = -p \log_2 p - (1 - p) \log_2 (1 - p)$$ (A curve is given in Fig. 2.) H_q is obtained from H_p , replacing p by q. C is symmetrical in p and q. The maximizing input digit probabilities are $$u_1 = \frac{v_1 - q}{1 - (p + q)}$$ where v_1 = probability of 1 at the output $$v_1 = \left\{1 + 2^{(H_p - H_q)/[1 - (p+q)]}\right\}^{-1}$$ $$u_0 = \frac{v_2 - p}{1 - (p + q)}$$ where v_2 = probability of 0 at the output = 1 - v_1 . When p=q, the symmetric binary channel results. Further, let the binary digits be positive and negative pulses of equal amplitudes, equal durations T=1/2W, and average power P. Let the channel noise be similar pulses with Gaussian distribution of amplitude of average power N, which add to the digit pulses. Then $C/W=2(1-H_p)$ bits per second per cycle of bandwidth, where the digit error-probability as a function of P/N is $$\rho = \frac{1}{2} \operatorname{erfc} \left[(P/N)^{1/2}/(2)^{1/2} \right]$$ C/W versus P/N in
decibels is given in Fig. 5. #### Channel with additive noise Signal limited in bandwidth and average power: A facility can handle pulses of all possible amplitudes, at a maximum rate of 1/2W per second and with the constraint that pulse sequences are limited to average power P. Noise pulses in the channel with Gaussian distribution of amplitude and of average power N (no direct-current component) add to the signal pulses. The capacity of the channel is $$C = W \log_2 (1 + P/N)$$ bits per second, showing explicit dependence on channel noise. A plot of C/W is given in Fig. 5. The capacity may be achieved arbitrarily closely if sequences of signal amplitudes are formed with Gaussian probability distribution and mean-square fluctuation P. The channel could be used with negligible probability of error by a binary or other source of rate up to C if longenough source sequences are encoded into the Gaussian signals. If the Gaussian noise power varies directly with bandwidth, then letting W_0 be continued Fig. 5—Channel capacity versus P/N. The number of signal levels (equally spaced and centered on zero) is s. For a symmetrical binary channel, s=2. Fig. 6—Capacity of channel (limited in average power and bandwidth with Gaussian noise) as a function of bandwidth. $W_0 = \text{bandwidth}$ for which signal power equals noise power (P = N). that width for which P=N, the variation in C/W_0 is the curve given in Fig. 6. The normalized capacity C/W_0 rises sharply to unity as bandwidth increases to W_0 , then slowly approaches 1.44 bits = 1 nit with further increases in W. The quantity CT is the amount of information that can be transmitted a long-enough interval T. This quantity is referred to as an exchange relation indicating how T, W, P, and N can be "traded", that is, how constant capacity can be maintained by various channel adjustments. # Bibliography - C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical Journal, vol. 27, pp. 399–423; July: also, pp. 623–656; October, 1948. - P. I. Chessin, "A Bibliography on Noise," IRE Transactions on Information Theory, vol. IT-1, pp. 15–31; September, 1955. - F. L. H. M. Stumpers, "A Bibliography on Information Theory," IRE Transactions on Information Theory, vol. IT-1, pp. 31-47; September, 1955. - W. Jackson, editor, "Communication Theory," New York Academic Press and London Butterworths Scientific Publications; 1953: A collection of papers read at a symposium on "Applications of Communication Theory" held at the Institution of Electrical Engineers, London, England, September 22-26; 1952. - C. E. Shannon, "Communication in the Presence of Noise," Proceedings of the IRE, vol. 37, pp. 10-21; January, 1949. - 6. L. Brillouin, "Science and Information Theory," Academic Press, Inc., New York, N. Y.; 1956. - C. E. Shannon, "Prediction and Entropy of Printed English," Bell System Technical Journal, vol. 30, pp. 50–64; January, 1951. # ■ Probability and statistics ### General A random experiment is one that can be repeated a large number of times, under similar circumstances, but may yield different results at each trial. For example, rolling of a die is a random experiment where the result is one of the numbers 1, 2, 3, 4, 5, or 6. Observing the noise voltage across a resistor is another random experiment that gives a number V dependent on the instant of observation. A random experiment may consist of observing or measuring elements taken from a set that is then known as a population. The result of a random experiment is called a random variable or variate. This is usually a number, or a set of numbers, but it may also be an element of a given set such as a point within an area, or a color among a given group, or a quality such as good or bad. A variate may be discrete, as in the case of the die, or continuous as in the case of a noise voltage. Fluctuations of the result of a random experiment are due to causes that cannot be entirely controlled. However, if the conditions of the experiment are sufficiently uniform (for instance, if the same die is used in successive throws; if the resistor is at a constant temperature), some statistical regularity can be observed when results of a large number of experiments are considered. The statistical regularity is expressed by the law that gives the probability of obtaining a given result or a result falling within a given range of values. The law of probability is assumed to be the same for each performance of the experiment, independently of the results of other trials. When experiments done in time sequence are not independent, the whole sequence is considered as a single random experiment called a stochastic or random process (see p. 998). A discrete variate, which may take values $x_1, x_2 \ldots x_n \ldots$ is described by p(k), its probability function. p(k) is the probability of obtaining x_k as the result of one trial. $$0 \leqslant p(k) \leqslant 1$$ $$\sum_{\mathbf{n}|\mathbf{l},\mathbf{k}} p(k) = 1$$ If the x_k are real numbers, the cumulative probability function $$P(x) = \sum_{x_k < x} \rho(k)$$ also describes the variate. The p_{k} are the jumps of this function. # General continued For a continuous variate that takes real numerical values, the probability that one trial of the experiment gives a result between x and x + dx is p(x) dx where p(x) is the probability density function. The cumulative distribution function is $$P(x) = \int_{-\infty}^{x} p(x) dx$$ P(x) is the probability that the result is less than x. $$P(-\infty) = 0$$ $$P(+\infty) = \int_{-\infty}^{+\infty} p(x) dx = 1$$ $$\rho(x) = dP/dx$$ For a continuous random variable with more than one dimension or multivariate, the probability density function p and the cumulative distribution function P can also be defined. For instance, if (x,y) are the coordinates of a random point in the plane, then p(x,y) dx dy is the probability that the point has its abscissa between x and x + dx and its ordinate between y and y + dy. The cumulative distribution function is $$P(x,y) = \int_{-\infty}^{x} dx \int_{-\infty}^{y} dy \ \rho(x,y)$$ ## **Definitions** Quantities often used to describe the location and spread of a random variable are listed below. The first formula in each case applies to a discrete variate with probability function $p(k) = p_k$. The second formula applies to a continuous variate x (real number) defined by its probability density function p(x). ## Average or mean $$\mu = \sum_{\mathbf{all} \; k} p_k \; x_k$$ $$\mu = \int_{-\infty}^{+\infty} x \, \rho(x) \, dx$$ Root-mean-square, rms $$r = \left[\sum_{\text{all } k} p_k \, x_k^2\right]^{1/2}$$ ## **Definitions** continued $$r = \left[\int_{-\infty}^{+\infty} x^2 \, \rho(x) \, dx \right]^{1/2}$$ Moment of order r, about the origin $$\nu_r = \sum_{\text{all } k} p_k \, x_k^r$$ $$\nu_r = \int_{-\infty}^{+\infty} x^r \, \rho(x) \, dx$$ Moment of order r, about the mean $$\mu_r = \sum_{k=1}^{\infty} p_k (x_k - \mu)^r$$ $$\mu_{\tau} = \int_{-\infty}^{+\infty} (x - \mu)^{\tau} p(x) dx$$ ### Variance $$\sigma^2 = \mu_2 = \sum_{k \in \mathbb{Z}} p_k (x_k - \mu)^2$$ $$\sigma^2 = \mu_2 = \int_{-\infty}^{+\infty} (x - \mu)^2 p(x) dx$$ Standard deviation or rms deviation from the mean $$\sigma = \left[\sum_{\text{all } k} p_k (x_k - \mu)^2\right]^{1/2}$$ $$\sigma = \left[\int_{-\infty}^{+\infty} (x - \mu)^2 p(x) dx \right]^{1/2}$$ Mean absolute deviation, mae $$=\sum_{\text{all }k}p_k \mid x_k - \mu \mid$$ $$= \int_{-\infty}^{+\infty} |x - \mu| \, \rho(x) \, dx$$ ## **Definitions** continued **Median:** A value m such that the variable x_k (or x) has equal probabilities of being larger or smaller than m. For the continuous case $$\int_{-\infty}^{m} p(x) dx = \int_{m}^{+\infty} p(x) dx$$ **Mode:** A value of x (or x_k) where the probability p(x) (or p_k) is largest. There may be more than one mode. **p-percent value:** A value of x exceeded only p-percent of the time; that is, with probability p/100. This applies mostly to continuous distributions where the p-percent value denoted by x_p satisfies $$1 - P(x_p) = \int_{x_p}^{+\infty} p(x) dx = p/100$$ The median is the 50-percent value. Quartile: The 25- and the 75-percent values. **Expected value or mathematical expectation:** For any variable y equal to a given function g(x) of the random variable x, the expected value is $$E[y] = \sum_{k} g(x_k) p_k$$ and for the continuous case, $$E[y] = \int_{-\infty}^{+\infty} g(x) p(x) dx$$ ## Characteristic function #### Continuous case The characteristic function for a distribution defined by its probability density p(x) or by its cumulative distribution function P(x) is $$C(u) = E[\exp jux] = \int (\exp jux) dP(x) = \int (\exp jux) p(x) dx$$ $$C(0) = 1$$ # Characteristic function continued $$C(-u) = C^*(u)$$ (Where the asterisk denotes the complex conjugate.) C(u) can be expanded in term of the moments $$C(\omega) = 1 + \sum \nu_r (j\omega)^r/r!$$ The function C is the Fourier transform of p, hence $$p(x) = (1/2\pi) \int (\exp -jux) C(u) du$$ For a multivariate $\mathbf{x} = (x_1, x_2, \dots, x_n)$, the characteristic function is $$C(u_1, u_2 ... u_n) = E\{\exp [j(u_1x_1 + u_2x_2 + ... + u_n x_n)]\}$$ $$C(\mathbf{u}) = E[\exp i\mathbf{u} \cdot \mathbf{x}]$$ #### Discrete case The characteristic function corresponding to the probability function p_k is $$C(u) = \sum p_k \exp jux_k$$ ## Addition of statistically independent variables If two independent variates x_1,x_2 have probability densities $p_1(x_1)$ and $p_2(x_2)$, the probability density function for their sum $x=x_1+x_2$ is the convolution integral $$p(x) = \int p_1(x - \xi) p_2(\xi) d\xi$$ or, in shortened form, $$p = p_1 * p_2$$ Similarly the cumulative distribution function for the sum is $$P(x) = P_{1} * p_{2} = \int P_{1}(x - \xi) dP_{2}(\xi)$$ Instead of computing these convolutions, it is simpler to use the corresponding property of the characteristic functions $$C(u) = C_1(u) C_2(u)$$ and to deduce p(x) as
the Fourier transform of C(u). This property extends to the sum of n independent variates. ### **Distributions** #### **Binomial distribution** If the result of a random experiment is one of two alternatives, the statistics are completely defined by the probability p of one of the alternatives. The trial may be the flipping of a coin or the testing of an electron tube taken at random. The preferred alternative or "success" could be a head in the first case, an acceptable tube in the second case. The probability of failure in one trial is $$q = 1 - p$$. In n independent trials, the probability of exactly k "successes" is given by $$C_{k}^{n} p^{k} (1 - p)^{n-k}$$ (definition of C_k^n appears on p. 1038). This is called the binomial distribution because p(k) is the kth term in the development of the binomial $(p+q)^n$. The average of k is np and the variance is $$E[(k - np)^2] = npq$$ The standard deviation is $$(npq)^{1/2}$$ The probability of at least one success in n independent trials is $$1 - (1 - p)^n$$ **Application:** If 15 percent of the components from a given lot are defective, the probability of finding exactly 3 bad ones in a set of 10 is $$C_3^{10} (0.15)^3 (0.85)^7 = \frac{10 \times 9 \times 8}{1 \times 2 \times 3} 15^3 85^7 10^{-20} = 13 \text{ percent}$$ The probability of finding at least one good component in a set of 3 is $$1 - (0.15)^3 = 99.7$$ percent #### Poisson distribution A random experiment that leads to the Poisson distribution might consist of counting, during a given time T, the electrons emitted by a cathode, the telephone calls received at a central office, or the noise pulses exceeding a threshold value. In all these cases the events are, in general, independent of each other and there is a constant probability νdt that one of them will occur during a short interval dt. 987 ## Distributions continued The probability that exactly k events will occur during the time interval T is given by the Poisson frequency function $$P_k = (m^k/k!) \exp(-m)$$ where the parameter $m = \nu T$ is the average number of events during the interval T. The variance of k is $$E[(k - \nu T)^2] = m$$ The standard deviation is $m^{1/2}$ The characteristic function is $$\exp \{m [(\exp ju) - 1]\}$$ The binomial distribution, when the product np is small and n is large, is approximately a Poisson distribution with parameter m = np. ### **Exponential distribution** In a Poisson process, the probability that the interval between two consecutive events lies between t and t+dt is $$v(\exp - vt) dt = d(1 - \exp - vt)$$ with $t \geqslant 0$. The average interval is $$E[t] = 1/\nu$$ The root-mean-square is $$(E[t^2])^{\frac{1}{2}} = 2/\nu$$ The standard deviation is $${E[(t-1/\nu)^2]}^{\frac{1}{2}} = 1/\nu$$ The median is $$(\log_e 2)/\nu = 0.6931/\nu$$ The cumulative distribution function is $$1 - \exp(-\nu t)$$ The probability that an interval is larger than t is Fig. 1—The normal distribution. σ is the standard deviation. Scale C is the cumulative distribution function in percent = 100 Φ (x). For example, the probability of finding x between $-\sigma$ and $+2\sigma$ is 97 - 16 = 81 percent. Scale E is the probability that the error (absolute deviation) exceeds the value read on the axis, For example, if the deviation is larger than 2 σ in either direction, probability is 4.5 percent. **Problem:** Pulses of noise, above a certain level, occur with an average density of 2 per millisecond. A device is triggered every time two pulses occur within the same 5-microsecond interval. How often does this happen? Since $\nu t = 0.01$, then $\exp - 0.01 = 0.990$ (from table on p. 1115) is the probability that one interval will exceed 5 microseconds. The device is triggered by 1 percent of the pairs of consecutive pulses, hence 20 times per second. #### Normal distribution The normal, or Gaussian distribution is often found in practice because it occurs whenever a large number of independent random causes, each producing small effects, act together on the quantity being measured (central limit theorem of the theory of probability). The normal probability density function, for a mean of zero and a standard deviation σ , is $$\varphi_{\sigma}(x) = [1/\sigma(2\pi)^{1/2}] \exp[-\frac{1}{2}(x/\sigma)^2]$$ (See Fig. 1 and table on p. 1116. When the mean value is μ instead of 0, the probability density becomes φ_{σ} (x $-\mu$). The cumulative distribution function $$\Phi(x) = \int_{-\infty}^{x} \varphi_{\sigma}(x) \ dx$$ is given by scale C on Fig. 1 and more accurately by the table on p. 1117. Related to Φ are the error-function erf t and its complementary erfc t: erf $$t = (2/\pi^{1/2}) \int_0^t \exp(-t^2) dt = 2\Phi[t \ 2^{1/2}] - 1$$ erfc $t = 1 - \text{erf } t$ The absolute deviation from the mean $|x-\mu|$, sometimes called the error, has the distribution given in the table on p. 1116 and scale E on Fig. 1. The median value, equal to 0.6745 σ , is called the probable error. It is exceeded 50 percent of the time. The average of $|x-\mu|$, equal to 0.7979 σ , is the mean absolute error. The 3σ error is exceeded with probability of about 0.3 percent. Additive property: The linear combination, with constant coefficients of *n* normal random variables is also a normal random variable. If $$y = c_1x_1 + c_2x_2 + \ldots + c_nx_n$$ where x_i has mean μ_i and variance σ_i^2 , then y has a mean $$\mu = \sum_{c_i \mu_i}$$ and a variance $$\sigma^2 = \sum_{c_i^2} \sigma_{i^2}^2$$ #### Multivariate normal distribution The vector $\mathbf{x} = (x_1, x_2 \dots x_n)$ is normally distributed about the origin if the probability density function is $$\varphi_M(\mathbf{x}) = [(2\pi)^n \det M]^{-1/2} \exp \left[-\frac{1}{2} (\tilde{\mathbf{x}} M^{-1} \mathbf{x}) \right]$$ where the moment, or covariance matrix $M = (\mu_{ij})$ is of order n. The coefficients μ_{ij} are the second-order moments $$\mu_{ij} = E[x_i x_j]$$ Sometimes μ_{ii} , the variance of x_i , is denoted by σ_i^2 and μ_{ij} , the covariance of x_i and x_j , is expressed by $\sigma_i \sigma_j r_{ij}$. The r_{ij} are correlation coefficients. Any linear function of x say, y = Lx, where L is a matrix of order $m \times n$ is normally distributed with the moment matrix $$N = LMI$$ The characteristic function of the multivariate normal distribution is: $$C(\mathbf{u}) = E\left[\exp\left(j\widetilde{\mathbf{u}}\mathbf{x}\right)\right] = \exp\left[-\frac{1}{2}\left(\widetilde{\mathbf{u}}\mathbf{M}\mathbf{u}\right)\right]$$ The sum of two independent, normally distributed vectors \mathbf{x} , \mathbf{y} with covariance matrices M and N, respectively, is normally distributed with covariance matrix M+N $$\varphi_M * \varphi_N = \varphi_{M+N}$$ Normal distribution in two dimensions: Let x,y be the coordinates of the random point, the probability density is $$\varphi(x,y) \ = \frac{1}{2\pi \ \sigma_1\sigma_2 \ (1 \ - \ \rho^2)^{1/2}} \exp \left[\ - \frac{1}{2(1 \ - \ \rho^2)} \left(\frac{x^2}{\sigma_1^2} \ - \frac{2\rho xy}{\sigma_1\sigma_2} + \frac{y^2}{\sigma_2^2} \right) \right]$$ where σ^2_1 and σ_2^2 are the variances of x and y and ρ is their correlation coefficient. Circular case—Rayleigh distribution: When the two variates have the same variance ($\sigma_1 = \sigma_2 = \sigma$) and are not correlated ($\rho = 0$), $$\varphi(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{1}{2}\frac{x^2 + y^2}{\sigma^2}\right)$$ The distance R to the origin, $R^2 = x^2 + y^2$, is distributed according to the probability density function $$\rho(R) dR = (R/\sigma^2) \exp(-R^2/2\sigma^2) dR$$ This is sometimes called the *Raleigh distribution*. When a large number of small independent random phasors with equiprobable phases are added, the extremity of the vector sum is distributed according to the circular normal bivariate distribution. The magnitude R of the sum has therefore the probability density p(R). This applies to the electromagnetic field scattered by a large number of small scatterers. It also describes the distribution of the envelope of a narrow band of Gaussian noise. Fig. 2 shows the function $\rho(R)$ and the scale C gives the probability that some given level will be exceeded. The rms of R is $\sigma(2)^{1/2}$. The average $\sigma(\pi/2)^{1/2}=1.2533\sigma$ is the mean radial error. The median or 50-percent value, 1.1774σ is also called cep (circular error probable), because it is the radius of the 50-percent probability circle in the x,y plane. Fig. 2—Rayleigh distribution. R is the distance to the origin in a bivariate normal distribution. σ is the standard deviation for either component of the normal distribution. Using $X = R^2$ (power) as the variable, $$\rho(R) dR = [\exp(-X/X_0)] d(X/X_0)$$ with $$X_0 = 2\sigma^2$$ When the circular normal distribution has its center at a distance S from the origin, the distance R to the origin is distributed according to $$p(R) dR = \frac{R}{\sigma^2} \exp \left[-\frac{R^2 + S^2}{2\sigma^2} \right] I_0 \left(\frac{RS}{\sigma^2} \right) dR$$ where I_0 = Bessel function with imaginary argument. This is the distribution of the envelope of a sine wave plus some Gaussian noise. It also represents the distribution of the amplitude of a field that results from the addition of a fixed vector and a random component obtained, for instance, by scattering from a large number of small independent scatterers. See sketch at right. ## Chi-square distribution The distribution of the sum of the squares of n independent normal variates, each having mean zero and variance unity, is called the chi-square distribution. The probability density function for this sum x is $$k_n(x) = \frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)} \exp(-x/2)$$ (x, being the sum of n squares, is positive.) The parameter n is called the number of degrees of freedom. The mean of x is n and its variance is 2n. The p-percent value of
x (exceeded p percent of the time) is denoted, for n degrees of freedom, by $\chi_{\pi}^{2}(n)$ $$\int_{\chi_p^2}^{\infty} k_n(x) \ dx = \rho/100$$ Curves of χ_{p}^{2} versus p are shown in Fig. 3. The first functions k_n are: $$k_1(x) = (2\pi x)^{-1/2} \exp(-x/2)$$ where x is the square of the deviation in a normal distribution. $k_2(x) = \frac{1}{2} \exp(-x/2)$ Fig. 3—Chi-square distribution. Function χ_{p^2} (n) for n degrees of freedom. where x corresponds to R^2 in the Rayleigh distribution (see p. 991). $$k_3(x) = (x/2\pi)^{1/2} \exp(-x/2)$$ where x is the square of the distance to the origin of a point in space having a normal distribution with spherical symmetry. # Sampling If a random experiment is repeated n times, the results $x_1, x_2 \dots x_n$ form a sample of size n. The distribution of x from which the sample is drawn is called the parent distribution. The numbers $x_1 ldots x_n$ may not all be different and may form a smaller set $x_1 ldots x_k ldots x_m$ where x_k occurs n_k times. The definitions on pp. 982–984 can be applied to a sample (or to an arbitrary set of numbers) by using the relative frequencies n_k/n in place of the probabilities p_k . The sample mean is $$\bar{x} = (1/n)(x_1 + x_2 + \ldots + x_n)$$ The sample variance is $$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$ If the x_k are in such order that $$x_1 \leqslant x_2 \leqslant x_3 \leqslant \ldots \leqslant x_n$$ the sample median is $$\xi = \chi_{(n+1)/2}$$ if n is odd and $$\xi = \frac{1}{2} \left[x_{n/2} + x_{(n/2)+1} \right]$$ if n is even. #### Estimation of mean and variance of a normal variate Given a sample of size n taken from a normal distribution, a frequent problem is to estimate the mean μ and the variance σ^2 of the parent population. One estimate of μ is the sample mean \bar{x} . It is a normal random variable with average μ (the estimate is unbiased) and with variance σ^2/n . Another ## Sampling co continued unbiased estimate of μ is the sample median ξ . It is easier to compute than \bar{x} but has a larger standard deviation: 1.2 $\sigma/n^{1/2}$ for $n \leq 10$ and 1.25 $\sigma/n^{1/2}$ for n large. In the latter case, ξ becomes normally distributed. The sample variance has an average of $$[(n - 1)/n]\sigma^2$$ and hence it is a biased estimate of the population variance. An unbiased estimate is $$s'^2 = [1/(n-1)] \sum_i (x_i - \bar{x})^2 = [n/(n-1)]s^2$$ which differs appreciably from s^2 when n is small. The standard deviation σ can also be deduced from the sample range; that is, from the difference between the largest and the smallest number in the sample. For a sample of size n, σ is obtained by dividing the range by the number c_n in the table* | n | c n | |-----|------------| | 5 | 2.33 | | 10 | 3.08 | | 20 | 3.73 | | 30 | 4.09 | | 100 | 5.02 | A p-percent confidence interval is such that the quantity estimated falls within that interval p percent of the time. Intervals of this type can be deducted from a given sample for the mean μ and for the variance σ of the parent population. Fig. 4—Student's t distribution. For n degrees of freedom, the ordinate on the curve labelled n is the value t_p exceeded, in either direction, with a probability p/100. For the mean: $$\bar{x} - s' t_{1-p} (n-1) \leq \mu \leq \bar{x} + s' t_{1-p} (n-1)$$ The function t_p (n) is shown in Fig. 4. For instance, for a sample of size 5, ^{*}From: E. S. Peorson, "Percentage Limits for the Distribution of Ronge in Samples for a Normal Population," *Biometrika*, vol. 24, pp. 404–417; November, 1932: see p. 416. See also, E. S. Pearson and H. O. Hartley, "Biometrika Tables for Statisticians," volume 1, Cambridge University Press, London, England; 1954: see table 22. ## Sampling continued the 99-percent confidence interval is from $$\bar{x} - 4.6s'$$ to $\bar{x} + 4.6s'$ since $$t_{0.01}$$ (4) = 4.6 For the variance $$n s^2/\chi^2_{(1-p)/2} (n-1) \le \sigma^2 \le n s^2/\chi^2_{(1+p)/2} (n-1)$$ The function χ^2_p (n) has been defined previously and is shown in Fig. 3. For a sample of size 5, and a confidence of 90 percent, read on Fig. 3 $$\chi^2_5$$ (4) = 9.5 $$\chi^2_{95}$$ (4) = 0.7 Therefore the confidence interval is $$0.42s'^2 \leqslant \sigma^2 \leqslant 5.7s'^2$$ in terms of the unbiased estimate s'^2 of σ^2 : $$s'^2 = \frac{5}{4} s^2$$ ## Chi-square test The problem is to find how well a sample taken from a population agrees with some distribution function assumed for that population. The range of x is divided into m regions and the number of sample points falling within each region is counted. Let $f_1f_2 \ldots f_m$ be the result. From the assumed distribution and the size of the sample, the expected number of points in each region is computed: $g_1,g_2 \ldots g_m$. The deviation between this and the actual result is expressed by $$D = \sum \frac{(f_i - g_i)^2}{g_i}$$ If the f_i are sufficiently large, say more than 10, this deviation is distributed according to the chi-square distribution with m-1 degrees of freedom. The curves of Fig. 3 can be used to evaluate in percent the significance of a given deviation. If the assumed parent distribution is not completely known and r parameters defining it have been determined to fit the sample, the number of degrees of freedom is reduced to m-1-r. ### Chi-square test continued **Application:** During 3 successive one-hour periods the number of telephone calls received at a station was 11, 15, and 23, while during 2 nonoverlapping two-hour periods it was 40 and 37. How does this agree with a Poisson process? Since the density ν (the number of calls per hour) has not been specified, it is deduced from the sample $$\nu = (11 + 15 + 23 + 40 + 37)/7 = 18$$ The deviation from the expected number is $$7^2/18 + 3^2/18 + 5^2/18 + 4^2/36 + 1^2/36 = 5.1$$ For 5-2=3 degrees of freedom, this deviation is exceeded about 15 percent of the time. The assumption of a Poisson process is therefore very good. It would have been significantly doubtful only if the deviation obtained was exceeded as rarely as 5 percent or less of the time. ### Monte Carlo method The Monte Carlo method consists of solving statistical problems, or problems that can be interpreted as such, by substituting for the actual random experiment a simpler one where the desired probability laws are obtained by drawing random numbers. Reading in order the digits in the table on p. 1114 is equivalent to successive trials where the result is one out of 10 equiprobable eventualities. Taking pairs of digits simulate 100 equiprobable eventualities. An event with probability of 63 percent may be simulated by the reading of successive pairs, considering as a "success," any pair from 00 to 62. The successive pairs divided by 100 approximate a random variable uniformly distributed over the 0-to-1 interval. For a smoother approximation, 3 or 4 consecutive digits could be used. Given any continuous variate defined by its cumulative distribution function P(x), it can be simulated by solving $P(x) = r_i$, where r_i are successive random numbers uniformly distributed between 0 and 1. For instance, using pairs of digits read from p. 1114: 49, 31, 97, 45, 80 . . . , the table on p. 1117 gives successive values of x: 0, -0.5σ , 1.9σ , 0.1σ , 0.8σ that will be normally distributed about x = 0 with variance σ^2 . This simulates the result of successive shots aimed at the point x = 0. To obtain accurate numerical results by the Monte Carlo method, a large number of trials should be used and elaborate tables or the help of com- ### Monte Carlo method continued puting machines are necessary. There are cases, however, where only a crude evaluation is needed and it may be obtained even with a short table such as that on p. 1114. **Problem:** Airplanes arrive over an airfield at random, independently of each other, at the average rate of one per minute. The landing operation takes 3/4 minute and only one airplane can be handled at a time. Will many airplanes have to wait before landing? The cumulative distribution function for the interval t minutes between arrival of successive airplanes is $1 - \exp - t$ (see p. 1115). The successive intervals, during an imaginary experiment, may therefore be taken as $t_i = -\log_e (1 - r_i)$, where r_i are the random numbers uniformly distributed between 0 and 1. This is equivalent to $t_i = -\log_e r_i$. Starting at the top left of the table of p. 1114 gives 0.71, 1.17, 0.03, 0.80, 0.22, 0.13, 0.25, 0.40, 0.37, 0.46, 0.17, 0.15, 0.37, 0.65, 3.91, 2.21, 0.17 . . . for the successive intervals in minutes. It is apparent that after a few minutes airplanes will be waiting. A few other trials using other parts of the table show that this situation is not exceptional. The traffic density is too high. The problem could be made more realistic by assuming a normal distribution of the landing times, simulated for instance, as explained above. ### Random processes A random or stochastic process is a random experiment for which the result is a whole function y = f(t) instead of simply a number or a set of numbers. An example of random function is the continuous recording of the noise voltage across a resistor. When the independent variable t takes only discrete values $1, 2, \ldots, n$, the process is called a random series. The probability law for a stochastic process is defined by all possible probability distributions obtained by sampling the random function at a finite number of points. $$p(y_1, y_2 \dots y_n; t_1, t_2 \dots t_n) dy_1 dy_2 \dots dy_n$$ is the probability that at the instants t_k , for k from 1 to n, the value of the function is between y_k and $y_k + dy_k$. The process is called Gaussian or normal when all these distributions are normal. The process is stationary when all the distributions are invariant by a shift in time:
$$p(y_1, y_2 \dots y_n; t + t_2 \dots t + t_n) = p(y_1, y_2 \dots y_n; t_1, t_2 \dots t_n)$$ ## Random processes continued If, furthermore, the process is ergodic,* any quantity g[f] depending on the random function f(t) has a statistical average E[g[f]] equal to the time average $$\operatorname{av} g[f] = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} g(f) dt$$ In this case, all properties of the process can be deduced from a single experiment giving the function f(t) from t = 0 to $t = \infty$. The process is totally or purely random if samples taken at different instants are statistically independent of each other $$p(y_1, y_2 \dots y_n; t_1, t_2 \dots t_n) = p(y_1; t_1) p(y_2; t_2) \dots p(y_n; t_n)$$ ### Power spectrum For the power spectrum of a stationary random function, let $$F_T(\nu) = \int_0^T f(t) \exp(-2\pi j \nu t) dt$$ be the Fourier transform of the given random function f(t) limited to the interval 0 to T. The power spectrum, or power density function is defined by $$W(\nu) = \lim_{T \to \infty} \frac{1}{T} |F_T(\nu)|^2$$ The function W is defined for negative frequencies with $$W(-\nu) = W(\nu)$$ since for a real function f, $$F_{T}(-\nu) = F_{T}^{*}(\nu)$$ Sometimes the spectrum is limited to positive frequencies by considering $$W'(\nu) = 2 W(\nu) \text{ for } \nu > 0$$ $$= 0 \qquad \text{for } \nu < 0$$ The power in a band $\nu_1\nu_2$ is $$\int_{\nu_1}^{\nu_2} W'(\nu) \ d\nu$$ ^{*}A process is ergodic if there is no subset of the functions generated that has a probobility different from 0 and 1 and is stationary. # Random processes continued #### **Correlation function** The correlation function is defined by $$\varphi(\tau) = \lim_{T \to -\infty} \frac{1}{T} \int_0^T f(t) \ f(t+\tau) \ dt$$ The functions φ and W form a pair of Fourier transforms: $$\varphi(t) = \int_{-\infty}^{+\infty} W(\nu) \exp(2\pi j \nu t) d\nu$$ $$W(v) = \int_{-\infty}^{+\infty} \varphi(t) \exp(-2\pi j v t) dt$$ or also $$\varphi(t) = \int_0^\infty W'(\nu) \cos(2\pi\nu t) d\nu$$ $$W'(\nu) = 4 \int_0^\infty \varphi(t) \cos(2\pi\nu t) dt$$ The mean square of f(t) is $$\varphi(0) = \int_{-\infty}^{+\infty} W(\nu) \ d\nu = \int_{0}^{\infty} W'(\nu) \ d\nu$$ If the process is Gaussian it is entirely specified by its second-order properties: power spectrum or correlation function. For instance $p(y_1,y_2;\ 0,t)$ is a bivariate normal probability density function with $\mu_{11}=\mu_{22}=\varphi(0)$ and $\mu_{12}=\varphi(t)$ #### Effect of a linear filter A linear filter is defined by its impulse response h(t) or by its transfer function $H(\nu)$, Fourier transform of h(t). If the input to the filter is the random function $f_1(t)$, the output is the random function $$f_2 = h * f_1$$ $$f_2(t) = \int_{-\infty}^{+\infty} h(t-\tau) f_1(\tau) d\tau$$ # Random processes continued Introducing the gain $$G(\nu) = |H(\nu)|^2$$ the power spectrum of f_2 is $$W_2 = GW_1$$ The correlation function of f_2 is $$\varphi_2 = g * \varphi_1$$ where g is the Fourier transform of G or $$g(t) = h(t) * h(-t) = \int_{-\infty}^{+\infty} h(\tau) h(\tau + t) d\tau$$ # Fourier waveform analysis ## Fourier transform of a function The Fourier transform F(y) of the function f(x) is defined by the integral $$F(y) = \int_{-\infty}^{+\infty} f(x) \exp(-2\pi j x y) dx$$ The function f(x) can be deduced from F(y) by the inverse Fourier transform, $$f(x) = \int_{-\infty}^{+\infty} F(y) \exp(2\pi j x y) dy$$ When x represents time, y is the frequency. Sometimes the radian frequency $2\pi y = \omega$ is used as a variable instead of y and the Fourier transform is expressed as $$F'(\omega) = \int_{-\infty}^{+\infty} f(x) \exp(1 - j\omega x) dx$$ Then $$F'(\omega) = F(\omega/2\pi)$$ and $$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F'(\omega) \exp(j\omega x) d\omega$$ The properties of the Fourier transform are listed in Fig. 1. For the Fourier transform of a random function see pages 998-999. Fig. 1—Properties of Fourier transform.* | | function | Fourier transform | |---|---|---| | 1. Definition | f(x) | $F(y) = \int_{-\infty}^{+\infty} f(x) \exp((-2\pi jxy)) dx$ | | 2. Inverse transform | $f(x) = \int_{-\infty}^{+\infty} F(y) \exp (2\pi j x y) dy$ | F(y) | | 3. Linearity | a f(x) | a F(y) | | | $f_1(x) \pm f_2(x)$ | $F_1(y) \pm F_2(y)$ | | 4. Convolution | h = f * g
i.e., $h(x) = \int_{-\infty}^{+\infty} f(x - \tau) g(\tau) d\tau$ | $H = F \cdot G$ | | 4A. Product | $h = f \cdot g$ | H = F * G | | 5. Unit impulse | \$(x) | $\Delta(y) = 1 \text{ (for all y)}$ | | for Dirac function defined on page 1081) | $\Delta(x) = 1 \text{ (for all } x)$ | δ (y) | | 6. Periodic train of equal impulses | $A \sum_{n=-\infty}^{n=+\infty} \delta(x - nT) \text{ (with n integer)}$ | $\frac{A}{T} \sum_{n=-\infty}^{n=+\infty} \delta(y - n/T)$ | | In the table, functions of x are denoted by | * In the table, functions of x are denoted by lower-case letters and their transforms by the corresponding capital letters. | nding capital letters. | | Ę. | Fig. 1—continued | 8 | continued Fourier transform of a function | | |-----|------------------------------------|-------------------------------------|---|------| | ١ | | function | Fourier transform | . 50 | | 7. | 7. Translation or shifting theorem | $g(x) = f(x - x_0)$ | $G(y) = \exp \{-2\pi j x_0 y\} F(x)$ | | | | | $g(x) = \exp(2\pi j y_0 x) f(x)$ | $G(y) = F(y - y_0)$ | | | ω̈́ | Derivative | g(x) = df/dx | $G(y) = 2\pi j y F(y)$ | | | | | $g(x) = -2\pi jx f(x)$ | G(y) = dF/dy | | | % | 9. Integral | $g(x) = \int_{-\infty}^{x} f(x) dx$ | $G(y) = [1/(2\pi jy)] F(y)$ | | | | | $g(x) = -[1/(2\pi jx)] f(x)$ | $G(y) = \int_{-\infty}^{y} F(y) \ dy$ | | | 10. | 10. Change of unit | $g(x) = f(x/a) \qquad a > 0$ | G(y) = a F(ay) | | | | | $g(x) = b f(bx) \qquad b > 0$ | G(y) = F(y/b) | | | | | | | | $= \int_{-\omega}^{+\infty} |F(y)|^2 dy$ $\int_{-\infty} |f(x)|^2 dx$ 14B. "Energy" relation 11. Symmetry $$g(x) = f(-x)$$ $$f \text{ even: } f(x) = f(-x)$$ $$f \text{ even: } f(x) = f(-x)$$ $$f \text{ odd: } f(x) = -f(-x)$$ $$f \text{ odd: } f(x) = -f(-x)$$ $$g(x) = f^*(x)$$ $$g(x) = f^*(x)$$ $$f \text{ if the function } f \text{ is real}$$ $$f(y) = f^*(y)$$ $$f(y) = f^*(y)$$ $$f(x) = f^*(x)$$ $$f(x) = f^*(x)$$ $$f(x) = f^*(x)$$ $$f(x) = f(x)$$ $$f(x$$ ### Fourier series #### Real form of Fourier series For a periodic function with period 2π , defined by its values in the interval $-\pi$ to $+\pi$ or 0 to 2π , as illustrated in Fig. 2, $$f(x) = \frac{A_0}{2} + \sum_{n=1}^{n=\infty} (A_n \cos nx + B_n \sin nx) \quad x \text{ in radians}$$ $$=\frac{C_0}{2}+\sum_{n=1}^{n-\infty}C_n\cos(nx+\phi_n)$$ where $$C_0 = A_0$$ $$C_{r} = \sqrt{A_{r}^{2} + B_{r}^{2}}$$ $$\phi_n = \tan^{-1} \left(-B_n/A_n \right)$$ Fig. 2—Periodic wave. The coefficients A_0 , A_n , and B_n are determined by $$A_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$$ $$A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx$$ $$B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx$$ # **Arbitrary** period For a periodic function with period T, defined by its values in the intervals -T/2 to +T/2 or from 0 to T instead of from $-\pi$ to $+\pi$ or 0 to 2π , the Fourier expansion is given by $$f(x) = \frac{A_0}{2} + \sum_{n=1}^{n=\infty} \left(A_n \cos 2n \, \frac{\pi}{T} \, x + B_n \sin 2n \, \frac{\pi}{T} \, x \right)$$ and the coefficients by $$A_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos \frac{2n\pi x}{T} dx = \frac{2}{T} \int_{0}^{T} f(x) \cos \frac{2n\pi x}{T} dx$$ ## Fourier series continued $$B_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin \frac{2n\pi x}{T} dx = \frac{2}{T} \int_{0}^{T} f(x) \sin \frac{2n\pi x}{T} dx$$ ### Complex form of Fourier series For functions with period 2π , $$f(x) = \sum_{n=-\infty}^{n=+\infty} D_n \exp(jnx)$$ where $$D_n = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) \exp(1 - jnx) dx$$ and n takes on all positive and negative integral values including zero. #### For real functions $$D_n = \frac{1}{2} (A_n - jB_n) = \frac{1}{2} C_n \exp(j\phi_n)$$ $$D_{-n} = \frac{1}{2} (A_n + jB_n) = \frac{1}{2} C_n \exp(-j\phi_n) = D_n^*$$ $$D_0 = \frac{1}{2} A_0 = \frac{1}{2} C_0$$ For functions with an arbitrary period T $$f(x) = \sum_{n = -\infty}^{n = +\infty} D_n \exp\left[j\frac{2n\pi x}{T}\right]$$ $$D_n = \frac{1}{T} \int_0^T f(x) \exp\left[-j\frac{2n\pi x}{T}\right] dx$$ ## Average power The average power of the periodic waveform f(x) is $$\frac{1}{T} \int_{0}^{T} |f(x)|^{2} dx = \sum_{n=-\infty}^{n=+\infty} |D_{n}|^{2}$$ $$= \frac{1}{4} C_{0}^{2} + \frac{1}{2} \sum_{n=1}^{n=\infty} C_{n}^{2}$$ $$= \frac{1}{4} A_{0}^{2} + \frac{1}{2} \sum_{n=1}^{n=\infty} (A_{n}^{2} + B_{n}^{2})$$ ### Fourier series continued ### Odd and even functions If f(x) is an odd function, i.e., $$f(x) = -f(-x)$$ then all the coefficients of the cosine terms (A_n) vanish and the Fourier series consists of sine terms alone. If f(x) is an even function, i.e., $$f(x) = f(-x)$$ then all the coefficients of the sine terms (B_n) vanish and the Fourier series consists of cosine terms alone, and a possible constant. The Fourier expansions of functions in general include both cosine and sine terms. Every function capable of Fourier expansion consists of the sum of an even and an odd part: $$f(x) = \underbrace{\frac{A_0}{2} + \sum_{n=1}^{n=\infty} A_n \cos nx}_{\text{even}} + \underbrace{\sum_{n=1}^{n=\infty} B_n \sin nx}_{\text{odd}}$$ To separate a general function f(x) into its odd and even parts, use $$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{even}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{odd}}$$ Whenever possible choose the origin so that
the function to be expanded is either odd or even. ### Odd or even harmonics An odd or even function may contain odd or even harmonics. A condition that causes a function f(x) of period 2π to have only odd harmonics in its Fourier expansion is $$f(x) = -f(x + \pi)$$ A condition that causes a function $f(\mathbf{x})$ of period 2π to have only even harmonics in the Fourier expansion is ### Fourier series continued $$f(x) = f(x + \pi)$$ These conditions are sufficient but not necessary. To separate a general function f(x) into its odd and even harmonics use $$f(x) = \frac{f(x) + f(x + \pi)}{2} + \frac{f(x) - f(x + \pi)}{2}$$ even harmonics odd harmonics A periodic function may sometimes be changed from odd to even, and vice versa, by a shift of the origin but the presence of particular odd or even harmonics is unchanged by such a shift. ### **Numerical evaluation** If the function to be analyzed is not known analytically, a solution of the Fourier integral may be approximated by numerical integration. For instance, the period of the function is divided into 12 equal parts as indicated by Fig. 3. Fig. 3—Division of the period of the function for numerical solution. The values of the ordinates at these 12 points are recorded and the following computations made: | | Y ₀ | Y_1 Y_{11} | Y ₂
Y ₁₀ | Y ₃
Y ₉ | Y ₄
Y ₈ | Y ₅
Y ₇ | Y ₅ | |-------------------|----------------|----------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------| | Sum
Difference | S ₀ | S ₁ | S ₂
d ₂ | S ₃
d ₃ | S ₄
d ₄ | S ₅ | S ₆ | ### Numerical evaluation continued The sum terms are arranged as follows: | | S ₀ | S ₁
S ₅ | S ₂
S ₄ | S ₃ | $\frac{\overline{S_0}}{\overline{S_2}}$ | S ₁
S ₃ | |------------|-----------------------------|----------------------------------|----------------------------------|------------------|---|----------------------------------| | Sum | $\overline{\overline{S}_0}$ | <u>S</u> 1 | <u>S</u> 2 | $\overline{S_3}$ | <u>S</u> 7 | S ₈ | | Difference | D٥ | D ₁ | D ₂ | | | | The difference terms are as follows: | | d ₁
d ₅ | d ₂
d ₄ | d ₃ | · · · · · · · · · · · · · · · · · · · | <u></u> | D ₀ | |------------|----------------------------------|----------------------------------|----------------|---------------------------------------|--------------------|----------------| | Sum | S ₄ | S ₅ | S ₆ | | $\frac{1}{S_6}$ | D ₂ | | Difference | D_3 | D_4 | | | $\overline{D_{5}}$ | D ₆ | The coefficients of the Fourier series are now obtained as follows, where $A_0/2$ equals the average value, the $A_1 \ldots A_n$ expressions represent the coefficients of the cosine terms, and the $B_1 \ldots B_n$ expressions represent the coefficients of the sine terms: $$\frac{A_0}{2} = \frac{\overline{S_7} + \overline{S_8}}{12}$$ $$A_1 = \frac{D_0 + 0.866 D_1 + 0.5 D_2}{6}$$ $$A_2 = \frac{\overline{S_0} + 0.5 \overline{S_1} - 0.5 \overline{S_2} - \overline{S_3}}{6}$$ $$A_3 = \frac{D_6}{6}$$ $$A_4 = \frac{\overline{S_0} - 0.5 \overline{S_1} - 0.5 \overline{S_2} + \overline{S_3}}{6}$$ $$A_5 = \frac{D_0 - 0.866 D_1 + 0.5 D_2}{6}$$ $$A_6 = \frac{\overline{S_7} - \overline{S_8}}{12}$$ ### Numerical evaluation continued Also $$B_1 = \frac{0.5 \ \overline{S_4} + 0.866 \ \overline{S_5} + \overline{S_6}}{6}$$ $$B_2 = \frac{0.866 (D_3 + D_4)}{6}$$ $$B_3 = \frac{D_5}{6}$$ $$B_4 = \frac{0.866 (D_3 - D_4)}{6}$$ $$B_{\delta} = \frac{0.5 \, \overline{S_4} - 0.866 \, \overline{S_5} + \overline{S_6}}{6}$$ Common pulse forms and spectrums Fig. 4-Time and frequency functions for commonly encountered pulse shapes. time function 54 2 #12 frequency function 5|2 5# 3,4 (See curve (sin x)/x below.) $G(f) = \mathcal{A} (\sin \alpha)/\alpha$ where $\alpha = \pi t_0 f$ x in radians x/(x nis) = (x)\ 0.6 A. Rectangular pulse Area $\mathcal{A}=At_0$ $g(t) = A \text{ for } -\frac{t_0}{2} < t < \frac{t_0}{2}$ = 0 otherwise | frequency function | | (N)9
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | |--------------------|----------------------------|---| | lime function | gle pulse | $g(t) = A\left(1 - \frac{t}{t_1}\right), 0 < t < t_1$ $= A\left(1 + \frac{t}{t_1}\right), -t_1 < t < 0$ where $\alpha = \pi t_1 t$ $= 0, \text{ otherwise}$ | | | B. Isoceles-triangle pulse | $-\frac{1}{t_1}$ Area $\mathcal{A} = At_1$ | C. Sawtooth pulse eventually after some shifts in time. The pulse spectrum is the same linear combination of the corresponding spectrums D. Any pulse of polygonal form may be represented as a linear combination of waveforms such as A, B, and C above (eventually modified according to property 7, Fig. 1). time function E. Cosine pulse # continued Common pulse forms and spectrums frequency function where $$\alpha = 2i_0 f$$ For $\alpha = 1$, $G(f) = \mathcal{A} \pi / 4$ $G(f) = \mathcal{A} \frac{\sin \pi \alpha}{\pi \alpha (1 - \alpha^2)}$ For $\alpha = 1$, $G(f) = \frac{1}{2}A$ $g(t) = A\cos \pi \frac{t}{t_0}, -\frac{t_0}{2} < t < \frac{t_0}{2}$ = 0, otherwise Area $\mathcal{A}=\frac{2}{\pi}$ At₀ **₽**g(t) G. Gaussian pulse Use curve on p. 988 with standard deviation $\sigma = t_1$ $g(t) = A \exp \left(-\frac{1}{2} \left(\frac{t}{t_1}\right)^2\right)$ Use curve on p. 988 with standard deviation $$\sigma = f_1 = 1/2\pi t_1$$ $$G(f) = \mathcal{A} \exp -\frac{1}{2} \left(\frac{f}{f_1}\right)^2$$ Ared $\mathcal{A} = At_1(2\pi)^{1/2}$ H. Critically damped exponential pulse ### **Pulse-train analysis** If the pulse defined by the function g(t) is repeated every interval T, a periodic waveform $$y(t) = \sum_{n=-\infty}^{n=+\infty} g(t - nT)$$ results with period T and repetition frequency F = 1/T (see Fig. 5A, B). This pulse train may be expressed as a convolution product $$y(t) = \left[\sum_{n=-\infty}^{n=+\infty} \delta(t-nT)\right] * g(t)$$ and, applying properties 4 and 6 (Fig. 1), its Fourier transform is $$Y(f) = \frac{1}{T} \left[\sum_{n=-\infty}^{n=+\infty} \delta(f - nF) \right]. G(f)$$ The function y(t) is represented by the Fourier series $$y(t) = \sum_{-\infty}^{+\infty} D_n \exp (jnt)$$ where $$D_n = (1/T) G(nF)$$ The coefficients D_n are obtained by sampling the pulse spectrum at frequencies multiple of the repetition frequency. The amplitude C_n of the nth harmonic in the real representation (see p. 1006) is $$C_n = 2 |D_n| = (2/T) |G(nF)|$$ By a translation τ of the time origin, the D_n are multiplied by the factor exp $(-2\pi j n \tau/T)$; the C_n are not changed. The constant term of the series: $$D_0 = A_0/2 = C_0/2$$ is the average amplitude $$A_{av} = A/T = G(0)/T$$ ### Pulse-train analysis continued where $$\mathcal{A} = \int_0^T g(t) dt$$ is the area under one pulse. If the pulses do not overlap; i.e., if the function g(t) is zero outside of some period a to a + T; the energy in a pulse is Fig. 5—The spectrum for pulse trains. Spectrums are in general complex functions. They are represented here by real curves only to simplify the illustration. | waveform | spectrum |
---|---------------------| | A. Single pulse | | | 0 | 0 G(1) | | B. Infinite periodic pulse train | | | $\frac{1}{2\tau} \int_{0}^{4y(t)} \int_{0}$ | G(f) $f = nF = n/T$ | | C. Limited pulse train | | | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | H(r) -G(r) | ### Pulse-train analysis continued $$E = \int_{a}^{a+T} g^{2}(t) dt = \int_{-\infty}^{+\infty} |G(f)|^{2} df$$ The root-mean-square amplitude is $$A_{\rm rms} = (E/T)^{1/2}$$ The average power of the pulse train is $$E/T = A^2_{\text{rms}} = \sum_{n=-\infty}^{n=+\infty} |D_n|^2 = \frac{1}{4} C_0^2 + \frac{1}{2} \sum_{1}^{\infty} C_n^2$$ A pulse train of finite extent, where all the pulses have the same shape and are spaced periodically may be represented as a product: $$y(t) = h(t) \cdot \sum_{n=-\infty}^{n=+\infty} g(t - nT)$$ The function h(t) defines the envelope of the pulse train. The Fourier transform $$Y(f) = \frac{1}{T} G(f) \cdot \sum_{n=-\infty}^{n=+\infty} H(f - nF)$$ may be interpreted, in the frequency domain, as a train of pulses having G(f) as an envelope and a form defined by H(f). See Fig. 5C. When h(t) = 1, then H(t) is the δ function. The pulse train is a periodic waveform having a line spectrum as explained above. See Fig. 5B. The Fourier series coefficients for a number of commonly encountered pulse trains are given in Fig. 6. When the pulse train is derived from a pulse listed in Fig. 6, the coefficients can also be read off the corresponding spectrum curve by sampling at values n/T of the frequency. | • | | |----------|--| | ă | | | | | | _ | | | • | | | ž | | | ⋍ | | | 7 | | | ٥ | | | ~ | | | - | | | - | | | ◛ | | | = | | | 8 | | | • | | | • | | | = | | | E | | | ⊏ | | | ā | | | z | | | ā | | | z | | | 2 | | | 0 | | | 5 | | | , | | | | | | v | | | = | | | ū | | | ۰ | | | ř | | | Ξ | | | Ψ | | | _ | | | 1 | | | 1 | | | waveform | _ | |---------------------|--------| | A. Rectongular wave | | | | ا
ئ | |] | Can b | | : | Ехатр | | | | Derived from rectangular pulse, Fig. 4A $$A_{\rm rms} = A \left(\frac{t_0}{7}\right)^{1/2}$$ $A_{av} = A \frac{t_0}{T}$ B. Isoceles-triangle wave Derived from triangular pulse, Fig. 4B 1-1 $$A_{BV} = A \frac{I_1}{T} \qquad A_{TMS} = A \left(\frac{2I_1}{3T} \right)^{1/2}$$ $$= 2D_n = 2A_{av} \left| \frac{\sin n\pi t_0/T}{n\pi t_0/T} \right|$$ coefficient of Fourier series continued Pulse-train analysis be read off curve of ($\sin x I/x$, Fig. 4A, by sampling at $n\pi t_0/T$. ple: If $$T = 2l_0$$, $$y^{\{i\}} = 2A_{\text{av}}\left(\frac{1}{2} + \frac{2}{\pi}\cos\theta - \frac{2}{3\pi}\cos3\theta + \dots\right)$$ with $$\theta = 2\pi t/T$$ $$\begin{split} C_n &= 2 A_{\text{av}} \left(\frac{\sin n \pi t_1 / T}{n \pi t_1 / T} \right)^2 \\ \text{Example: If } T &= 2 t_1, \\ y(t) &= 2 A_{\text{av}} \left[\frac{1}{2} + \left(\frac{2}{\pi} \right)^2 \cos \theta + \left(\frac{2}{3\pi} \right)^2 \cos 3\theta + \dots \right] \\ \text{with } \theta &= 2 \pi t / T \end{split}$$ waveform C. Sawtooth wave continued Pulse-train analysis coefficient of Fourier series $$C_n = 2A_{av} \frac{1}{\pi^n}$$ $$y(t) = 2A_{av} \left(\frac{1}{2} - \frac{1}{\pi} \sin \theta - \frac{1}{2\pi} \sin 2\theta - \dots\right)$$ $C_n = 2A_{\rm sv} \frac{1}{\pi n}$ $C_n = 2A_{av} \frac{1}{\alpha^2} \left[\sin^2 \alpha + \alpha (\alpha - \sin 2\alpha) \right]^{1/2}$ $A_{\rm rms} = A \, 3^{-1/2}$ $A_{av} = \frac{A}{2}$ Derived from triangular pulse, Fig. 4C D. Clipped sawtooth wave with $\alpha = n\pi t_0/T$ $A_{\rm rms} = A \left(\frac{t_0}{3T}\right)^{1/2}$ Derived from triangular pulse, Fig. 4C $$A_{av} = A \frac{t_0}{2T} \qquad A_{rms} =$$ E. Sawtooth wave Derived from the sum of two triangular pulses, Fig. 4C $$A_{\rm rms} = A \, 3^{-1/2}$$ $A_{8v} = \frac{A}{2}$ F. Symmetrical trapezoidal wave Derived as in Fig 4D. $$A_{av} = A \frac{t_0 + t_1}{T}$$ $A_{rms} = A \left(\frac{3t_0 + 2t_1}{3T} \right)^{1/2}$ $$C_n = 2A_{av} \frac{T^2}{\pi^2 n^2 t_1 t_2} \sin n\pi \frac{t_1}{T}$$ with $t_1 + t_2 = T$ $$D_n = A_{av} \frac{\sin \pi n t_1/T}{\pi n t_1/T} \frac{\sin \pi n t t_1 + t_0/T}{\pi n t_1 + t_0/T}$$ $$C_n = 2 \mid D_n \mid$$ Fig. 6— | nalysis | 2 | CHAPTER 35 | |--------------------------------|-------------------------------
--| | continued Pulse-train analysis | coefficient of Fourier series | $C_n = 2A_{\rm av} \left \frac{\cos \ln \pi t_0/T}{1 - (2nt_0/T)^2} \right $ For $nt_0/T = 1/2$, this becomes $\pi A_{\rm av}/2$ | | Fig. 6—continued | waveform | G. Train of cosine pulses $\frac{-t_0}{2} \circ \int_{\frac{t_0}{2}}^{t_0} \int_{\frac{t_0}{2}}^{t_0} \int_{\frac{t_0}{2}}^{t} \int_{$ | $$A_{\text{bv}} = \frac{2}{\pi} A \frac{t_0}{T} \qquad A_{\text{rms}} = A \left(\frac{t_0}{2T} \right)^{1/2}$$ H. Full-wave-rectified sine wave $$A_{y(t)}$$ Derived from cosine pulse, Fig. 4E Derived from cosine pulse, Fig. 4E same as Fig. 6G with $t_0=7\$ $\ldots - (-1)^n \frac{1}{4n^2 - 1} \cos n\theta \ldots$ $y(t) = 2A_{BV} \left[\frac{1}{2} + \frac{1}{3} \cos \theta - \frac{1}{15} \cos 2\theta + \frac{1}{35} \cos 3\theta \dots \right]$ for n X 0 $C_n = 2A_{av} \frac{1}{4n^2 - 1}$ $C_0 = 2A_{BV}$ $$A_{av} = \frac{2}{\pi} A$$ $$A_{\rm rms} = A/(2)^{1/2}$$ with $\theta = 2\pi t/T$ coefficient of Fourier series $$z_n = 2A_{av} \left| \frac{\cos{(n\pi t_0/T)}}{1-(2nt_0/T)^2} \right|$$ for $nt_0/T=1/2$, this becomes $\pi A_{av}/2$ 1. Half-wave-rectified sine wave Derived from cosine pulse, Fig. 4E (same as Fig. 6G with $t_0=T/2$ $$A_{BV} = \frac{1}{\pi} A$$ Arms $A_{\rm rms} = \frac{A}{2}$ ## J. Train of cosine-squared pulses Derived from cosine-squared pulse, Fig. 4F $$A_{av} = \frac{1}{2} A \frac{t_0}{T} \qquad A_{rms}$$ $$A_{\rm rms} = \frac{1}{2} A \left(\frac{3t_0}{2T} \right)^{1/2}$$ $$C_0 = 2A_{BV}$$ $a_{+1} = 0$, except for $C_1 = 2/$ $$C_{2n+1}=0$$, except for $C_1=2A_{BV}\frac{\pi}{4}$ $$2n+1 = 0$$, except for $C_1 - L_2$ $C_{2n} = 2A_{3v} \frac{1}{4n^2 - 1}$ $$y^{(l)} = 2A_{av} \left[\frac{1}{2} + \frac{\pi}{4} \cos \theta + \frac{1}{3} \cos 2\theta - \frac{1}{15} \cos 4\theta + \dots \right]$$ $\ldots + (-1)^n \frac{1}{4n^2-1} \cos 2n\theta \ldots$ $C_n = 2A_{av} \frac{1}{(n\pi t_0/T)[1 - (nt_0/T)^2]}$ waveform Fig. 6-continued K. Fractional sine wave $A_{rms} = \frac{A}{(2\pi)^{1/3}} \frac{[2\alpha + \alpha \cos 2\alpha - (3/2) \sin 2\alpha]^{1/2}}{1 - \cos \alpha}$ 1 - cos a $A_{av} = \frac{A}{\pi} \frac{\sin \alpha - \alpha \cos \alpha}{1 - \cos \alpha}$ with $\pi t_0/T = \alpha$ L. Critically damped exponential wave (period $T\gg$ period t_1 to make overlap negligible) $A_{\rm rms} = \frac{A_{\rm e}}{2} \left(\frac{t_1}{T} \right)^{1/2}$ Derived from exponential pulse, Fig. 4H $A_{BV} = Ae \frac{1}{T}$ e = 2.7182 . . . $$C_n = 2A_{av} \frac{1}{1 + (2\pi n t_1/T)^2}$$ $= 2A_{BV} \cos^2 \theta_n$ with tan $\theta_n = 2\pi n t_1/T$ ### ■ Maxwell's equations ### General* The following four basic laws of electromagnetism for bodies at rest are derived from the fundamental, experimental, and theoretical work of Ampere and Faraday, and are valid for quantities determined by their average values in volumes that contain a very great number of molecules (macroscopic electromagnetism). ### Statement of four basic laws rationalized mks units - **a.** The work required to carry a unit magnetic pole around a closed path is equal to the total current linking that path, that is, the total current passing through any surface that has the path for its periphery. This total current is the sum of the conduction current and the displacement current, the latter being equal to the derivative with respect to time of the electric induction flux passing through any surface that has the above closed path for its periphery. - **b.** The electromotive force (e.m.f.) induced in any fixed closed loop is equal to minus the time rate of change of the magnetic induction flux ϕ_B through that loop. By electromotive force is meant the work required to carry a unit positive charge around the loop. - ${f c.}$ The total flux of electric induction diverging from a charge Q is equal to Q in magnitude. - **d.** Magnetic-flux lines are continuous (closed) loops. There are no sources or sinks of magnetic flux. ### Expression of basic laws in integral form a. $$\int_0 \mathbf{H} \cdot \mathbf{ds} = I_{\text{total}} = I_{\text{conduction}} + \frac{\partial \phi_D}{\partial t}$$ where = a line integral around a closed path ds = vector element of length along path $\mathbf{H} = \text{magnetic-field vector}$ $\phi_{\rm D} = {\rm electric\ induction\ flux}$ ^{*} Developed from: J. E. Hill, "Maxwell's Four Basic Equations," Westinghouse Engineer, vol. 6; p. 135; September, 1946. ### Expression of basic laws in integral form continued **b.** $$\int_C \mathbf{E} \cdot \mathbf{ds} = -\frac{\partial \phi_B}{\partial t}$$ The time rate of change of ϕ_B is written as a partial derivative to indicate that the loop does not move (the coordinates of each point of the loop remain fixed during integration). **E** is the electric-field vector. c. $$\int_{s} \mathbf{D} \cdot \mathbf{dS} = \mathbf{Q}$$ where S = any closed surface **dS** = vector element of S **D** = vector electric-flux density Q = the net electric charge within S and the integral indicates that **D-dS** is to be calculated for each element of S and summed. S = total surface Q = total charge inside S $$\mathbf{d.} \int_{\mathbf{r}} \mathbf{B} \cdot \mathbf{dS} = 0$$ where **B** = vector magnetic-flux density. **B** lines are closed curves; os many enter region as leave it. ### Basic laws in derivative form | | - | 955 | | espos-eerl | free-space
single-frequency |
---|---|---|--|---|---| | $ \begin{array}{c} \mathbf{G} \\ \text{curl H} \\ \end{bmatrix} = j_c + \frac{\partial \mathbf{D}}{\partial t} $ | curl H = 0 | $curl H$ $= j_c$ | $curl H$ $\approx j_c$ | $Curl \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}$ | $curl\;\mathbf{H} \; \bigg\} \; = \; j\omega_{\mathbf{G}}\mathbf{E}$ | | <pre></pre> | $ \begin{aligned} \mathbf{j}_{\mathbf{c}} &= 0 \\ \mathbf{j}_{\mathbf{c}} &= 0 \\ \mathbf{j}_{\mathbf{c}} &= 0 \end{aligned} $ | Conduction current exists but time derivatives are zero | OD/θt can be neglected except in capacitors (ac at industrial power frequencies) | • | | | $\frac{\mathbf{b}}{\operatorname{curl}\mathbf{E}} \left\{ \begin{array}{l} -\frac{\partial \mathbf{B}}{\partial t} \\ -\frac{\partial \mathbf{B}}{\partial t} \end{array} \right.$ | $ \begin{array}{c} \text{curl } \mathbf{E} \\ \nabla \times \mathbf{E} \end{array} = 0 $ | curl E | $cut \mathbf{E} \begin{cases} cut \mathbf{E} \\ -\frac{\partial \mathbf{B}}{\partial t} \end{cases} = -\frac{\partial \mathbf{B}}{\partial t}$ | | cut \mathbf{E} $\nabla \times \mathbf{E}$ $= -j\omega \mu_0 \mathbf{H}$ | | | | | | $= -\mu_0 \frac{\partial t}{\partial t}$ $\mu_0 = \text{magnetic permeability of free space}$ | | | $ \frac{\mathbf{c}}{\operatorname{div} \mathbf{D}} \begin{cases} \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{cases} = \rho $ $ \mathbf{c} \cdot \mathbf{c} c$ | $\operatorname{div} \mathbf{D} = \left\{ \begin{array}{c} \operatorname{div} \mathbf{D} \\ \nabla \cdot \mathbf{D} \end{array} \right\} = \rho$ | div D
∇·D = ρ | $\phi = \begin{cases} \mathbf{d} & \mathbf{v} \mathbf{b} \\ \mathbf{d} & \nabla \end{cases}$ | $\frac{div\mathbf{E}}{\nabla\cdot\mathbf{E}}\bigg\}=0$ | | | $\begin{cases} \mathbf{d} \\ \text{div } \mathbf{B} \\ \nabla \cdot \mathbf{B} \end{cases} = 0$ | div B | div B
∇⋅B
= 0 | div B | div H | div H } = 0 | ### Basic laws in derivative form continued ### Notes: For an explanation of the operator ∇ (del) and the associated vector operations see p. 1086 in the "Mathematical formulas" chapter. $$\begin{array}{l} \epsilon_0 = \frac{1}{36\pi \, \times \, 10^9} \, \text{farad/meter} \\ \mu_0 = 4\pi \, \times \, 10^{-7} \, \, \text{henry/meter} \end{array} \right\} \, \, \text{in the rationalized meter-kilogram-second} \, \, \text{system of units.}$$ Maxwell's equations result in the law of conservation of electric charges, the integral form of which is $$I = -\partial Q_i/\partial t$$ Q_e = net sum of all electric charges within a closed surface S I =outgoing conduction current and the derivative form $$\operatorname{div} j_{c} = - \frac{\partial \rho}{\partial t}$$ Boundary conditions at the surface of separation between two media 1 and 2 are $$\mathbf{H}_{2T} - \mathbf{H}_{1T} = \mathbf{j}_{s} \times \mathbf{N}^{\circ}_{1,2}$$ $\mathbf{B}_{2N} - \mathbf{B}_{1N} = 0$ $\mathbf{E}_{2T} - \mathbf{E}_{1T} = 0$ $\mathbf{D}_{2N} - \mathbf{D}_{1N} = \sigma$ Subscript T denotes a tangential, and subscript N a normal component. N°_{1,2} = unit normal vector from medium 1 to medium 2, which is the positive direction for normal vectors j_* = current density on the surface, if any $\sigma =$ density of electric charge on the surface of separation ### Retarded potentials H. A. Lorentz Consider an electromagnetic system in free space in which the distribution of electric charges and currents is assumed to be known. From the four basic equations in derivative form: curl $$\mathbf{H} = \mathbf{j}_c + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$ curl $\mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$ div $\mathbf{E} = \frac{\rho}{\epsilon_0}$ ### Retarded potentials continued two retarded potentials can be determined: one scalar, $$\phi = \frac{1}{4\pi\epsilon_0} \int_{\infty}^{\infty} \frac{\rho^* dV}{r}$$ one vector, $\mathbf{A} = \frac{1}{4\pi} \int_{\infty}^{\infty} \frac{\mathbf{j}_c^*}{r} dV$ The asterisks mean that the values of the quantities are taken at time t-r/c, where r is the distance from the location of the charge or current to the point P considered, and c= velocity of propagation = velocity of light = $1/\sqrt{\epsilon_0\mu_0}$. The electric and magnetic fields at point P are expressed by $$\mathbf{H} = \operatorname{curl} \mathbf{A}$$ $\mathbf{E} = -\operatorname{grad} \phi - \mu_0 \frac{\partial \mathbf{A}}{\partial t}$ ### Fields in terms of one vector only Hertz vector The previous expressions imply a relation between ϕ and \mathbf{A} $$\operatorname{div} \mathbf{A} = -\epsilon_0 \frac{\partial \phi}{\partial t}$$ Consider a vector Π such that $\mathbf{A} = \partial \Pi/\partial t$. Then for all variable fields $$\phi = -\frac{1}{\epsilon_0} \operatorname{div} \Pi$$ The electric and magnetic fields can thus be expressed in terms of the vector $\boldsymbol{\Pi}$ only $$\mathbf{H} = \operatorname{curl} \frac{\partial \Pi}{\partial t}$$ $$\mathbf{E} = \frac{1}{\epsilon_0} \operatorname{grad} \operatorname{div} \Pi - \mu_0 \frac{\partial^2 \Pi}{\partial t^2}$$ ### **Poynting vector** Consider any volume V of the previous electromagnetic system enclosed in a surface S. It can be shown that $$-\int_{V} \mathbf{E} \cdot \mathbf{j}_{e} \, dV = \frac{\partial}{\partial t} \int_{V} \left(\frac{\epsilon_{0} E^{2}}{2} + \frac{\mu_{0} H^{2}}{2} \right) dV + \operatorname{flux}_{S} \mathbf{E} \times \mathbf{H}$$ The rate of change with time of the electromagnetic energy inside V is equal to the rate of change of the amount of energy localized inside V ### Poynting vector continued plus the flux of the vector $\mathbf{E} \times \mathbf{H}$ through the surface S enclosing said volume V. The vector product $\mathbf{E} \times \mathbf{H}$ is called the Poynting vector. In the particular case of single-frequency phenomena, a complex Poynting vector $\mathbf{E} \times \mathbf{H}^*$ is often utilized (\mathbf{H}^* is
the complex conjugate of \mathbf{H}). It can be shown that $$-\int_{\mathcal{V}} \frac{\mathbf{E} \cdot \mathbf{j}_{c}^{*}}{2} \, \mathrm{dV} = 2j\omega \int_{\mathcal{V}} \left(\mu_{0} \frac{HH^{*}}{4} - \epsilon_{0} \frac{EE^{*}}{4}\right) \mathrm{dV} + \mathrm{flux}_{S} \frac{\mathbf{E} \times \mathbf{H}^{*}}{2}$$ This shows that in case there is no conduction current inside V and the flux of the complex Poynting vector out of V is zero, then the mean value per period of the electric and magnetic energies inside V are equal. ### Superposition theorem The mathematical form of the four basic laws (linear differential equations with constant coefficients) shows that if two distributions **E**, **H**, j_c , ρ , and **E'**, **H'**, j_c' , ρ' , satisfy Maxwell's equations, they are also satisfied by any linear combination **E** + λ **E'**, **H** + λ **H'**, j_c + $\lambda j_c'$, and ρ + $\lambda \rho'$. ### Reciprocity theorem Let j_c be the conduction current resulting in any electromagnetic system from the action of an external electric field \mathbf{E}_{a_i} and $j_c{'}$ and $\mathbf{E}_{a'}{'}$ be the corresponding quantities for another possible state; then $$\int_{-\infty} (\mathbf{E}_a \cdot \mathbf{j}_c' - \mathbf{E}_a' \cdot \mathbf{j}_c) \, dV = 0$$ This is the most useful way of expressing the general reciprocity theorem (Carson). It is valid provided all quantities vary simultaneously according to a linear law (excluding ferromagnetic substances, electronic space charge, and ionized-gas phenomena). A particular application of this general reciprocity theorem will be found on p. 132. ### Maxwell's equations in different systems of coordinates When a particular system of coordinates is advantageously used, such as cylindrical, spherical, etc., the components are derived from the vector equations by means of the formulas included in the chapter "Mathematical formulas," pages 1088 and 1089. ### ■ Mathematical formulas ### Mensuration formulas ### Areas of plane figures | figure | formula | |-----------------|---| | Parallelogram | Area = bh | | Trapezoid | $Area = \frac{1}{2}h(a + b)$ | | Triangle | Area = ½bh | | Regular polygon | Area = $nr^2 tan \frac{180^{\circ}}{n}$
= $\frac{n}{4} S^2 \cot \frac{180^{\circ}}{n}$
= $\frac{n}{2} R^2 \sin \frac{360^{\circ}}{n}$
n = number of sides
r = short radius
S = length of one side
R = long radius | continued ### ... Circle Agure Area = $$\pi r^2$$ $$r = \text{radius}$$ $r = 3.141593$ formula ### Segment of circle Area = $$\frac{1}{2}[br-c(r-h)]$$ b = length of arc c = length of chord = $$\sqrt{4(2hr - h^2)}$$ ### Sector of circle $$Area = \frac{br}{2} = \pi r^2 \frac{\theta}{360^{\circ}}$$ ### Parabola Area = $$\frac{2}{3}bh$$ formula ### Mensuration formulas continued ### Ellipse figure $Area = \pi ab$ ### **Trapezium** Area = $\frac{1}{2}[a(h_1 + h_2) + bh_1 + ch_2]$ ### Approximate area of irregular plane surface ### Trapezoidal rule Area $$pprox \Delta \left(rac{y_1}{2} + y_2 + y_3 + \ldots + y_{n-2} + y_{n-1} + rac{y_n}{2} \right)$$ Simpson's rule: n must be odd Area $$\approx \frac{\Delta}{3}(y_1 + 4y_2 + 2y_3 + 4y_4 + 2y_5 + \dots + 2y_{n-2} + 4y_{n-1} + y_n)$$ $y_1, y_2, y_3 \dots y_n =$ measured lengths of a series of equidistant parallel chords continued ### Surface areas and volumes of solid figures figure Surface = $$4\pi r^2$$ = 12.5664 r^2 = πd^2 Volume = $\frac{4\pi r^3}{3}$ = 4.1888 r^3 formula ### Sector of sphere Total surface $$= \frac{\pi r}{2} (4h + c)$$ $$Volume = \frac{2\pi r^2 h}{3} = 2.0944 r^2 h$$ $$= \frac{2\pi r^2}{3} \left(r - \sqrt{r^2 - \frac{c^2}{4}} \right)$$ $$c = \sqrt{4 (2hr - h^2)}$$ ### Segment of sphere Spherical surface = $$2\pi rh = \frac{\pi}{4} (c^2 + 4h^2)$$ Volume = $\pi h^2 \left(r - \frac{h}{3} \right)$ = $\pi h^2 \left(\frac{c^2 + 4h^2}{8h} - \frac{h}{3} \right)$ ### Cylinder Cylindrical surface = $$\pi dh$$ = 3.1416 dh Total surface = $2\pi r(r + h)$ Volume = $\pi r^2 h$ = 0.7854 $d^2 h$ = $\frac{c^2 h}{4\pi}$ = 0.0796 $c^2 h$ c = circumference continued ### figure ### Torus or ring of circular cross-section Surface = $$4\pi^2 Rr = 39.4784 Rr = 9.8696 Dd$$ Volume = $$2\pi^2 Rr^2$$ = 19.74 Rr^2 = 2.463 Dd^2 $$D = 2R =$$ diameter to centers of cross- section of material $$r = d/2$$ ### Pyramid Volume = $$\frac{Ah}{3}$$ When base is a regular polygon: Volume = $$\frac{h}{3} \left[nr^2 \left(\tan \frac{360^{\circ}}{2n} \right) \right]$$ = $\frac{h}{3} \left[\frac{ns^2}{4} \left(\cot \frac{360^{\circ}}{2n} \right) \right]$ ### r =short radius of base ### Pyramidal frustum Volume = $$\frac{h}{3}$$ (a + A + \sqrt{aA}) $$A = area of base$$ $a = area of top$ ### Cone with circular base Conical area = $$\pi rs = \pi r \sqrt{r^2 + h^2}$$ Volume = $$\frac{\pi r^2 h}{3}$$ = 1.047 $r^2 h$ = 0.2618 $d^2 h$ continued ### figure ### Conic frustum Volume $$= \frac{\pi h}{3} (R^2 + Rr + r^2)$$ $$= \frac{\pi h}{3} \left(\frac{R^3 - r^3}{R - r} \right)$$ $$= \frac{\pi h}{12} (D^2 + Dd + d^2)$$ $$= \frac{h}{3} (a + A + \sqrt{aA})$$ Area of conic surface $=\frac{\pi s}{2}(D+d)$ $$C = s + \frac{sd}{D - d} = s \left(1 + \frac{d}{D - d} \right)$$ $$\theta = \frac{180 D}{C} = \frac{180 (D - d)}{s}$$ $$A =$$ area of base $R = D/2$ $$R = D/2$$ $r = d/2$ $s =$ slant height $C =$ slant height of ### a = area of top full cone ### Wedge frustum $$Volume = \frac{hs}{2} (a + b)$$ $$h = height between parallel bases$$ ### Ellipsoid Volume = $$\frac{4\pi Rr^2}{3}$$ = 4.1888 Rr^2 = 0.053 $\pi^2 Dd^2$ = 0.5231 Dd^2 ### Paraboloid Volume = $$\frac{\pi r^2 h}{2}$$ = 1.5707 $r^2 h$ Curved surface = $$0.5236 \frac{r}{h^2} [(r^2 + 4 h^2)^{3/2} - r^3]$$ ### Algebraic and trigonometric formulas including complex quantities ### **Quadratic** equation If $ax^2 + bx + c = 0$, then $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$=-\frac{b}{2a}\pm\sqrt{\left(\frac{b}{2a}\right)^2-\frac{c}{a}}$$ provided that $a \neq 0$ ### **Arithmetic progression** $$I = a + (n - 1) d$$ $$S = \frac{n}{2} (a + 1)$$ $$=\frac{2}{n}[2a+(n-1)d]$$ where $$d = common difference$$ $$I = \text{value of nth term}$$ $$S = sum of n terms$$ ### Geometric progression $$l = ar^{n-1}$$ $$S = \frac{a(r^n - 1)}{r - 1}$$ where $$I = \text{value of the nth term}$$ $$r = common ratio$$ $$S = sum of n terms$$ ### **Combinations and permutations** The number of combinations of n things, all different, taken r at a time is $$C_r^n = \frac{n!}{r! (n-r)!} = \frac{n (n-1) (n-2) \dots (n-r+1)}{1 \times 2 \times 3 \times \dots \times r}$$ The number of permutations of n things r at a time is $$P_r^n = n(n-1)(n-2)\dots(n-r+1) = \frac{n!}{(n-r)!}$$ $$P_n^n = n!$$ The number of combinations, with repetition, of n things taken r at a time is $$D^{n}_{r} = \frac{(n+r-1)!}{r!(n-1)!} = \frac{n(n+1)(n+2)\dots(n+r-1)!}{1\times 2\times 3\times \dots\times r}$$ ### **Factorials** | x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|---|---|---|----|-----|-----|------|--------|---------|-----------| | хl | 1 | 2 | 6 | 24 | 120 | 720 | 5040 | 40,320 | 362,880 | 3,628,800 | For x > 10, Stirling's formula may be used, with an error not exceeding 1 percent, as follows $$x! = x^x e^{-x} \sqrt{2\pi x}$$ If common logarithms are used for computing x!, $$\log (x!) = (x + \frac{1}{2}) \log x - 0.43429x + 0.3991$$ For example, if x = 10, $$x + \frac{1}{2} = 10.5000$$ $$\log x = 1$$ $$\log (x!) = 10.5000 - 4.3429 + 0.3991 = 6.5562$$ $$x! = 3.599(10)^6 = 3,599,000$$ ### Gamma function $$x! = \Gamma (x + 1)$$ $$\Gamma (x + 1) = x \Gamma (x)$$ $$0! = \Gamma (1) = 1$$ $$(-\frac{1}{2})! = \Gamma(\frac{1}{2}) = \pi^{\frac{1}{2}} = 1.772$$ $$(\frac{1}{2})! = \Gamma(\frac{3}{2}) = \pi^{\frac{1}{2}}/2 = 0.886$$ $$(n + \frac{1}{2})! = \pi^{\frac{1}{2}} \frac{1 \cdot 3 \cdot 5 \dots (2n + 1)}{2^{n+1}}$$ ### **Binomial theorem** $$(a \pm b)^n = a^n \pm na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 \pm \frac{n(n-1)(n-2)}{3!}a^{n-3}b^3 + \dots$$ If n is a positive integer, the series is finite and contains n+1 terms; otherwise, it is infinite, converging for |b/a| < 1, and diverging for |b/a| > 1. ### **Complex quantities** In the following formulas all quantities are real except $j = \sqrt{-1}$ $$(A + jB) + (C + jD) = (A + C) + j(B + D)$$ $$(A + jB) (C + jD) = (AC - BD) + j(BC + AD)$$ $$\frac{A + jB}{C + jD} = \frac{AC + BD}{C^2 + D^2} + j\frac{BC - AD}{C^2 + D^2}$$ $$\frac{1}{A + jB} = \frac{A}{A^2 + B^2} - j\frac{B}{A^2 + B^2}$$ $$A + jB = \rho(\cos\theta + j\sin\theta) = \rho\epsilon^{j\theta}$$ $$\sqrt{A + jB} = \pm \sqrt{\rho} \left(\cos\frac{\theta}{2} + j\sin\frac{\theta}{2}\right)$$ where $$\rho = \sqrt{A^2 + B^2} > 0$$ $$\cos \theta = A/\rho$$ $$\sin \theta = B/\rho$$ ### Properties of e $$e = 1 + 1 + 1/2! + 1/3! + \dots = 2.71828$$ $$1/e = 0.367879$$ $$e^{\pm jx} = \cos x \pm j \sin x = \exp(\pm jx)$$ $$\log_{10} e = 0.43429 \qquad \log_{10} (0.43429) = 9.63778 - 10$$ $$\log_{e} 10 = 2.30259 = 1/\log_{10} e \qquad \log_{10} (e^{n}) = n(0.43429)$$ $$\log_{e} N = \log_{e} 10 \times \log_{10} N$$ $$\log_{10} N = \log_{10} e \times \log_{e} N$$ ### Trigonometric identities $$1 = \sin^2 A + \cos^2 A = \sin A \csc A = \tan A \cot A = \cos A \sec A$$ $$\sin A = \frac{\cos A}{\cot A} = \frac{1}{\csc A} = \cos A \tan A = \pm \sqrt{1 - \cos^2 A}$$ $$\cos A = \frac{\sin A}{\tan A} = \frac{1}{\sec A} = \sin A \cot A = \pm \sqrt{1 - \sin^2 A}$$ $$\tan A = \frac{\sin A}{\cos A} = \frac{1}{\cot A} = \sin A \sec A$$ $$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$ $$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$ $$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} = \frac{\tan A \cot B \pm 1}{\cot B \mp \tan A}$$ $$\cot (A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A} = \frac{\cot A \mp \tan B}{1 \pm \cot A \tan
B}$$ $$\sin A = \frac{e^{tA} - e^{-tA}}{2t}$$ $$\cos A = \frac{e^{tA} + e^{-tA}}{2t}$$ $$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$ $$\sin A - \sin B = 2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$ $$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$ $$\cos B - \cos A = 2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$ $$\tan A \pm \tan B = \frac{\sin (A \pm B)}{\cos A \cos B}$$ $$\cot A \pm \cot B = \frac{\sin (B \pm A)}{\sin A \sin B}$$ $$\sin^2 A - \sin^2 B = \sin (A + B) \sin (A - B)$$ $$\cos^2 A - \sin^2 B = \cos (A + B) \cos (A - B)$$ $$\sin 2 A = 2 \sin A \cos A$$ $$\cos 2A = \cos^2 A - \sin^2 A$$ $$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$ $$\sin 3A = 3 \sin A - 4 \sin^3 A = \sin A (4 \cos^2 A - 1)$$ $$\cos 3A = -3 \cos A + 4 \cos^3 A = \cos A (1 - 4 \sin^2 A)$$ $$\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$$ $$\sin A + m \sin B = \rho \sin C$$ $$\rho^2 = 1 + m^2 + 2m \cos (B - A)$$ and tan (C - A) = $$\frac{m \sin (B - A)}{1 + m \cos (B - A)}$$ $$\sin \frac{1}{2} A = \pm \sqrt{\frac{1 - \cos A}{2}}$$ $$\cos \frac{1}{2} A = \pm \sqrt{\frac{1 + \cos A}{2}}$$ $$\tan \frac{1}{2} A = \frac{\sin A}{1 + \cos A}$$ $$\sin^2 A = \frac{1 - \cos 2A}{2}$$ $$\cos^2 A = \frac{1 + \cos 2A}{2}$$ $$\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$$ $$\frac{\sin A \pm \sin B}{\cos A + \cos B} = \tan \frac{1}{2} (A \pm B)$$ $$\frac{\sin A \pm \sin B}{\cos B - \cos A} = \cot \frac{1}{2} (A \mp B)$$ $$\sin A \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$$ $$\cos A \cos B = \frac{1}{2} [\cos (A + B) + \cos (A - B)]$$ $$\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$$ $$\sin x + \sin 2x + \sin 3x + \dots + \sin mx = \frac{\sin \frac{1}{2} mx \sin \frac{1}{2} (m + 1) x}{\sin \frac{1}{2} x}$$ $$\cos x + \cos 2x + \cos 3x + \dots + \cos mx = \frac{\sin \frac{1}{2} mx \cos \frac{1}{2} (m + 1) x}{\sin \frac{1}{2} x}$$ $$\sin x + \sin 3x + \sin 5x + \dots + \sin (2m - 1) x = \frac{\sin^2 mx}{\sin x}$$ $$\cos x + \cos 3x + \cos 5x + \dots + \cos (2m - 1) x = \frac{\sin 2mx}{2 \sin x}$$ $$\frac{1}{2} + \cos x + \cos 2x + \dots + \cos mx = \frac{\sin (m + \frac{1}{2}) x}{2 \sin \frac{1}{2} x}$$ | angle | 1 (| | 30° | 45° | 60° | 90° | 1 180° | 270° | 360° | |---------------------------|-----|------------|--|--|--|----------------|--------------|---------------|-------------| | sine
cosine
tangent | |)

 | $\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \sqrt{3} \\ \frac{1}{3} \sqrt{3} \end{array}$ | $\begin{array}{c} V_2 \sqrt{2} \\ V_2 \sqrt{2} \\ \end{array}$ | $\begin{array}{c} V_2 \sqrt{3} \\ V_2 \\ \sqrt{3} \end{array}$ | . 1
0
±∞ | 0
-1
0 | -1
0
±∞ | 0
1
0 | versine: vers $\theta = 1 - \cos \theta$ haversine: hav $\theta = \frac{1}{2} (1 - \cos \theta) = \sin^2 \frac{1}{2} \theta$ ### Approximations for small angles $$\begin{cases} \sin \theta = (\theta - \theta^3/6...) \\ \tan \theta = (\theta + \theta^3/3...) \\ \cos \theta = (1 - \theta^2/2...) \end{cases} \theta \text{ in radians}$$ $$\sin \theta = \theta \begin{cases} \text{with less than 1-percent error up} \\ \text{to } \theta = 0.24 \text{ radian} = 14.0^{\circ} \\ \text{with less than 10-percent error up} \\ \text{to } \theta = 0.78 \text{ radian} = 44.5^{\circ} \end{cases}$$ $$\tan \theta = \theta \begin{cases} \text{with less than 1-percent error up} \\ \text{to } \theta = 0.17 \text{ radian} = 10.0^{\circ} \\ \text{with less than 10-percent error up} \\ \text{to } \theta = 0.54 \text{ radian} = 31.0^{\circ} \end{cases}$$ ### Plane trigonometry ### Right triangles $C = 90^{\circ}$ $$B = 90^{\circ} - A$$ $$\sin A = \cos B = a/c$$ $$tan A = a/b$$ $$c^2 = a^2 + b^2$$ area = $$\frac{1}{2}ab$$ = $\frac{1}{2}a$ ($c^2 - a^2$)¹⁵ = $\frac{1}{2}a^2$ cot A = $\frac{1}{2}b^2$ tan A = $\frac{1}{2}c^2$ sin A cos A ### Oblique triangles ### Sum of angles $$A + B + C = 180^{\circ}$$ (1) ### Law of cosines $$a^{2} = b^{2} + c^{2} - 2 bc \cos A$$ $$b^{2} = c^{2} + a^{2} - 2 ca \cos B$$ $$c^{2} = a^{2} + b^{2} - 2 ab \cos C$$ (2A) $$\cos A = (b^{2} + c^{2} - a^{2})/2 \text{ bc}$$ $$\cos B = (c^{2} + a^{2} - b^{2})/2 \text{ ca}$$ $$\cos C = (a^{2} + b^{2} - c^{2})/2 \text{ ab}$$ (2B) # Plane trigonometry continued Law of sines $$a/\sin A = b/\sin B = c/\sin C$$ (3) Law of tangents $$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(A-B)}{\tan\frac{1}{2}(A+B)}$$ $$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(B-C)}{\tan\frac{1}{2}(B+C)}$$ $$\frac{c-a}{c+a} = \frac{\tan\frac{1}{2}(C-A)}{\tan\frac{1}{2}(C+A)}$$ (4) Half-angle formulas $$\tan \frac{A}{2} = \frac{r}{p-a}$$ $$\tan \frac{B}{2} = \frac{r}{p-b}$$ $$\tan \frac{C}{2} = \frac{r}{p-c}$$ (5) where $$2p = a + b + c$$ $r = [(p - a) (p - b) (p - c)/p]^{\frac{1}{2}}$ Area $$S = \frac{1}{2} bc \sin A = \frac{1}{2} ca \sin B = \frac{1}{2} ab \sin C$$ (6A) $$S = [p (p-a) (p-b) (p-c)]^{\frac{1}{2}}$$ (6B) $$S = \frac{a^2}{2} \frac{\sin B \sin C}{\sin A} = \frac{b^2}{2} \frac{\sin C \sin A}{\sin B}$$ $$= \frac{c^2}{2} \frac{\sin A \sin B}{\sin C}$$ (6C) #### Plane trigonometry #### continue**d** #### To solve an oblique triangle | given | use | to obtain | | |----------------------|-------------|-------------|--| | а В С | (1) | Α | | | | (3) | bс | | | | (6C) | S | | | Abc | (1) | B + C hence | | | | (4) | B - C B, C | | | | (6A) | S | | | аЬс | (5) or (2B) | ABC | | | | (6B) | S | | | a b A ambiguous case | (3) and (1) | ВСс | | | | (6A) | S | | # Spherical trigonometry # Right spherical triangles ($\gamma = 90^{\circ}$) $\cos c = \cos a \cos b = \cot \alpha \cot \beta$ $\cos \alpha = \sin \beta \cos \alpha = \tan b \cot c$ $\cos \beta = \sin \alpha \cos b = \tan \alpha \cot c$ $\sin a = \sin c \sin \alpha = \tan b \cot \beta$ $\sin b = \sin c \sin \beta = \tan a \cot \alpha$ # **Oblique triangles** #### Law of cosines $\cos a = \cos b \cos c + \sin b \sin c \cos \alpha$ $\cos b = \cos c \cos a + \sin c \sin a \cos \beta$ $\cos c = \cos a \cos b + \sin a \sin b \cos \gamma$ (7A) # Spherical trigonometry continue $$\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cos \alpha$$ $$\cos \beta = -\cos \gamma \cos \alpha + \sin \gamma \sin \alpha \cos b$$ $$\cos \gamma = -\cos \alpha \cos \beta + \sin \alpha \sin \beta \cos c$$ (7B) #### Law of sines $$\frac{\sin \alpha}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$$ (8) #### Napier's analogies $$\frac{\sin\frac{1}{2}(\alpha-\beta)}{\sin\frac{1}{2}(\alpha+\beta)} = \frac{\tan\frac{1}{2}(\alpha-b)}{\tan\frac{1}{2}c}$$ (9A) $$\frac{\cos\frac{1}{2}(\alpha-\beta)}{\cos\frac{1}{2}(\alpha+\beta)} = \frac{\tan\frac{1}{2}(\alpha+b)}{\tan\frac{1}{2}c}$$ (98) $$\frac{\sin\frac{1}{2}(a-b)}{\sin\frac{1}{2}(a+b)} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\cot\frac{1}{2}\gamma}$$ (9C) $$\frac{\cos\frac{1}{2}(a-b)}{\cos\frac{1}{2}(a+b)} = \frac{\tan\frac{1}{2}(\alpha+\beta)}{\cot\frac{1}{2}\gamma}$$ (9D) (10A) #### Half-angle formulas $$\tan\frac{\alpha}{2} = \frac{\tan r}{\sin (p - a)}$$ $$\tan\frac{\beta}{2} = \frac{\tan r}{\sin (p - b)}$$ $$\tan \frac{\gamma}{2} = \frac{\tan r}{\sin (\rho - c)}$$ where $$2p = a + b + c$$ and $$\tan^2 r = \frac{\sin (p - a) \sin (p - b) \sin (p - c)}{\sin p}$$ #### Spherical trigonometry continued $$\sin^{2} \frac{\alpha}{2} = \frac{\sin (p - b) \sin (p - c)}{\sin b \sin c}$$ $$\cos^{2} \frac{\alpha}{2} = \frac{\sin p \sin (p - a)}{\sin b \sin c}$$ $$\tan^{2} \frac{\alpha}{2} = \frac{\sin (p - b) \sin (p - c)}{\sin p \sin (p - a)}$$ and formulas obtained by permutation for β and γ . #### Half-side formulas $$\tan \frac{1}{2} a = \tan R \sin (\alpha - E)$$ $$\tan \frac{1}{2} b = \tan R \sin (\beta - E)$$ $$\tan \frac{1}{2} c = \tan R \sin (\gamma - E)$$ where $$2E = \alpha + \beta + \gamma - \pi$$ is the spherical excess and $$\tan^2 R = \frac{\sin E}{\sin (\alpha - E) \sin (\beta - E) \sin (\gamma - E)}$$ $$\sin^{2} \frac{\alpha}{2} = -\frac{\sin E \sin (E - \alpha)}{\sin \beta \sin \gamma}$$ $$\cos^{2} \frac{\alpha}{2} = \frac{\sin (E - \beta) \sin (E - \gamma)}{\sin \beta \sin \gamma}$$ $$\tan^{2} \frac{\alpha}{2} = -\frac{\sin E \sin (E - \alpha)}{\sin (E - \beta) \sin (E - \gamma)}$$ and formulas obtained by permutation for b and c #### Area On a sphere of radius one, the area of a triangle is equal to the spherical excess $2E = \alpha + \beta + \gamma - \pi$ $$\tan^2 \frac{1}{2} E = \tan \frac{1}{2} p \tan \frac{1}{2} (p - a) \tan \frac{1}{2} (p - b) \tan \frac{1}{2} (p - c)$$ (12) # Spherical trigonometry continued # To solve an oblique triangle* | given | U\$e | to obtain | |-------------------------|------|--| | a b c | (10) | αβγ | | αβγ | (11) | abc | | abγ | (9) | $\alpha \pm \beta$, hence α , β , then c | | αβς | (9) | $a\pm b$, hence a , b , then γ | | a b α
ambiguous case | (8) | β | | | (9) | c γ | | αβ a ambiguous case | (8) | Ь | | | (9) | cγ | # Hyperbolic functions† $$\sinh x = \frac{e^x - e^{-x}}{2}$$ $$\cosh x = \frac{e^x + e^{-x}}{2}$$ $$\tanh x = \frac{\sinh x}{\cosh x} = \frac{1 - \exp(1 - 2x)}{1 + \exp(1 - 2x)} = \frac{1}{\coth x}$$ $\operatorname{sech} x = 1/\cosh x$ csch x = 1/sinh x sinh(-x) = -sinh x $\cosh(-x) = \cosh x$ *See also great-circle calculations on pp. 732-739. †Tables of hyperbolic functions appear on pp. 1111-1113. # Hyperbolic functions continued $$tanh(-x) = -tanh x$$ $$\coth (-x) = -\coth x$$ $$\sinh jx = j \sin x$$ $$\cosh jx = \cos x$$ $$tanh jx = j tan x$$ $$\coth jx = -j \cot x$$ $$\cosh^2 x - \sinh^2 x = 1$$ $$1 - \tanh^2 x = 1/\cosh^2 x$$ $$\coth^2 x - 1 = 1/\sinh^2 x$$ $$sinh 2x = 2 sinh x cosh x$$ $$\cosh 2x = \cosh^2 x + \sinh^2 x$$ $$sinh (x \pm jy) = sinh x cos y \pm j cosh x sin y$$ $$\cosh (x \pm jy) = \cosh x \cos y \pm j \sinh x \sin y$$ $$tanh (x \pm y) = \frac{tanh x
\pm tanh y}{1 \pm tanh x tanh y}$$ If y = gd x (gudermannian of x) is defined by $$x = \log_e \tan \left(\frac{\pi}{4} + \frac{y}{2}\right)$$ then $$sinh x = tan y$$ $$\cosh x = \sec y$$ $$tanh x = sin y$$ $$\tanh (x/2) = \tan (y/2)$$ #### Hyperbolic trigonometry Hyperbolic (or pseudospherical) trigonometry applies to trignales drawn in the hyperbolic type of non-Euclidean space. Reflection charts, used in transmission-line theory and waveguide analysis are models of this hyperbolic space.* #### Conformal model The space is limited to the inside of a unit circle Γ . Geodesics (or "straight lines" for the model) are arcs of circle orthogonal to Γ as shown in sketch at right. The hyperbolic distance between two points A and B is defined by $$[AB] = \log_e \frac{BI}{BJ} : \frac{AI}{AJ}$$ Conformal model. where I and J are the intersections with Γ of the geodesic AB. The distance [AB] is expressed in nepers. For engineering purposes, a unit, corresponding to the decibel and equal to 1/8.686 neper, is sometimes used. As this model is conformal, the angle between two lines is the ordinary angle between the tangents at their common point. # Projective model The space is again composed of the points inside of a circle Γ . Geodesics are straight-line segments limited to the inside of Γ . (JI in sketch at right.) The hyperbolic distance (AB) is defined by $$\langle AB \rangle = \frac{1}{2} \log_e \left(\frac{BI}{BJ} : \frac{AI}{AJ} \right)$$ ^{*} G. A. Deschamps, "Hyperbolic Protractor for Microwave Impedance Measurements and Other Purposes," International Telephone and Telegraph Corporation, 67 Broad Street, New York 4, New York; 1953. #### Hyperbolic trigonometry continued and can be measured directly by means of a hyperbolic protractor. The angles for this model do not appear in true size, except when at the center of Γ . An angle such as BAC, when it is considered in reference to the projective model, will be called an elliptic angle. It can be evaluated, as shown in the sketch at the right, by projecting B and C through the hyperbolic midpoint of OA onto B' and C' on the circle Γ , then measuring B'OC' as in Euclidean geometry. Construction of angle on projective model. The two models drawn inside the same circle Γ can be set into a distance-preserving correspondance by the transformation: $\mathcal{B}(\mathsf{M}) = \mathsf{M}'$ defined by $$[OM] = \langle OM' \rangle$$ or in terms of ordinary distances $$OM' = 2 OM/(1 + OM^2)$$ The hyperbolic distance to the center O being denoted by $\boldsymbol{\upsilon}$: Correspondance between the two models. $$OM = \tanh (\upsilon/2)$$ and $$OM' = \tanh u$$ The points on Γ are at an infinite distance from any point inside Γ . In the following formulas, the sides are expressed in nepers, the angles in radians. The three points A,B,C are assumed to be inside the circle Γ . # Hyperbolic trigonometry continued #### Right hyperbolic triangles ($\gamma = 90^{\circ}$) $$cosh c = cosh a cosh b$$ $$cosh c = cot \alpha cot \beta$$ $$\cos \alpha = \sin \beta \cosh \alpha$$ = $\tanh b \coth c$ $$\cos \beta = \sin \alpha \cosh b$$ = tanh a coth c Projective representation of right hyperbolic triangle. When B is at infinity, i.e., on Γ $$\cos A = \tanh b$$ $$\cot A = \sinh b$$ $$cosec A = cosh b$$ $$\tan \frac{1}{2} A = \exp b$$ ог $$(\pi/2) - A = \operatorname{gd} b$$ (See definition of gd on p. 1049.) Conformal representation of right hyperbolic triangle with B at infinity. CB and AB are "parallel," A is also called angle of parallelism and is noted by $$= \pi/2 - gdb$$ # Hyperbolic trigonometry continued #### Oblique hyperbolic triangles #### Law of cosines $$\cosh a = \cosh b \cosh c - \sinh b \sinh c \cos \alpha$$ and permutations (13A) $$\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cosh \alpha$$ and permutations (13B) #### Law of sines $$\frac{\sinh \alpha}{\sin \alpha} = \frac{\sinh b}{\sin \beta} = \frac{\sinh c}{\sin \gamma}$$ (14) #### Napier's analogies $$\frac{\sin\frac{1}{2}(\alpha-\beta)}{\sin\frac{1}{2}(\alpha+\beta)} = \frac{\tanh\frac{1}{2}(\alpha-b)}{\tanh\frac{1}{2}c}$$ (15A) $$\frac{\cos\frac{1}{2}(\alpha-\beta)}{\cos\frac{1}{2}(\alpha+\beta)} = \frac{\tanh\frac{1}{2}(\alpha+b)}{\tanh\frac{1}{2}c}$$ (158) $$\frac{\sinh\frac{1}{2}(a-b)}{\sinh\frac{1}{2}(a+b)} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\cot\frac{1}{2}\gamma}$$ (15C) $$\frac{\cosh\frac{1}{2}(a-b)}{\cosh\frac{1}{2}(a+b)} = \frac{\tan\frac{1}{2}(\alpha+\beta)}{\cot\frac{1}{2}\gamma}$$ (15D) #### Half-angle formulas $$\tan \frac{\alpha}{2} = \frac{\tanh r}{\sinh (p - \alpha)}$$ and permutations where $$2p = a + b + c$$ and $$\tanh^2 r = \frac{\sinh (p - a) \sinh (p - b) \sinh (p - c)}{\sinh p}$$ # Hyperbolic trigonometry continued $$\sin^{2} \frac{1}{2} \alpha = \frac{\sinh (p - b) \sinh (p - c)}{\sinh b \sinh c}$$ $$\cos^{2} \frac{1}{2} \alpha = \frac{\sinh p \sinh (p - a)}{\sinh b \sinh c}$$ $$\tan^{2} \frac{1}{2} \alpha = \frac{\sinh (p - b) \sinh (p - c)}{\sinh p \sinh (p - a)}$$ (16B) #### Half-side formulas $$\coth \frac{\alpha}{2} = \frac{\coth R}{\sin (\Delta + \alpha)}$$ and permutations where $$2\Delta = \pi - \alpha - \beta - \gamma$$ is the hyperbolic defect and $$\tanh^2 R = \frac{\sin \Delta}{\sin (\Delta + \alpha) \sin (\Delta + \beta) \sin (\Delta + \gamma)}$$ (17A) $$\sinh^{2} \frac{1}{2} \alpha = \frac{\sin \Delta \sin (\Delta + \alpha)}{\sin \beta \sin \gamma}$$ $$\cosh^{2} \frac{1}{2} \alpha = \frac{\sin (\Delta + \beta) \sin (\Delta + \gamma)}{\sin \beta \sin \gamma}$$ $$\tanh^{2} \frac{1}{2} \alpha = \frac{\sin \Delta \sin (\Delta + \alpha)}{\sin (\Delta + \beta) \sin (\Delta + \gamma)}$$ (17B) #### Area The hyperbolic area of a triangle is equal to the hyperbolic defect. $$2 \Delta = \pi - (\alpha + \beta + \gamma) \tag{18}$$ #### To solve an oblique hyperbolic triangle Solution of an oblique hyperbolic triangle is analogous to that for an oblique spherical triangle, as follows. #### Hyperbolic trigonometry continued | given | Use | to obtain | |-----------------------------|------|--| | a b c | (16) | αβγ | | αβγ | (17) | аЬс | | a b γ | (15) | $\alpha \pm \beta$, hence α , β , then c | | αβς | (15) | a \pm b, hence a, b, then γ | | a b α
ambiguous case | (14) | β | | | (15) | сγ | | lpha eta a ambiguous case | (14) | Ь | | | (15) | c γ | # Plane analytic geometry In the following, x and y are coordinates of a variable point in a rectangular-coordinate system. # Straight line #### General equation $$Ax + By + C = 0$$ A, B, and C are constants. # Slope-intercept form $$y = sx + b$$ $$b = y$$ -intercept $$s = \tan \theta$$ # Intercept-intercept form $$\frac{x}{a} + \frac{y}{b} = 1$$ $$a = x$$ -intercept Slope-intercept # Plane analytic geometry continued #### Point-slope form $$y - y_1 = s(x - x_1)$$ $s = tan \theta$ $(x_1,y_1) = coordinates of known point on line.$ #### Point-point form $$\frac{y - y_1}{y_1 - y_2} = \frac{x - x_1}{x_1 - x_2}$$ (x_1,y_1) and (x_2,y_2) are coordinates of two different points on the line. #### Normal form $$\frac{A}{\pm \sqrt{A^2 + B^2}} x + \frac{B}{\pm \sqrt{A^2 + B^2}} y + \frac{C}{\pm \sqrt{A^2 + B^2}} = 0$$ the sign of the radical is chosen so that $$\frac{C}{\pm \sqrt{A^2 + B^2}} < 0$$ # Distance from point (x_1,y_1) to a line Substitute coordinates of the point in the normal form of the line. Thus, distance = $$\frac{A}{\pm \sqrt{A^2 + B^2}} x_1 + \frac{B}{\pm \sqrt{A^2 + B^2}} y_1 + \frac{C}{\pm \sqrt{A^2 + B^2}}$$ ## Angle between two lines $$\tan \phi = \frac{s_1 - s_2}{1 + s_1 s_2}$$ where ϕ = angle between the lines $s_1 = slope of one line$ s_2 = slope of other line When the lines are mutually perpendicular, tan $\phi=\infty$, whence $s_1=-1/s_2$ #### Plane analytic geometry #### metry continued #### Transformation of rectangular coordinates #### Translation $$x_1 = h + x_2$$ $$y_1 = k + y_2$$ $$x_2 = x_1 - h$$ $$y_2 = y_1 - k$$ #### Rotation $$x_1 = x_2 \cos \theta - y_2 \sin \theta$$ $$y_1 = x_2 \sin \theta + y_2 \cos \theta$$ $$x_2 = x$$, $\cos \theta + y_1 \sin \theta$ $$y_2 = -x_1 \sin \theta + y_1 \cos \theta$$ $$(x_1,y_1) =$$ "old" coordinates $$(x_2,y_2) =$$ "new" coordinates $$\theta$$ = counterclockwise angle of rotation of axes #### Circle The equation of a circle of radius r with center at (m,n) is $$(x - m)^2 + (y - n)^2 = r^2$$ Tangent line to a circle: At (x_1,y_1) is $$y - y_1 = -\frac{x_1 - m}{y_1 - n} (x - x_1)$$ Normal line to a circle: At (x_1,y_1) is $$y - y_1 = \frac{y_1 - n}{x_1 - m} (x - x_1)$$ #### Parabola #### x-parabola $$(y - k)^2 = \pm 2p (x - h)$$ where (h,k) are the coordinates of the vertex, and the sign used is plus or minus when the parabola is open to the right or to the left, respectively. The semilatus rectum is p. #### Plane analytic geometry continued y-parabola $$(x - h)^2 = \pm 2p (y - k)$$ where (h,k) are the coordinates of the vertex. Use plus sign if parabola is open above, and minus sign if open below. #### Tangent lines to a parabola $(x_1,y_1) = point of tangency$ For x-parabola, $$y - y_1 = \pm \frac{p}{y_1 - k} (x - x_1)$$ Use plus sign if parabola is open to the right, minus sign if open to the left. For y-parabola, $$y - y_1 = \pm \frac{x_1 - h}{p} (x - x_1)$$ Use plus sign if parabola is open above, minus sign if open below. #### Normal lines to a parabola $(x_1,y_1) = point of contact$ For x-parabola, $$y - y_1 = \mp \frac{y_1 - k}{p} (x - x_1)$$ Use minus sign if parabola is open to the right, plus sign if open to the left. For y-parabola, $$y - y_1 = \mp \frac{p}{x_1 - h} (x - x_1)$$ Use minus sign if parabola is open above, plus sign if open below. 1059 # Plane analytic geometry continued #### Ellipse Figure shows ellipse centered at origin. Foci: F,F' Directrices: D,D' $$e = eccentricity < 1$$ $$2a = A'A = major axis$$ $$2b = BB' = minor axis$$ $$2c = FF' = focal distance$$
Then $$OC = a/e$$ $$BF = a$$ $$1 - e^2 = b^2/a^2$$ #### Equation of ellipse $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$ #### Sum of the focal radii To any point on ellipse = 2a # Equation of tangent line to ellipse $$(x_1,y_1)$$ = point of tangency $$\frac{xx_1}{g^2} + \frac{yy_1}{b^2} = 1$$ # Equation of normal line to an ellipse $$y - y_1 = \frac{\sigma^2 y_1}{h^2 x_1} (x - x_1)$$ # Plane analytic geometry continued # Hyperbola Figure shows x-hyperbola centered at origin. Foci: F,F' Directrices: D,D' $$2a = transverse axis = A'A$$ $$CO = a/e$$ $$CF = ae$$ #### Equation of x-hyperbola $$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$ where $$b^2 = a^2 (e^2 - 1)$$ #### Equation of conjugate (y-) hyperbola $$\frac{y^2}{h^2} - \frac{x^2}{g^2} = 1$$ # Tangent line to x-hyperbola $$(x_1,y_1) = point of tangency$$ $$a^2y_1y - b^2x_1x = -a^2b^2$$ # Normal line to x-hyperbola $$y - y_1 = -\frac{\sigma^2 y_1}{b^2 x_1} (x - x_1)$$ # Asymptotes to hyperbola $$y = \pm \frac{b}{a}x$$ In the following, x, y, and z are the coordinates of a variable point in space in a rectangular-coordinate system. # Distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) $$d = \left[(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 \right]^{\frac{1}{2}}$$ #### Equations of the straight line The straight line is specified in terms of its projections on two of the coordinate planes. For example, using the projections on the x-z and y-z planes respectively, the equations of the line are $$x = mz + \mu$$ $$y = nz + \nu$$ m = slope of x-z projection n = slope of y-z projection $\mu = \text{intercept of } x$ -z projection on x-axis ν = intercept of y-z projection on y-axis # Equation of plane, intercept form $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$ where a, b, c are the intercepts of the plane on the x, y, and z axes, respectively. #### **Prolate spheroid** $$a^{2}(y^{2} + z^{2}) + b^{2}x^{2} = a^{2}b^{2}$$ where a > b, and x-axis = axis of revolution #### Oblate spheroid $$b^2(x^2 + z^2) + a^2y^2 = a^2b^2$$ where a > b, and y-axis = axis of revolution # Solid analytic geometry continued #### Paraboloid of revolution $$y^2 + z^2 = 2px$$ x-axis = axis of revolution #### Hyperboloid of revolution Revolving an x-hyperbola about the x-axis results in the hyperboloid of two sheets $$a^2 (y^2 + z^2) - b^2 x^2 = -a^2 b^2$$ Revolving an x-hyperbola about the y-axis results in the hyperboloid of one sheet $$b^2 (x^2 + z^2) - a^2 v^2 = a^2 b^2$$ #### Ellipsoid $$\frac{x^2}{c^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$ where a, b, c are the semiaxes of the ellipsoid or the intercepts on the x, y, and z axes, respectively. # Differential calculus #### List of derivatives In the following u, v, w are differentiable functions of x, and c is a constant. #### General $$\frac{dc}{dx} = 0$$ $$\frac{dx}{dx} = 1$$ $$\frac{d}{dx}(u + v - w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx}$$ # Differential calculus continued $$\frac{d}{dx}(cv) = c\frac{dv}{dx}$$ $$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$ $$\frac{d}{dx}(v^c) = cv^{c-1}\frac{dv}{dx}$$ $$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$ $$\frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{dx} \quad \text{if } y = y(v)$$ $$\frac{dy}{dx} = \frac{1}{dx/dv} \quad \text{if } \frac{dx}{dv} \neq 0$$ #### Transcendental functions $$\frac{d}{dx} (\log_e v) = \frac{1}{v} \frac{dv}{dx}$$ $$\frac{d}{dx} (c^v) = c^v \log_e c \frac{dv}{dx}$$ $$\frac{d}{dx} (e^v) = e^v \frac{dv}{dx}$$ $$\frac{d}{dx} (u^v) = vu^{v-1} \frac{du}{dx} + (\log_e u)u^v \frac{dv}{dx}$$ $$\frac{d}{dx} (\sin v) = \cos v \frac{dv}{dx}$$ $$\frac{d}{dx} (\cos v) = -\sin v \frac{dv}{dx}$$ $$\frac{d}{dx} (\tan v) = \sec^2 v \frac{dv}{dx}$$ $$\frac{d}{dx} (\cot v) = -\csc^2 v \frac{dv}{dx}$$ #### Differential calculus continue $$\frac{d}{dx} (\sec v) = \sec v \tan v \frac{dv}{dx}$$ $$\frac{d}{dx}(\csc v) = -\csc v \cot v \frac{dv}{dx}$$ $$\frac{d}{dx} (arc \sin v) = \frac{1}{\sqrt{1 - v^2}} \frac{dv}{dx}$$ $$\frac{d}{dx} (arc \cos v) = -\frac{1}{\sqrt{1-v^2}} \frac{dv}{dx}$$ $$\frac{d}{dx} (arc tan v) = \frac{1}{1 + v^2} \frac{dv}{dx}$$ $$\frac{d}{dx} (\operatorname{arc} \cot v) = -\frac{1}{1+v^2} \frac{dv}{dx}$$ $$\frac{d}{dx}$$ (arc sec v) = $\frac{1}{\sqrt{\sqrt{v^2 - 1}}} \frac{dv}{dx}$ $$\frac{d}{dx} (arc csc v) = -\frac{1}{v\sqrt{v^2 - 1}} \frac{dv}{dx}$$ #### Curvature of a curve $$K = \frac{y''}{(1 + y'^2)^{3/2}} = \frac{1}{R}$$ where K = curvature R = radius of curvature y', y'' = respectively, first and second derivatives of the function y = f(x) representing the curve on rectangular coordinates #### **Bessel functions** A Bessel function of the *n*th order $y = Z_n(x)$ is any solution of the differential equation $$y'' + (1/x)y' + (1 - n^2/x^2)y = 0$$ Special solutions are J_n (first kind), N_n (second kind), $H_n^{(1)}$ and $H_n^{(2)}$ (third kind). #### Bessel functions #### continued #### Derivative and recursion formulas Z_n represents J_n , N_n , $H_n^{(1)}$, $H_n^{(2)}$ or any linear combination of these functions. Then, $$dZ_{n}/dx = \frac{1}{2} (Z_{n-1} - Z_{n+1}) = -(n/x) Z_{n} + Z_{n-1} = (n/x) Z_{n} - Z_{n+1}$$ $$(n/x) Z_{n} = \frac{1}{2} (Z_{n-1} + Z_{n+1})$$ $$(d/dx) (x^{n}Z_{n}) = x^{n}Z_{n+1}$$ $$(d/dx) (x^{-n}Z_{n}) = -x^{-n} Z_{n-1}$$ $$dZ_{0}/dx = -Z_{1}$$ $$dZ_{1}/dx = Z_{0} - Z_{1}/x$$ For n an integer, $$Z_{-n}(x) = (-1)^n Z_n(x)$$ #### Bessel function of the first kind* $$J_n(x) = \sum_{m=0}^{m=\infty} (-1)^m \frac{(x/2)^{n+2m}}{m! \Gamma(m+n+1)}$$ For n a positive integer, $$J_{n}(x) = \frac{x^{n}}{2^{n} n!} \left[1 - \frac{x^{2}}{2(2n+2)} + \frac{x^{4}}{2.4(2n+2)(2n+4)} \dots \right]$$ $$\exp(-ju \sin x) = \sum_{-\infty}^{+\infty} J_{n}(u) \exp(-jnx)$$ $$\cos(u \sin x) = J_{0}(u) + 2\sum_{1}^{\infty} J_{2n}(u) \cos 2nx$$ $$\sin(u \sin x) = 2\sum_{1}^{\infty} J_{2n-1}(u) \sin(2n-1) x$$ $$\cos(u \cos x) = J_{0}(u) + 2\sum_{1}^{\infty} (-1)^{n} J_{2n}(u) \cos 2nx$$ $$\sin(u \cos x) = 2\sum_{1}^{\infty} (-1)^{n+1} J_{2n-1}(u) \cos(2n-1) x$$ ^{*} See table in next chapter. #### Bessel functions continued Bessel functions for the first 8 orders. #### Bessel functions of the third kind $$H_n^{(1)}(x) = J_n(x) + j N_n(x)$$ $$H_n^{(2)}(x) = J_n(x) - j N_n(x)$$ $$N_{n-1} J_n - N_n J_{n-1} = 2/\pi x$$ $$[H_n^{(1)}(x)]^* = H_n^{(2)}(x^*)$$ where (*) indicates the complex conjugate. For x large, $$H_n^{(1)}(x) \approx (2/\pi x)^{\frac{1}{2}} \exp j [x - n\pi/2 - \pi/4]$$ $$H_n^{(2)}(x) \approx (2/\pi x)^{\frac{1}{2}} \exp -i[x - n\pi/2 - \pi/4]$$ #### Bessel functions continued #### **Modified Bessel functions** $$I_n(x) = j^{-n} J_n(jx) = \sum_{m=0}^{m=\infty} \frac{(x/2)^{n+2m}}{m! \Gamma(n+m+1)}$$ $$K_n(x) = (\pi/2) j^{n+1} H_n^{(1)} (jx)$$ Modified Bessel functions are solutions of the differential equation $$y'' + y'/x - (1 - n^2/x^2) y = 0$$ # Integral calculus # Rational algebraic integrals 1. $$\int x^m dx = \frac{x^{m+1}}{m+1}, \quad m \neq -1$$ 2. $$\int \frac{dx}{x} = \log_e x$$ 3. $$\int (ax + b)^m dx = \frac{(ax + b)^{m+1}}{a(m+1)}, \quad m \neq -1$$ 4. $$\int \frac{dx}{ax + b} = \frac{1}{a} \log_e (ax + b)$$ 5. $$\int \frac{x \, dx}{ax + b} = \frac{1}{a^2} \left[ax + b - b \log_e \left(ax + b \right) \right]$$ 6. $$\left[\frac{x \, dx}{(ax+b)^2} = \frac{1}{a^2} \left[\frac{b}{ax+b} + \log_e (ax+b) \right] \right]$$ 7. $$\int \frac{dx}{x(ax+b)} = \frac{1}{b} \log_e \frac{x}{ax+b}$$ 8. $$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} + \frac{1}{b^2} \log_e \frac{x}{ax+b}$$ 9. $$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \log_e \frac{ax+b}{x}$$ 10. $$\int \frac{dx}{x^2 (ax + b)^2} = -\frac{2ax + b}{b^2 x (ax + b)} + \frac{2a}{b^3} \log_e \frac{ax + b}{x}$$ 11. $$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$ 12. $$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} = -\frac{1}{a} \tanh^{-1} \frac{a}{x}$$ 13. $$\int \frac{dx}{(ax^2 + b)^m} = \frac{x}{2(m-1)b(ax^2 + b)^{m-1}}$$ $$+\frac{2m-3}{2(m-1)b}\left[\frac{dx}{(ax^2+b)^{m-1}}, m \neq 1\right]$$ 14. $$\int \frac{x \, dx}{(\alpha x^2 + b)^m} = -\frac{1}{2(m-1) \, \alpha \, (\alpha x^2 + b)^{m-1}}, \quad m \neq 1$$ 15. $$\int \frac{x \, dx}{ax^2 + b} = \frac{1}{2a} \log_e (ax^2 + b)$$ 17. $$\int \frac{x^2 dx}{(ax^2 + b)^m} = -\frac{x}{2(m-1) a (ax^2 + b)^{m-1}}$$ $$+\frac{1}{2(m-1)} \int_{0}^{\infty} \frac{dx}{(ax^{2}+b)^{m-1}}, m \neq 1$$ 18. $$\int \frac{dx}{\sigma x^3 + b} = \frac{k}{3b} \left(\sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} + \log_e \frac{k + x}{\sqrt{k^2 - kx + x^2}} \right),$$ where $$k = \sqrt[3]{b/a}$$ 19. $$\int \frac{x \, dx}{ax^3 + b} = \frac{1}{3ak} \left(\sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} - \log_e \frac{k + x}{\sqrt{k^2 - kx + x^2}} \right),$$ where $$k = \sqrt[3]{b/a}$$ 20. $$\int \frac{dx}{x(ax^n + b)} = \frac{1}{bn} \log_a \frac{x^n}{ax^n + b}$$ Let $X = ax^2 + bx + c$ and $a = b^2 - 4ac$ 21. $$\int \frac{dx}{X} = \frac{1}{\sqrt{g}} \log_e \frac{2ax + b - \sqrt{g}}{2ax + b + \sqrt{g}}, \text{ when } q > 0$$ 22. $$\int \frac{dx}{\chi} = \frac{2}{\sqrt{-a}} \tan^{-1} \frac{2ax + b}{\sqrt{-a}}, \text{ when } a < 0$$ For the case q = 0, use equation 3 with m = -2 23. $$\int \frac{dx}{\chi^n} = -\frac{2\alpha x + b}{(n-1)} \frac{2(2n-3)\alpha}{q(n-1)} \int \frac{dx}{\chi^{n-1}}, \quad n \neq 1$$ 24. $$\int \frac{x \, dx}{X} = \frac{1}{2a} \log_e X - \frac{b}{2a} \int \frac{dx}{X}$$ 25. $$\int \frac{x^2 dx}{X} = \frac{x}{a} - \frac{b}{2a^2} \log_e X + \frac{b^2 - 2ac}{2a^2} \int \frac{dx}{X}$$ # Integrals involving $\sqrt{ax+b}$ 26. $$\int x\sqrt{ax + b} \, dx = \frac{2(3ax - 2b)\sqrt{(ax + b)^3}}{15a^2}$$ 27. $$\int x^2 \sqrt{ax + b} \, dx = \frac{2(15a^2x^2 - 12abx + 8b^2)\sqrt{(ax + b)^3}}{105a^3}$$ 28. $$\int x^{m} \sqrt{ax + b} \, dx = \frac{2}{a(2m + 3)} \left[x^{m} \sqrt{(ax + b)^{3}} \right]$$ $$- mb \int x^{m-1} \sqrt{ax + b} \, dx$$ 29. $$\int \frac{\sqrt{ax+b} dx}{x} = 2\sqrt{ax+b} + \sqrt{b} \log_e \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}}, \quad b > 0$$
$$=2\sqrt{ax+b}-2\sqrt{-b}\tan^{-1}\sqrt{\frac{ax+b}{-b}}, \qquad b<0$$ 30. $$\int \frac{\sqrt{ax + b} \, dx}{x^m} = -\frac{1}{(m - 1) \, b} \left[\frac{\sqrt{(ax + b)^3}}{x^{m-1}} + \frac{(2m - 5) \, a}{2} \int \frac{\sqrt{ax + b} \, dx}{x^{m-1}} \right], \quad m \neq 1$$ 31. $$\int \frac{x \, dx}{\sqrt{ax + b}} = \frac{2(ax - 2b)}{3a^2} \sqrt{ax + b}$$ 32. $$\int \frac{x^2 dx}{\sqrt{ax + b}} = \frac{2(3a^2x^2 - 4abx + 8b^2)}{15a^3} \sqrt{ax + b}$$ 34. $$\int \frac{dx}{x\sqrt{ax+b}} = \frac{1}{\sqrt{b}} \log_{a} \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}}, \quad b > 0$$ $$= \frac{2}{\sqrt{-b}} \tan^{-1} \sqrt{\frac{ax+b}{-b}}, \qquad b < 0$$ 35. $$\int \frac{dx}{x^{m}\sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{(m-1)bx^{m-1}} - \frac{(2m-3)a}{(2m-2)b} \int \frac{dx}{x^{m-1}\sqrt{ax+b}},$$ $$m \neq$$ # Integrals involving $\sqrt{x^2 \pm a^2}$ and $\sqrt{a^2 - x^2}$ 36. $$\int \sqrt{x^2 \pm \alpha^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 \pm \alpha^2} \pm \alpha^2 \log_e \left(x + \sqrt{x^2 \pm \alpha^2} \right) \right]$$ 37. $$\int \sqrt{\alpha^2 - x^2} \, dx = \frac{1}{2} \left(x \sqrt{\alpha^2 - x^2} + \alpha^2 \sin^{-1} \frac{x}{\alpha} \right)$$ 38. $$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log_e (x + \sqrt{x^2 \pm a^2})$$ $$39. \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a}$$ 40. $$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3} \sqrt{(x^2 \pm a^2)^3}$$ 41. $$\int x^2 \sqrt{x^2 \pm \alpha^2} \, dx = \frac{x}{4} \sqrt{(x^2 \pm \alpha^2)^3} \mp \frac{\alpha^2}{8} [x \sqrt{x^2 \pm \alpha^2}]$$ $$\pm a^2 \log_e (x + \sqrt{x^2 \pm a^2})$$ 42. $$\int x \sqrt{\alpha^2 - x^2} \, dx = -\frac{1}{3} \sqrt{(\alpha^2 - x^2)^3}$$ 43. $$\int x^2 \sqrt{a^2 - x^2} \, dx = -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right)$$ 44. $$\int \frac{\sqrt{a^2 \pm x^2}}{x^2} dx = \sqrt{a^2 \pm x^2} - a \log_e \frac{a + \sqrt{a^2 \pm x^2}}{x^2}$$ 45. $$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \cos^{-1} \frac{a}{x}$$ 46. $$\int \frac{\sqrt{x^2 \pm a^2}}{x^2} dx = -\frac{\sqrt{x^2 \pm a^2}}{x} + \log_e (x + \sqrt{x^2 \pm a^2})$$ 47. $$\int \frac{\sqrt{\alpha^2 - x^2}}{x^2} dx = -\frac{\sqrt{\alpha^2 - x^2}}{x} - \sin^{-1} \frac{x}{\alpha}$$ 48. $$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2}$$ $$49. \int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2}$$ 50. $$\int \frac{x^2 dx}{\sqrt{x^2 + a^2}} = \frac{x}{2} \sqrt{x^2 \pm a^2} \mp \frac{a^2}{2} \log_e (x + \sqrt{x^2 \pm a^2})$$ 51. $$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$ 52. $$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \cos^{-1} \frac{a}{x}$$ 53. $$\int \frac{dx}{x\sqrt{a^2 \pm x^2}} = -\frac{1}{a} \log_a \left(\frac{a + \sqrt{a^2 \pm x^2}}{x} \right)$$ 54. $$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \pm \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$ $$55. \int \frac{dx}{x^2 \sqrt{\sigma^2 - x^2}} = -\frac{\sqrt{\sigma^2 - x^2}}{\sigma^2 x}$$ 56. $$\int \sqrt{(x^2 \pm \alpha^2)^3} \, dx = \frac{1}{4} \left[x \sqrt{(x^2 \pm \alpha^2)^3} \pm \frac{3\alpha^2 x}{2} \sqrt{x^2 \pm \alpha^2} + \frac{3\alpha^4}{2} \log_e (x + \sqrt{x^2 \pm \alpha^2}) \right]$$ 57. $$\int \sqrt{(\alpha^2 - x^2)^3} \, dx = \frac{1}{4} \left[x \sqrt{(\alpha^2 - x^2)^3} + \frac{3\alpha^2 x}{2} \sqrt{\alpha^2 - x^2} + \frac{3\alpha^4}{2} \sin^{-1} \frac{x}{\alpha} \right]$$ 58. $$\int \frac{dx}{\sqrt{(x^2 + a^2)^3}} = \frac{\pm x}{a^2 \sqrt{x^2 + a^2}}$$ $$59. \int \frac{dx}{\sqrt{(g^2 - x^2)^3}} = \frac{x}{g^2 \sqrt{g^2 - x^2}}$$ # Integrals involving $\sqrt{ax^2 + bx + c}$ Let $$X = ax^2 + bx + c$$ and $q = b^2 - 4ac$ $$60. \int \frac{dx}{\sqrt{\chi}} = \frac{1}{\sqrt{a}} \log_e \left(\sqrt{\chi} + \frac{2ax + b}{2\sqrt{a}} \right), \quad a > 0$$ $$= \frac{1}{\sqrt{-a}} \sin^{-1} \frac{(-2ax - b)}{\sqrt{a}}, \quad a < 0$$ 61. $$\int \frac{x \, dx}{\sqrt{\chi}} = \frac{\sqrt{\chi}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{\chi}}$$ 63. $$\int \frac{dx}{x\sqrt{X}} = -\frac{1}{\sqrt{c}} \log_e \left(\frac{\sqrt{X} + \sqrt{c}}{x} + \frac{b}{2\sqrt{c}} \right), \quad c > 0$$ 64. $$\int \frac{dx}{x\sqrt{\chi}} = \frac{1}{\sqrt{-c}} \sin^{-1} \frac{bx + 2c}{x\sqrt{q}}, \quad c < 0$$ 65. $$\int \frac{dx}{x\sqrt{x}} = -\frac{2\sqrt{x}}{bx}, \quad c = 0$$ 66. $$\int \frac{dx}{(mx+n)\sqrt{X}} = \frac{1}{\sqrt{k}} \log_e \left[\frac{\sqrt{k} - m\sqrt{X}}{mx+n} + \frac{bm - 2an}{2\sqrt{k}} \right], \quad k > 0$$ $$= \frac{1}{\sqrt{-k}} \sin^{-1} \left[\frac{(bm - 2an) (mx+n) + 2k}{m(mx+n) \sqrt{q}} \right], \quad k < 0$$ 67. $$\int \frac{dx}{(mx+n)\sqrt{\chi}} = -\frac{2m\sqrt{\chi}}{(bm-2an)(mx+n)}, \qquad k=0$$ where $k = an^2 - bmn + cm^2$. 68. $$\int \frac{dx}{x^2 \sqrt{\chi}} = -\frac{\sqrt{\chi}}{cx} - \frac{b}{2c} \int \frac{dx}{x \sqrt{\chi}}$$ 69. $$\int \sqrt{X} dx = \frac{(2ax + b)\sqrt{X}}{4a} - \frac{q}{8a} \int \frac{dx}{\sqrt{X}}$$ 70. $$\int x\sqrt{X} dx = \frac{X\sqrt{X}}{3\sigma} - \frac{b(2\sigma x + b)\sqrt{X}}{8\sigma^2} + \frac{bq}{16\sigma^2} \int \frac{dx}{\sqrt{X}}$$ 71. $$\int x^2 \sqrt{X} \, dx = \frac{(6ax - 5b) \, X \sqrt{X}}{24a^2} + \frac{(5b^2 - 4ac) \, (2ax + b) \sqrt{X}}{64a^3}$$ $$-\frac{(5b^2-4ac) q}{128a^3} \int \frac{dx}{\sqrt{\chi}}$$ 72. $$\int \frac{\sqrt{X} \, dx}{x} = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + c \int \frac{dx}{x\sqrt{X}}$$ 73. $$\int \frac{\sqrt{X} dx}{mx + n} = \frac{\sqrt{X}}{m} + \frac{bm - 2an}{2m^2} \int \frac{dx}{\sqrt{X}}$$ $$+\frac{an^2-bmn+cm^2}{m^2}\int \frac{dx}{(mx+n)\sqrt{X}}$$ 74. $$\int \frac{\sqrt{\chi} \, dx}{x^2} = -\frac{\sqrt{\chi}}{x} + \frac{b}{2} \int \frac{dx}{x\sqrt{\chi}} + a \int \frac{dx}{\sqrt{\chi}}$$ 75. $$\int \frac{dx}{X\sqrt{X}} = -\frac{2(2\alpha x + b)}{\alpha\sqrt{X}}$$ 76. $$\int X\sqrt{X} \, dx = \frac{2(2\alpha x + b) \, X\sqrt{X}}{8\alpha} - \frac{3q(2\alpha x + b)\sqrt{X}}{64\alpha^2} + \frac{3q^2}{128\alpha^2} \int \frac{dx}{\sqrt{X}}$$ #### Miscellaneous irrational integrals 77. $$\int \sqrt{2\alpha x - x^2} \, dx = \frac{x - \alpha}{2} \sqrt{2\alpha x - x^2} + \frac{\alpha^2}{2} \sin^{-1} \frac{x - \alpha}{\alpha}$$ 78. $$\int \frac{dx}{\sqrt{2\alpha x - x^2}} = \cos^{-1} \frac{\alpha - x}{\alpha}$$ 79. $$\int \sqrt{\frac{mx+n}{ax+b}} dx = \int \frac{(mx+n) dx}{\sqrt{amx^2 + (bm+an) x + bn}}$$ # Logarithmic integrals 80. $$\int \log_a x \, dx = x \log_a \frac{x}{a}$$ 81. $$\int \log_e x \, dx = x(\log_e x - 1)$$ 82. $$\int x^m \log_a x \, dx = x^{m+1} \left(\frac{\log_a x}{m+1} - \frac{\log_a e}{(m+1)^2} \right)$$ 83. $$\int x^m \log_e x \, dx = x^{m+1} \left(\frac{\log_e x}{m+1} - \frac{1}{(m+1)^2} \right)$$ # **Exponential integrals** 84. $$\int a^x dx = \frac{a^x}{\log_e a}$$ 85. $$\int e^x dx = e^x$$ 86. $$\int xe^{x} dx = e^{x}(x - 1)$$ 87. $$\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$$ #### Trigonometric integrals In these equations m and n are positive integers unless otherwise indicated, and r and s are any integers. 88. $$\int \sin x \, dx = -\cos x$$ 89. $$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cos x)$$ 90. $$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$ 91. $$\int \frac{dx}{\sin^n x} = -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}, \quad n \neq 1$$ 92. $$\int \cos x \, dx = \sin x$$ 93. $$\int \cos^2 x \, dx = \frac{1}{2} (x + \sin x \cos x)$$ 94. $$\int \cos^{n} x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$ 95. $$\int \frac{dx}{\cos^n x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}, \quad n \neq 1$$ 96. $$\int \sin^n x \cos x \, dx = \frac{\sin^{n+1} x}{n+1}$$ 97. $$\int \cos^n x \sin x \, dx = -\frac{\cos^{n+1} x}{n+1}$$ 98. $$\int \sin^2 x \cos^2 x \, dx = \frac{4x - \sin 4x}{32}$$ 99. $$\int \frac{dx}{\sin x \cos x} = \log_e \tan x$$ $$100. \int \sin^{r} x \cos^{s} x \, dx = \frac{\cos^{s-1} x \sin^{r+1} x}{r+s} + \frac{s-1}{r+s} \int \sin^{r} x \cos^{s-2} x \, dx,$$ $$r+s \neq 0$$ $$= -\frac{\sin^{r-1} x \cos^{s+1} x}{r+s} + \frac{r-1}{r+s} \int \sin^{r-2} x \cos^{s} x \, dx,$$ $$r+s \neq 0$$ $$= \frac{\sin^{r+1} x \cos^{s+1} x}{r+1} + \frac{s+r+2}{r+1} \int \sin^{r+2} x \cos^{s} x \, dx,$$ $$r \neq -1$$ $$= -\frac{\sin^{r+1} x \cos^{s+1} x}{s+1}$$ $$+\frac{s+r+2}{s+1}\int \sin^r x \cos^{s+2} x \, dx, \quad s \neq -1$$ 101. $$\int \tan x \, dx = -\log_e \cos x$$ 102. $$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$$ 103. $$\int \cot x \, dx = \log_e \sin x$$ 104. $$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx$$ 105. $$\int \sec x \, dx = \log_e (\sec x + \tan x)$$ $$106. \int \sec^2 x \, dx = \tan x$$ 107. $$\int \sec^n x \, dx = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1$$ 108. $$\int \csc^{2} x \, dx = -\cot x$$ 109. $$\int \csc x \, dx = \log_{e} (\csc x - \cot x)$$ 110. $$\int \csc^{n} x \, dx = \frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1$$ 111. $$\int \sec^{n} x \tan x \, dx = \frac{\sec^{n} x}{n}$$ 112. $$\int \csc^{n} x \cot x \, dx = -\frac{\csc^{n} x}{n}$$ 113. $$\int \tan^{n} x \sec^{2} x \, dx = \frac{\tan^{n+1} x}{n+1}$$ 114. $$\int \cot^{n} x \csc^{2} x \, dx = \frac{-\cot^{n+1} x}{n+1}$$ 115. $$\int \frac{dx}{a+b\sin x} = \frac{-1}{\sqrt{a^{2}-b^{2}}} \sin^{-1} \frac{b+a\sin x}{a+b\sin x}, \qquad a^{2} > b^{2}$$ $$= \frac{+1}{\sqrt{b^{2}-a^{2}}} \log_{e} \frac{b+a\sin x-\sqrt{b^{2}-a^{2}}(\cos x)}{a+b\sin x}, \qquad a>b>0$$ $$= \frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \sin^{-1} \left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin x}{a+b\cos x}\right), \quad a>b>0$$ $$= \frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \tan^{-1} \left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin x}{a+b\cos x}\right), \quad a>b>0$$ $$= \frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \tan^{-1} \left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin x}{a+b\cos x}\right), \quad a>b>0$$ $$= \frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \tan^{-1} \left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin
x}{a+b\cos x}\right), \quad a>b>0$$ $$= \frac{1}{\sqrt{b^{2}-a^{2}}} \log_{e} \left(\frac{b+a\cos x+\sqrt{b^{2}-a^{2}}\sin x}{a+b\cos x}\right)$$ 117. $$\int \sqrt{1 - \cos x} \, dx = -2\sqrt{2} \cos \frac{x}{2}$$ 118. $$\int \sqrt{(1-\cos x)^3} \, dx = \frac{4\sqrt{2}}{3} \left(\cos^3 \frac{x}{2} - 3\cos \frac{x}{2}\right)$$ 119. $$\int x \sin x \, dx = \sin x - x \cos x$$ 120. $$\int x^2 \sin x \, dx = 2x \sin x + (2 - x^2) \cos x$$ 121. $$x \cos x \, dx = \cos x + x \sin x$$ 122. $$\int x^2 \cos x \, dx = 2x \cos x + (x^2 - 2) \sin x$$ 123. $$\int x \sin nx \, dx = \frac{\sin nx}{n^2} - \frac{x \cos nx}{n}$$ 124. $$\int x \cos nx \, dx = \frac{\cos nx}{n^2} + \frac{x \sin nx}{n}$$ 125. $$\int x^2 \sin nx \, dx = \frac{2x \sin nx}{n^2} - \left(\frac{x^2}{n} - \frac{2}{n^3}\right) \cos nx$$ 126. $$\int x^{2} \cos nx \, dx = \frac{2x \cos nx}{n^{2}} - \left(\frac{x^{2}}{n} - \frac{2}{n^{3}}\right) \sin nx$$ # Inverse trigonometric integrals 127. $$\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2}$$ 128. $$\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2}$$ 129. $$\int \tan^{-1} x \, dx = x \tan^{-1} x - \log_e \sqrt{1 + x^2}$$ 130. $$\int \cot^{-1} x \, dx = x \cot^{-1} x + \log_e \sqrt{1 + x^2}$$ 131. $$\int \sec^{-1} x \, dx = x \sec^{-1} x - \log_e (x + \sqrt{x^2 - 1})$$ $$= x \sec^{-1} x - \cosh^{-1} x$$ 132. $$\int \csc^{-1} x \, dx = x \csc^{-1} x + \log_e (x + \sqrt{x^2 - 1})$$ $$= x \csc^{-1} x + \cosh^{-1} x$$ #### **Definite** integrals 133. $$\int_{0}^{\infty} \frac{a \, dx}{a^2 + x^2} = \frac{\pi}{2}$$, if $a > 0$; = 0, if $a = 0$; = $-\frac{\pi}{2}$, if $a < 0$ 134. $$\int_0^\infty x^{n-1} e^{-x} dx = \int_0^1 \left[\log \frac{1}{x} \right]^{n-1} dx \equiv \Gamma(n) \quad (*)$$ 135. $$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \int_{0}^{\infty} \frac{x^{m-1} dx}{(1+x)^{m+n}} = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$ (* 136. $$\int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx = \frac{1}{2} \sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}, \quad n > -1$$ 137. $$\int_0^\infty \frac{\sin mx \, dx}{x} = \frac{\pi}{2}, \text{ if } m > 0; = 0, \text{ if } m = 0; = -\frac{\pi}{2}, \text{ if } m < 0$$ 138. $$\int_{0}^{\infty} \frac{\sin x \cdot \cos mx \, dx}{x} = 0, \text{ if } m < -1 \text{ or } m > 1;$$ $$= \frac{\pi}{4}, \text{ if } m = -1 \text{ or } m = 1; = \frac{\pi}{2}, \text{ if } -1 < m < 1$$ 139. $$\int_{0}^{\infty} \frac{\sin^2 x \, dx}{x^2} = \frac{\pi}{2}$$ 140. $$\int_{0}^{\infty} \cos(x^{2}) dx = \int_{0}^{\infty} \sin(x^{2}) dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$$ 141. $$\int_{0}^{\infty} \frac{\cos mx \, dx}{1 + x^{2}} = \frac{\pi}{2} \cdot e^{-m}, \quad m > 0$$ $$142. \int_0^\infty \frac{\cos x \, dx}{\sqrt{x}} = \int_0^\infty \frac{\sin x \, dx}{\sqrt{x}} = \sqrt{\frac{\pi}{2}}$$ 143. $$\int_{0}^{\infty} e^{-a^{2}x^{2}} dx = \frac{1}{2a} \sqrt{\pi} = \frac{1}{2a} \Gamma(\frac{1}{2}), \quad a > 0 \quad (*)$$ 144. $$\int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$$ 145. $$\int_{0}^{\infty} e^{-x^{2}-a^{2}/x^{2}} dx = \frac{e^{-2a}\sqrt{\pi}}{2}, \quad a > 0$$ F(n) = gamma function Integral calculus continue 146. $$\int_{0}^{\infty} e^{-nx} \sqrt{x} \, dx = \frac{1}{2n} \sqrt{\frac{\pi}{n}}$$ $$147. \int_0^\infty \frac{e^{-nx}}{\sqrt{x}} dx = \sqrt{\frac{\pi}{n}}$$ 148. $$\int_{0}^{\infty} e^{-a^{2}x^{2}} \cos bx \, dx = \frac{\sqrt{\pi} \cdot e^{-b^{2}/4a^{2}}}{2a}, \quad a > 0$$ 149. $$\int_{0}^{1} \frac{\log_e x}{1-x} dx = -\frac{\pi^2}{6}$$ 150. $$\int_{0}^{1} \frac{\log_e x}{1+x} dx = -\frac{\pi^2}{12}$$ 151. $$\int_{0}^{1} \frac{\log_e x}{1-x^2} dx = -\frac{\pi^2}{8}$$ 152. $$\int_{0}^{1} \log_{e} \left(\frac{1+x}{1-x} \right) \cdot \frac{dx}{x} = \frac{\pi^{2}}{4}$$ 153. $$\int_{0}^{1} \frac{\log_{e} x \, dx}{\sqrt{1 - x^{2}}} = -\frac{\pi}{2} \log_{e} 2$$ 154. $$\int_0^1 \frac{(x^p - x^q) dx}{\log_e x} = \log_e \frac{p+1}{q+1}, p+1 > 0, q+1 > 0$$ 155. $$\int_{0}^{1} (\log_{e} x)^{n} dx = (-1)^{n} \cdot n!$$ 156. $$\int_0^1 \frac{dx}{\sqrt{\log_e\left(\frac{1}{x}\right)}} = \sqrt{\pi}$$ 157. $$\int_{0}^{1} x^{m} \left(\log_{e} \frac{1}{x} \right)^{n} dx = \frac{\Gamma(n+1)}{(m+1)^{n+1}}, m+1 > 0, n+1 > 0$$ (*) 158. $$\int_0^\infty \log_e \left(\frac{e^x + 1}{e^x - 1} \right) dx = \frac{\pi^2}{4}$$ 159. $$\int_{0}^{\frac{\pi}{2}} \log_{e} \sin x \, dx = \int_{0}^{\frac{\pi}{2}} \log_{e} \cos x \, dx = -\frac{\pi}{2} \log_{e} 2$$ * $\Gamma(n) = \text{gamma function}$ ### integral calculus continued 160. $$\int_{0}^{\pi} x \cdot \log_{e} \sin x \, dx = -\frac{\pi^{2}}{2} \log_{e} 2$$ 161. $$\int_0^{\pi} \log_e \left(a \pm b \cos x \right) dx = \pi \log_e \left(\frac{a + \sqrt{a^2 - b^2}}{2} \right), \quad a \geqslant b$$ 162. $$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2\left(\frac{\pi}{2}\sin x\right) dx}{\cos x} = 1.22$$ ### Table of Laplace transforms ### Symbols Constants are real unless otherwise specified. $$R(x) = \text{"real part of x"}$$ $$j = \sqrt{-1}$$ $$f(t) = 0, t < 0$$ $$S_{-1}(t)$$ = unit step, or Heaviside function $$= 0, t < 0$$ = 1, $$t > 0$$ $S_0(t)$ = unit impulse, also called Dirac δ function $$= 0, t < 0$$ $$= 0, t > 0$$ $$= \infty$$, if $t = 0$, and $\int_{-\infty}^{+\infty} S_0(t) dt = 1$ $$\int_{-\infty}^{+\infty} f(t) S_0(t) dt = f(0)$$ $$\omega = 2\pi \times \text{frequency}$$ $$m,k = any positive integers$$ $$\gamma = \text{period of a periodic function } (t > 0)$$ $$\Gamma(x) = gamma function$$ $$= \int_0^\infty e^{-u} v^{x-1} dv$$ $$\Gamma(k) = (k-1)!, k = positive integer$$ $$J_0(x)$$ = Bessel function, first kind, zero order $$J_{\mathbf{k}}(\mathbf{x})$$ = Bessel function, first kind, kth order ### Table of Laplace transforms continued | time function | transform | | |--|--|--------------| | 1. Definition | $F(p) = \int_0^\infty f(\lambda) e^{-p\lambda} d\lambda, \ R(p) > 0$ | | | 2. Inverse transform $f(t) = \frac{1}{j2\pi} \int_{c-j\infty}^{c+j\infty} F(z) e^{zt} dz, \ c>0$ Note: No singularities to the right of path of integration. | F(p) | | | 3. Shifting theorem f(t - o) | $e^{-ap}F(p)$, $a>0$ | [*) | | 4. Borel, or "convolution" theorem $ \int_0^t f_1(\lambda) f_2 (t-\lambda) d\lambda $ | F ₁ (p) F ₂ (p) (| (*) | | 5. Periodic function $f(t) = f(t-k\gamma), \ t > k\gamma$ | $\frac{\int_0^{\gamma} f(\lambda) e^{-p\lambda} d\lambda}{1 - e^{-p\gamma}}$ | | | 6. $f_1(t) + f_2(t)$ | $F_1(p) + F_2(p) $ | (*) | | $7. \sum_{k=1}^{m} f_k(t)$ | $\sum_{k=1}^{m} F_k(\rho)$ | (*) | | 8. f(t) e ^{-at} | F(p + a) | *} | | 9. $f\left(\frac{t}{\sigma}\right)$; a real, >0 | aFlap) (| *) | | 10. Derivative $\frac{d}{dt} f(t)$ | -f(0)+pF(p) (1 | *) | | 11. Integral $\int f(t) dt$ | $\frac{1}{p} \left[\int f dt \right]_{t=0} + \frac{F(p)}{p} $ | * j | ^{*} See pair 1 for definition of F. ### Table of Laplace transforms continued | time function | transform | |--|---| | 12. Unit step | | | S_1(f) | 1 p | | 13. Unit impulse | | | S ₀ (f) | 1 . | | 14. Unit cisoid | | | twt | <u>1</u> ρ — <i>j</i> ω | | 15. 1 | $\frac{1}{\rho^2}$ | | 16. t ^k | kl pk+1 | | 17. IF, R(v) > -1 | $\frac{\Gamma(v+1)}{p^{v+1}}$ | | 18. jke-at | k! (p + a)k+1 | | 19. $1/\sqrt{\pi t}$ | 1/√p | | 20. $\frac{(2t)^{k}}{1 \cdot 3 \cdot 5 \cdot \cdot \cdot \cdot (2k-1) \sqrt{\pi t}}$ | $\frac{1}{\rho^k\sqrt{\rho}}$ | | 21. e ^{a‡} | <u>1</u> p—a | | 22. $\frac{1}{\sigma}$ (e ^{at} — 1) | 1
p(p — a) | | 23. sin at | $\frac{a}{b_2 + a_3}$ | | 24. cos at | ρ
ρ² + σ² | | 25. J ₀ (at) | $\frac{1}{\sqrt{p^2+\sigma^2}}$ | | 26. J _k (at) | $\frac{1}{r}\left(\frac{r-\rho}{\sigma}\right)^k, r^2=\rho^2+\sigma^2$ | ### Series ### Maclaurin's theorem $$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \ldots + \frac{x^n}{n!}f^n(0) + \ldots$$ ### Taylor's theorem $$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$ $$f(x + h) = f(x) + f'(x) \cdot h + \frac{f''(x)}{2!} h^2 + \dots + \frac{f^n(x)}{n!} h^n + \dots$$ ### Miscellaneous $$\begin{cases} (1 \pm x)^n = 1 \pm nx + \frac{n(n-1)}{2!} x^2 \pm \frac{n(n-1)(n-2)}{3!} x^3 + \dots \\ \log_e (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, |x| < 1 \end{cases}$$ $$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, |x| < \infty$$ $$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$ $$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$ $$\begin{cases} |x| < \infty; x \text{ in radians} \end{cases}$$ See p. 1043 for accuracy of first-term approximation. $$\begin{cases} \sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots \\ \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots \end{cases}$$ $$tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots, |x| < \frac{\pi}{2}$$ $$\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \frac{x^7}{4725} - \dots, |x| < \pi$$ $$arc \sin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots, |x| < 1$$ ### Series continued arc tan $$x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$, $|x| < 1$ arc $$\sinh x = x - \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots, |x| < 1$$ arc $$\tanh x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots$$, $|x| < 1$ For n = 0 or a positive integer, the expansion of the Bessel function of the first kind, nth
order, is given by the convergent series, $$J_n(x) = \frac{x^n}{2^n n!} \left[1 - \frac{x^2}{2(2n+2)} + \frac{x^4}{2 \cdot 4(2n+2)(2n+4)} - \frac{x^6}{2 \cdot 4 \cdot 6(2n+2)(2n+4)(2n+6)} + \dots \right]$$ and $$J_{-n}(x) = (-1)^n J_n(x)$$ Note: 0! = 1 ### Vector-analysis formulas ### Rectangular coordinates In the following, vectors are indicated in **bold-faced** type. Associative law: For addition $$a + (b + c) = (a + b) + c = a + b + c$$ Commutative law: For addition $$a + b = b + a$$ where $$a = aa_1$$ $$a = magnitude of a$$ $$a_1 = unit vector in direction of a$$ Scalar, or "dot" product $$a \cdot b = b \cdot a$$ $$=$$ ab cos θ where θ = angle included by \boldsymbol{a} and \boldsymbol{b} . Vector, or "cross" product $$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$ = $ab \sin \theta \cdot \mathbf{c}_1$ where $\theta = \text{smallest angle swept in rotating } \boldsymbol{a} \text{ into } \boldsymbol{b}$ $\mathbf{c_1} = \text{unit vector perpendicular to plane of } \mathbf{a} \text{ and } \mathbf{b}, \text{ and directed in the sense of travel of a right-hand screw rotating from } \mathbf{a} \text{ to } \mathbf{b} \text{ through the angle } \theta.$ Distributive law for scalar multiplication $$a \cdot (b + c) = a \cdot b + a \cdot c$$ Distributive law for vector multiplication $$a \times (b + c) = a \times b + a \times c$$ Scalar triple product $$a \cdot (b \times c) = (a \times b) \cdot c = c \cdot (a \times b) = b \cdot (c \times a)$$ Vector triple product $$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$ $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c}) \cdot (\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d}) \cdot (\mathbf{b} \cdot \mathbf{c})$ $$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \times \mathbf{b} \cdot \mathbf{d})\mathbf{c} - (\mathbf{a} \times \mathbf{b} \cdot \mathbf{c})\mathbf{d}$$ ∇ = operator "del" $$\equiv i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}$$ where i, j, k are unit vectors in directions of x, y, z coordinates, respectively. grad $$\phi = \nabla \phi = i \frac{\partial \phi}{\partial x} + j \frac{\partial \phi}{\partial y} + k \frac{\partial \phi}{\partial z}$$ $\operatorname{grad} (\phi + \psi) = \operatorname{grad} \phi + \operatorname{grad} \psi$ $\operatorname{grad} (\phi \psi) = \phi \operatorname{grad} \psi + \psi \operatorname{grad} \phi$ $\operatorname{curl} \operatorname{grad} \phi = 0$ $$\operatorname{div} \mathbf{a} = \nabla \cdot \mathbf{a} = \frac{\partial \mathbf{a}_x}{\partial \mathbf{x}} + \frac{\partial \mathbf{a}_y}{\partial \mathbf{y}} + \frac{\partial \mathbf{a}_z}{\partial \mathbf{z}}$$ where a_x , a_y , a_z are the components of a in the directions of the respective coordinate axes. div $$(\mathbf{a} + \mathbf{b}) = \operatorname{div} \mathbf{a} + \operatorname{div} \mathbf{b}$$ curl $\mathbf{a} = \nabla \times \mathbf{a}$ $$= \mathbf{i} \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) + \mathbf{j} \left(\frac{\partial a_z}{\partial z} - \frac{\partial a_z}{\partial x} \right) + \mathbf{k} \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right)$$ $$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_x & a_y & a_z \end{vmatrix}$$ curl $$(\phi a) = \operatorname{grad} \phi \times a + \phi \operatorname{curl} a$$ $$div curl a = 0$$ $$div (a \times b) = b \cdot curl a - a \cdot curl b$$ ∇² ≡ Laplacian $$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$ in rectangular coordinates. curl curl $$\mathbf{a} = \operatorname{grad} \operatorname{div} \mathbf{a} - (\mathbf{i} \nabla^2 \mathbf{a}_x + \mathbf{j} \nabla^2 \mathbf{a}_y + \mathbf{k} \nabla^2 \mathbf{a}_z)$$ In the following formulas τ is a volume bounded by a closed surface S. The unit vector \mathbf{n} is normal to the surface S and directed positively outwards. $$\int_{\tau} \nabla \phi \cdot d\tau = \int_{S} \phi \, \mathbf{n} \, dS$$ $$\int_{\tau} \nabla \cdot \mathbf{a} \, d\tau = \int_{S} \mathbf{a} \cdot \mathbf{n} \, dS \quad \text{(Gauss' theorem)}$$ $$\int_{\tau} \nabla \times \mathbf{a} \, d\tau = \int_{S} \mathbf{n} \times \mathbf{a} \, dS$$ $$\int_{\tau} (\psi \, \nabla^{2} \phi - \phi \, \nabla^{2} \psi) \, d\tau = \int_{S} (\psi \, \frac{\partial \phi}{\partial n} - \phi \, \frac{\partial \psi}{\partial n}) \, dS$$ where $\partial/\partial n$ is the derivative in the direction of the positive normal to S (Green's theorem). In the two following formulas S is an open surface bounded by a contour C, with distance along C represented by s. $$\int_{S} \mathbf{n} \times \nabla \phi \, dS = \int_{C} \phi \, ds$$ $$\int_{S} \nabla \times \mathbf{a} \cdot \mathbf{n} \, dS = \int_{C} \mathbf{a} \cdot d\mathbf{s} \quad \text{(Stokes' theorem)}$$ where $\mathbf{s} = s\mathbf{s}_1$, and \mathbf{s}_1 is a unit vector in the direction of s. # Gradient, divergence, curl, and Laplacian in coordinate systems other than rectangular Cylindrical coordinates: (ρ, ϕ, z) , unit vectors ρ_1, ϕ_1, k , respectively, $$\begin{aligned} & \text{grad } \psi = \nabla \psi = \frac{\partial \psi}{\partial \rho} \, \rho_1 + \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \, \phi_1 + \frac{\partial \psi}{\partial z} \, \mathbf{k} \\ & \text{div } \mathbf{a} = \nabla \cdot \mathbf{a} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \, (\rho \alpha_\rho) \, + \, \frac{1}{\rho} \left(\frac{\partial \alpha_\phi}{\partial \phi} \right) + \frac{\partial \alpha_z}{\partial z} \\ & \text{curl } \mathbf{a} = \nabla \times \mathbf{a} = \left(\frac{1}{\rho} \frac{\partial \alpha_z}{\partial \phi} - \frac{\partial \alpha_\phi}{\partial z} \right) \rho_1 + \left(\frac{\partial \alpha_\rho}{\partial z} - \frac{\partial \alpha_z}{\partial \rho} \right) \phi_1 \\ & \qquad \qquad + \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \, (\rho \alpha_\phi) - \frac{1}{\rho} \frac{\partial \alpha_\rho}{\partial \phi} \right] \mathbf{k} \\ & \nabla^2 \psi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \, \frac{\partial \psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{\partial^2 \psi}{\partial z^2} \end{aligned}$$ Spherical coordinates: $\{r, \theta, \phi\}$, unit vectors r_1, θ_1, ϕ_1 $$r = \text{distance to origin} \\ \theta = \text{polar angle} \\ \phi = \text{azimuthal angle} \\ \text{grad } \psi = \nabla \psi = \frac{\partial \psi}{\partial r} \mathbf{r}_1 + \frac{1}{r} \frac{\partial \psi}{\partial \theta} \theta_1 + \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \phi_1 \\ \text{div } \mathbf{a} = \nabla \cdot \mathbf{a} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \mathbf{a}_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\mathbf{a}_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial \mathbf{a}_\phi}{\partial \phi} \\ \text{curl } \mathbf{a} = \nabla \times \mathbf{a} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\mathbf{a}_\phi \sin \theta) - \frac{\partial \mathbf{a}_\theta}{\partial \phi} \right] \mathbf{r}_1 \\ + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial \mathbf{a}_r}{\partial \phi} - \frac{\partial}{\partial r} (r \mathbf{a}_\phi) \right] \theta_1$$ $+\frac{1}{\epsilon}\left[\frac{\partial}{\partial r}\left(r\alpha_{\theta}\right)\right]-\frac{\partial\alpha_{r}}{\partial\theta}\left[\phi_{1}\right]$ $$\nabla^2 \psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}$$ ### Orthogonal curvilinear coordinates Coordinates: u_1, u_2, u_3 Metric coefficients: h_1 , h_2 , h_3 ($ds^2 = h_1^2 du_1^2 + h_2^2 du_2^2 + h_3^2 du_3^2$) Unit vectors: i_1 , i_2 , i_3 (ds = $i_1h_1du_1 + i_2h_2du_2 + i_3h_3du_3$) $$\operatorname{grad} \psi = \nabla \psi = \frac{1}{h_1} \frac{\partial \psi}{\partial u_1} \, \mathbf{i}_1 + \frac{1}{h_2} \frac{\partial \psi}{\partial u_2} \, \mathbf{i}_2 + \frac{1}{h_3} \frac{\partial \psi}{\partial u_3} \, \mathbf{i}_3$$ $$\operatorname{div} \ \boldsymbol{a} = \ \nabla \cdot \boldsymbol{a} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(h_2 h_3 a_1 \right) + \frac{\partial}{\partial u_2} \left(h_3 h_1 a_2 \right) + \frac{\partial}{\partial u_3} \left(h_1 h_2 a_3 \right) \right]$$ curl $$\mathbf{a} = \nabla \times \mathbf{a} = \frac{1}{h_2 h_3} \left[\frac{\partial}{\partial u_2} (h_3 a_3) - \frac{\partial}{\partial u_3} (h_2 a_2) \right] \mathbf{i}_1$$ $$+ \frac{1}{h_3h_1} \left[\frac{\partial}{\partial u_3} \left(h_1 \alpha_1 \right) - \frac{\partial}{\partial u_1} \left(h_3 \alpha_3 \right) \right] \mathbf{i_2}$$ $$+\frac{1}{h_1h_2}\left[\frac{\partial}{\partial u_1}\left(h_2a_2\right)-\frac{\partial}{\partial u_2}\left(h_1a_1\right)\right]\boldsymbol{i}_3$$ $$= \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 i_1 & h_2 i_2 & h_3 i_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 \alpha_1 & h_2 \alpha_2 & h_3 \alpha_3 \end{vmatrix}$$ $$\nabla^2 \psi = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial \phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \phi}{\partial u_3} \right) \right]$$ ### Matrix algebra
Notations A matrix of order $n \times m$ is a rectangular array of numbers consisting of n rows and m columns. The element in row i and column j is designated by the subscripts ij in that order. When not written explicitly as above, a matrix can be noted by a single letter \mathbf{A} or by its generic element between parenthesis (a_{ij}) . When m = n, the matrix is square and its order may be noted by n alone. A matrix of order $n \times 1$ is a vector (or column vector) of dimension n. A matrix of order $1 \times n$ is a row vector. In both cases, the elements are called coordinates of the vector. The unit matrix of order n is the square matrix $$1 = \langle \delta_{ij} \rangle$$ where δ_{ij} is the Kronecker index equal to 1 for j=i and otherwise equal to 0. ### **Operations** Illustrated for matrixes of order 2, pp. 1094-1097. **Sum and difference:** The sum (or difference) of two matrixes **A** and **B**, of the same order $m \times n$, is a matrix **C**, of the same order, such that $c_{ij} = a_{ij} \pm b_{ij}$ Multiplication by a number $$m (a_{ij}) = (m a_{ij})$$ **Product of two matrixes:** Given $\mathbf{A} = (a_{ij})$ of order $m \times p$ and $\mathbf{B} = (b_{ki})$ of order $p \times n$, the product $\mathbf{AB} = \mathbf{C} = (c_{ij})$ is defined by $$c_{ij} = \sum_{k=1}^{k=p} a_{ik} b_{kj}$$ It is a matrix of order $m \times n$. In general the product BA is different from AB. ### Linear transformation A linear transformation from a vector \mathbf{v} of dimension m to a vector \mathbf{v} of dimension n is represented by an $n \times m$ matrix \mathbf{A} $$\mathbf{v} = \mathbf{A} \mathbf{u}$$ In expanded form, $$v_1 = a_{11} v_1 + a_{12} v_2 + \ldots + a_{1m} v_m$$ $$v_2 = a_{21} u_1 + a_{22} u_2 + \ldots + a_{2m} u_m$$ $$v_n = a_{n1} v_1 + a_{n2} v_2 + \dots + a_{nm} v_m$$ **Transposition:** The transpose of matrix $\mathbf{A} = (a_{ij})$ is matrix $\mathbf{B} = (b_{ij})$ obtained by exchanging rows and columns $$b_{ij} = a_{ji}$$ If **A** is of order $m \times n$, its transpose is of order $n \times m$. The transpose of **A** is noted by $\tilde{\mathbf{A}}$. When $\mathbf{A} = \tilde{\mathbf{A}}$, the matrix is symmetric. The complex conjugate of $\bf A$ is the matrix $\bf A^*$ obtained by taking the complex conjugate of each element. When $\bf A^* = \bf A$, the matrix is real. The hermitian conjugate $\bf A^\dagger$ of $\bf A$ is the complex conjugate of the transpose. When $\bf A^\dagger = \bf A$, the matrix is hermitian. The transpose of a product is equal to the product of the transpose taken in the reverse order $$\widetilde{AB} = \widetilde{B} \widetilde{A}$$ Similarly, for hermitian conjugate $(AB)^{\dagger} = B^{\dagger} A^{\dagger}$. **Scalar product:** For two vectors ${m v}$ and ${m v}$ of same dimension, it is the number $$\mathbf{u} \cdot \mathbf{v} = \tilde{\mathbf{u}} \mathbf{v} = \tilde{\mathbf{v}} \mathbf{u}.$$ The length $|\mathbf{u}|$ of a vector \mathbf{u} is defined as $|\mathbf{u}| = (\mathbf{u} \cdot \mathbf{u})^{\frac{1}{2}}$ **Hermitian product:** For the two vectors \mathbf{u} , \mathbf{v} having n complex coordinates, the hermitian product is $$(\mathbf{u},\mathbf{v}) = \mathbf{u}^{\dagger} \mathbf{v}.$$ The product $(\mathbf{v},\mathbf{v}) = (\mathbf{v},\mathbf{v})^*$. When the hermitian product is zero, the vectors are orthogonal. The norm of a complex vector is $$||u||^2 = \langle u, u \rangle = u \dagger u.$$ **Determinant:** (for a square matrix \mathbf{A} of order n) is the sum of n! terms $$\det \mathbf{A} = \Sigma \pm \mathbf{a}_{1i} \, \mathbf{a}_{2i} \, \mathbf{a}_{3k} \dots \mathbf{a}_{nl}$$ where the second subscripts ijk...l, taken in order, form a permutation of the numbers 123...n. For even permutations, which contain an even number of inversions, the sign is plus. For odd permutations, the sign is minus. The cofactor α_{ij} of the element α_{ij} is $(-1)^{i+j}$ times the determinant obtained from \mathbf{A} by deleting the *i*th row and the *j*th column. The transpose of the matrix (α_{ij}) is the adjugate of \mathbf{A}_i adj \mathbf{A} . Inverse or reciprocal: of a square matrix A is a matrix B satisfying $$AB = BA = 1$$ The inverse is noted by A^{-1} . It exists only for regular matrixes that is, for those having their determinant different from zero. The Cramer's rule to form the inverse is $$A^{-1} = adj A/det A$$ Orthogonal matrix: A matrix \mathbf{A} is orthogonal if $\mathbf{A} \tilde{\mathbf{A}} = 1$. Orthogonal matrixes represent rotations: the linear transformation $\mathbf{y} = \mathbf{A}\mathbf{x}$ from the vector \mathbf{x} into the vector \mathbf{y} has the property $|\mathbf{y}| = |\mathbf{x}|$ and $\mathbf{y}_1 \cdot \mathbf{y}_2 = \mathbf{x}_1 \cdot \mathbf{x}_2$. Unitary matrix: A matrix **A**, with complex elements, is unitary when $\mathbf{A}^{\dagger}\mathbf{A} = 1$. The transformation $\mathbf{y} = \mathbf{A}\mathbf{x}$ preserves the norm, i.e., $\|\mathbf{y}\|^2 = \|\mathbf{x}\|^2$. The scattering matrix **S** of a passive, lossless network is unitary (see p. 647). When \mathbf{x} represents incident waves, $\mathbf{y} = \mathbf{S}\mathbf{x}$ represent the reflected or scattered waves and $\|\mathbf{y}\|^2 = \|\mathbf{x}\|^2$, invariance of the norm, means that the reflected power equals the incident power. Trace (or spur) of a matrix is the sum of the terms in the main diagonal $$\operatorname{tr} \mathbf{A} = \sum_{i=1}^{t=n} a_{ii}$$ Rules of operation $$A + B = B + A$$ $$m(A \pm B) = mA \pm mB$$ $$A(BC) = (AB)C$$ $$A(B \pm C) = AB \pm AC$$ Exceptions: to the rules of ordinary algebra are as follows: a. In general the product AB is different from BA. **b.** Division of the two members of an equation by a matrix is done by multiplying these members by the inverse matrix; care must be taken to place this inverse on the same side of both members. ### Eigenvalue problem Given a square matrix \mathbf{A} of order n, the problem is to find vectors of dimension n that when multiplied by \mathbf{A} , give a vector of the same direction. For such a vector $$Au = su$$ where s is a scalar. \boldsymbol{u} is called an eigenvector (or characteristic vector) of the matrix \boldsymbol{A} and s is the corresponding eigenvalue. The existence of a vector \boldsymbol{u} (\neq 0) for a given s implies that s satisfies the characteristic equation $$f(s) = \det (\mathbf{A} - s\mathbf{1}) = 0$$ 1 being the unit matrix (p. 1090). The trace of **A** is the sum of the eigenvalues and the determinant of **A** is their product. $$tr A = \sum_{i=1}^{n} s_i$$ $$\det \mathbf{A} = \begin{bmatrix} \mathbf{i} = \mathbf{n} \\ \mathbf{i} = \mathbf{1} \end{bmatrix} \mathbf{s}_{\mathbf{i}}$$ When the n roots $s_1 s_2 \ldots s_n$ of the characteristic equation are distinct, the corresponding n eigenvectors are independent and \mathbf{A} can be expressed as $\mathbf{A} = \mathbf{B} \mathbf{S} \mathbf{B}^{-1}$ where \mathbf{S} is a diagonal matrix formed by the eigenvalues and \mathbf{B} is regular. A hermitian matrix has only real eigenvalues. When these eigenvalues are positive, the matrix is called positive (semidefinite). If none of them is equal to 0, the matrix is called positive definite. For a hermitian matrix **A**, there exists a set of orthogonal eigenvectors; hence **A** can be represented by $$A = B S B^{-1}$$ where **B** is unitary and **S** is diagonal and real. A unitary matrix ${\bf U}$ has unitary eigenvalues (of the form $\exp j\varphi$ with φ real) and also possesses a set of n orthogonal eigenvectors. It can be represented by $$U = B S B^{-1}$$ where ${m B}$ is unitary and ${m S}$ is diagonal and formed with elements of magnitude 1 If the unitary matrix is also symmetrical (for instance, the scattering matrix of a lossless reciprocal network), there exist n real orthogonal eigenvectors, and \mathbf{B} in the above formula is an orthogonal matrix. Cayley-Hamilton theorem: The matrix **A** satisfies its own characteristic equation $$f(\mathbf{A}) = 0$$ ### Matrixes of order 2 Let $$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$$ and $\mathbf{A}' = \begin{bmatrix} \mathbf{a}' & \mathbf{b}' \\ \mathbf{c}' & \mathbf{d}' \end{bmatrix}$ be two matrixes of order 2. Sum $$\mathbf{A} + \mathbf{A}' = \begin{bmatrix} a + a' & b + b' \\ c + c' & d + d' \end{bmatrix}$$ Difference $$\mathbf{A} - \mathbf{A}' = \begin{bmatrix} a - a' & b - b' \\ c - c' & d - d' \end{bmatrix}$$ Multiplication by a number m $$m\mathbf{A} = \begin{bmatrix} ma & mb \\ \\ mc & md \end{bmatrix}$$ Product by a vector x If $$\mathbf{x} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$ and $\mathbf{x'} = \begin{bmatrix} \mathbf{u'} \\ \mathbf{v'} \end{bmatrix}$, then $$x' = Ax$$ expresses a linear transformation and means $$u' = au + bv$$ $$v' = cu + dv$$ **Products** $$\mathbf{AA'} = \begin{bmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{bmatrix}$$ $$\mathbf{A'A} = \begin{bmatrix} a'a + b'c & a'b + b'd \\ c'a + d'c & c'b + d'd \end{bmatrix}$$ Transpose $$\tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} \end{bmatrix}$$ **A** is symmetric if c = b. Complex conjugate $$\mathbf{A}^* = \begin{bmatrix} \mathbf{a}^* & \mathbf{b}^* \\ \\ \mathbf{c}^* & \mathbf{d}^* \end{bmatrix}$$ A is real if a, b, c, and d are real. Hermitian conjugate $$\mathbf{A}^{\dagger} = \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix}$$ A is hermitian if a and d are real and if b is the complex conjugate of c. ### **Determinant** $$\det \mathbf{A} = \operatorname{ad} - \operatorname{bc}$$ Trace $$tr \mathbf{A} = a + d$$ ### **Adjugate** $$\operatorname{adj} \mathbf{A} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$ Inverse $$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$ Characteristic equation $$\det (A - s1) = s^2 - s(a + d) + ad - bc = 0$$
Eigenvalues Diagonal form $$\mathbf{A} = \frac{1}{b(s_2 - s_1)} \begin{bmatrix} b & b \\ s_1 - a & s_2 - a \end{bmatrix} \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix} \begin{bmatrix} s_2 - a & -b \\ a - s_1 & b \end{bmatrix}$$ $$s_2 \neq s_1$$ Cayley-Hamilton theorem $$A^2 - A (a + d) + ad - bc = 0$$ gives A^2 in term of A and also gives by iteration the nth power A^n in terms of A and the unit matrix. A special case of importance (p. 649) is when det A = 1 and θ is defined by tr $A = 2 \cos \theta$ Then $$s_1 = \exp j\theta$$ $$s_2 = \exp - j\theta$$ and $$\mathbf{A}^{n} = \frac{\sin n\theta}{\sin \theta} \mathbf{A} - \frac{\sin (n-1) \theta}{\sin \theta}$$ ### ■ Mathematical tables # Common logarithms of numbers and proportional parts | | , | 1 | , | 1 : | | | . , | | , | 1 | | portional p | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|---|---| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 123 | | 7 8 9 | | 10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 | 4 8 12 | 17 21 25 | 29 33 37 | | 11 | 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755 | 4 8 11 | 15 19 23 | 26 30 34 | | 12 | 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106 | 3 7 10 | 14 17 21 | 24 28 31 | | 13 | 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430 | 3 6 10 | 13 16 19 | 23 26 29 | | 14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 | 3 6 9 | 12 15 18 | 21 24 27 | | 15 | 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014 | 3 6 8 | 11 14 17 | 20 22 25 | | 16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279 | 3 5 8 | 11 13 16 | 18 21 24 | | 17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529 | 2 5 7 | 10 12 15 | 17 20 22 | | 18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765 | 2 5 7 | 9 12 14 | 16 19 21 | | 19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989 | 2 4 7 | 9 11 13 | 16 18 20 | | 20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201 | 2 4 6 | 8 11 13 | 15 17 19 | | 21 | 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404 | 2 4 6 | 8 10 12 | 14 16 18 | | 22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598 | 2 4 6 | 8 10 12 | 14 15 17 | | 23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784 | 2 4 6 | 7 9 11 | 13 15 17 | | 24 | 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962 | 2 4 5 | 7 9 11 | 12 14 16 | | 25 | 3979 | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133 | 2 3 5 | 7 9 10 | 12 14 15 | | 26 | 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298 | 2 3 5 | 7 8 10 | 11 13 15 | | 27 | 4314 | 4330 | 4346 | 4362 | 4378 | 4393 | 4409 | 4425 | 4440 | 4456 | 2 3 5 | 6 8 9 | 11 13 14 | | 28 | 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609 | 2 3 5 | 6 8 9 | 11 12 14 | | 29 | 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 4757 | 1 3 4 | 6 7 9 | 10 12 13 | | 30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900 | 1 3 4 | 6 7 9 | 10 11 13 | | 31 | 4914 | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038 | 1 3 4 | 6 7 8 | 10 11 12 | | 32 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172 | 1 3 4 | 5 7 8 | 9 11 12 | | 33 | 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302 | 1 3 4 | 5 6 8 | 9 10 12 | | 34 | 5315 | 5328 | 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428 | 1 3 4 | 5 6 8 | 9 10 11 | | 35 | 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 | 1 2 4 | 5 6 7 | 9 10 11 | | 36 | 5563 | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670 | 1 2 4 | 5 6 7 | 8 10 11 | | 37 | 5682 | 5694 | 5705 | 5717 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786 | 1 2 3 | 5 6 7 | 8 9 10 | | 38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899 | 1 2 3 | 5 6 7 | 8 9 10 | | 39 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010 | 1 2 3 | 4 5 7 | 8 9 10 | | 40
41
42
43
44 | 6021
6128
6232
6335
6435 | 6031
6138
6243
6345
6444 | 6042
6149
6253
6355
6454 | 6053
6160
6263
6365
6464 | 6064
6170
6274
6375
6474 | 6075
6180
6284
6385
6484 | 6085
6191
6294
6395
6493 | 6096
6201
6304
6405
6503 | 6107
6212
6314
6415
6513 | 6117
6222
6325
6425
6522 | 1 2 3
1 2 3
1 2 3
1 2 3
1 2 3 | 4 5 6
4 5 6
4 5 6
4 5 6
4 5 6 | 8 9 10
7 8 9
7 8 9
7 8 9
7 8 9
7 8 9 | | 45 | 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618 | 1 2 3 | 4 5 6 | 7 8 9 | | 46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712 | 1 2 3 | 4 5 6 | 7 7 8 | | 47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803 | 1 2 3 | 4 5 5 | 6 7 8 | | 48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893 | 1 2 3 | 4 4 5 | 6 7 8 | | 49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981 | 1 2 3 | 4 4 5 | 6 7 8 | | 50
51
52
53
54 | 6990
7076
7160
7243
7324 | 6998
7084
7168
7251
7332 | 7007
7093
7177
7259
7340 | 7016
7101
7185
7267
7348 | 7024
7110
7193
7275
7356 | 7033
7118
7202
7284
7364 | 7042
7126
7210
7292
7372 | 7050
7135
7218
7300
7380 | 7059
7143
7226
7308
7388 | 7067
7152
7235
7316
7396 | 1 2 3
1 2 3
1 2 2
1 2 2
1 2 2 | 3 4 5
3 4 5
3 4 5
3 4 5
3 4 5 | 6 7 8
6 7 8
6 7 7
6 6 7 | ### Common logarithms of numbers and proportional parts | | | | | | | | | | | , | 1 | | | | | | | | |-----------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|---------|----------------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 : | 2 3 | oporti
 4 | | aı p
6 | | 8 | 9 | | 55
56
57
58
59 | 7404
7482
7559
7634
7709 | 7412
7490
7566
7642
7716 | 7419
7497
7574
7649
7723 | 7427
7505
7582
7657
7731 | 7435
7513
7589
7664
7738 | 7443
7520
7597
7672
7745 | 7451
7528
7604
7679
7752 | 7459
7536
7612
7686
7760 | 7466
7543
7619
7694
7767 | 7474
7551
7627
7701
7774 | 12 | 2 2 2 2 | 3
3
3
3
3 | 4
4
4
4 | 5 5 4 4 | 5
5
5
5
5 | 6 6 6 6 | 7
7
7
7
7 | | 60
61
62
63
64 | 7782
7853
7924
7993
8062 | 7789
7860
7931
8000
8069 | 7796
7868
7938
8007
8075 | 7803
7875
7945
8014
8082 | 7810
7882
7952
8021
8089 | 7818
7889
7959
8028
8096 | 7825
7896
7966
8035
8102 | 7832
7903
7973
8041
8109 | 7839
7910
7980
8048
8116 | 7846
7917
7987
8055
8122 | 1 1 | 2 | 3
3
3
3
3 | 4
4
3
3
3 | 4 4 4 4 | 5 5 5 5 5 | 6
6
5
5 | 6
6
6
6 | | 65
66
67
68
69 | 8129
8195
8261
8325
8388 | 8136
8202
8267
8331
8395 | 8142
8209
8274
8338
8401 | 8149
8215
8280
8344
8407 | 8156
8222
8287
8351
8414 | 8162
8228
8293
8357
8420 | 8169
8235
8299
8363
8426 | 8176
8241
8306
8370
8432 | 8182
8248
8312
8376
8439 | 8189
8254
8319
8382
8445 | 1 1 | 2 2 2 | 3
3
3
3
2 | 3
3
3
3 | 4 4 4 4 | 5
5
5
4
4 | 5
5
5
5
5 | 6 6 6 | | 70
71
72
73
74 | 8451
8513
8573
8633
8692 | 8457
8519
8579
8639
8698 | 8463
8525
8585
8645
8704 | 8470
8531
8591
8651
8710 | 8476
8537
8597
8657
8716 | 8482
8543
8603
8663
8722 | 8488
8549
8609
8669
8727 | 8494
8555
8615
8675
8733 | 8500
8561
8621
8681
8739 | 8506
8567
8627
8686
8745 | 1 1 | 2 2 | 2
2
2
2
2
2 | 3
3
3
3 | 4 4 4 4 | 4
4
4
4 | 5
5
5
5 | 6
5
5
5
5 | | 75
76
77
78
79 | 8751
8808
8865
8921
8976 | 8756
8814
8871
8927
8982 | 8762
8820
8876
8932
8987 | 8768
8825
8882
8938
8993 | 8774
8831
8887
8943
8998 | 8779
8837
8893
8949
9004 | 8785
8842
8899
8954
9009 | 8791
8848
8904
8960
9015 | 8797
8854
8910
8965
9020 | 8802
8859
8915
8971
9025 | 1 1 | 2 2 2 | 2 2 2 2 2 | 3
3
3
3 | 3 3 3 3 | 4
4
4
4 | 5
5
4
4
4 | 5
5
5
5 | | 80
81
82
83
84 | 9031
9085
9138
9191
9243 | 9036
9090
9143
9196
9248 | 9042
9096
9149
9201
9253 | 9047
9101
9154
9206
9258 | 9053
9106
9159
9212
9263 | 9058
9112
9165
9217
9269 |
9063
9117
9170
9222
9274 | 9069
9122
9175
9227
9279 | 9074
9128
9180
9232
9284 | 9079
9133
9186
9238
9289 | 1 1 | 2 2 2 | 2 2 2 2 2 | 3
3
3
3 | 3
3
3
3 | 4
4
4
4 | 4
4
4
4 | 5
5
5
5 | | 85
86
87
88
89 | 9294
9345
9395
9445
9494 | 9299
9350
9400
9450
9499 | 9304
9355
9405
9455
9504 | 9309
9360
9410
9460
9509 | 9315
9365
9415
9465
9513 | 9320
9370
9420
9469
9518 | 9325
9375
9425
9474
9523 | 9330
9380
9430
9479
9528 | 9335
9385
9435
9484
9533 | 9340
9390
9440
9489
9538 | 0 0 | 1 1 | 2
2
2
2
2
2 | 3
2
2
2 | 3
3
3
3 | 4
4
3
3
3 | 4
4
4
4 | 5
4
4
4 | | 90
91
92
93
94 | 9542
9590
9638
9685
9731 | 9547
9595
9643
9689
9736 | 9552
9600
9647
9694
9741 | 9557
9605
9652
9699
9745 | 9562
9609
9657
9703
9750 | 9566
9614
9661
9708
9754 | 9571
9619
9666
9713
9759 | 9576
9624
9671
9717
9763 | 9581
9628
9675
9722
9768 | 9586
9633
9680
9727
9773 | 0 1 | 1 | 2
2
2
2
2 | 2
2
2
2
2 | 3
3
3
3 | 3
3
3
3 | 4
4
4
4 | 4
4
4
4 | | 95
96
97
98
99 | 9777
9823
9868
9912
9956 | 9782
9827
9872
9872
9917
9961 | 9786
9832
9877
9921
9965 | 9791
9836
9881
9926
9969 | 9795
9841
9886
9930
9974 | 9800
9845
9890
9934
9978 | 9805
9850
9894
9939
9983 | 9809
9854
9899
9943
9987 | 9814
9859
9903
9948
9991 | 9818
9863
9908
9952
9996 | 0 1 | 1 | 2 2 2 2 2 | 2 2 2 2 2 | 3 3 3 3 | 3
3
3
3 | 4
4
4
4
3 | 4
4
4
4 | # for decimal fractions of a degree | | | tan 1 | 1 | sin | deg | | cot | tan | cos | sin | deg | |----------------------------------|----------------|------------------|-----------------|------------------|----------------------------|----------------------------|-------------------------|------------------|------------------|------------------|--| | | cot | | cos | | | | | | | | | | 84.0
.9 | 9.514
9.357 | .10510 | 0.9945
.9943 | .10453
.10626 | 6.0
.1 | 90.0 | σ
573.0 | .00000 | 1.0000
1.0000 | .00000 | 0.0 | | .8
.7 | 9.205 | .10863 | .9942 | .10800 | .2 | .9
.8
.7 | 286.5 | .00349 | 1.0000 | .00349 | .2 | | .7 | 9.058 | .11040 | .9940 | .10973 | .3 | | 191.0 | .00524 | 1.0000 | ,00524 | .3 | | .6 | 8.915 | .11217 | .9938 | .11147
.11320 | .4 | 6 | 143.24 | .00698 | 1.0000 | .00698 | .4 | | .5 | 8.777
8.643 | .11570 | 9936
.9934 | .11320 | .5 | .4 | 114.59
95.49 | .01047 | 0.9999 | .01047 | .6 | | .4
.3
.2 | 8.513 | .11747 | .9932 | .11667 | .6
.7
.8
.9 | .6
.5
.4
.3
.2 | 81.85 | .01222 | .9999 | .01222 | .3
.4
.5
.6
.7
.8 | | .2 | 8.513
8.386 | .11924 | .9930 | .11840 | .8 | .2 | 71.62 | .01396 | .9999 | .01396 | .8 | | .1 | 8.264 | .12101 | .9928 | .12014 | .9 | .1 | 63.66 | .01571 | .9999 | .01571 | .9 | | 83.0 | 8.144 | .12278 | 0.9925 | .12187 | 7.0 | 89.0 | 57.29 | .01746 | 0.9998 | .01745 | 1.0 | | .9 | 8.028
7.916 | .12456 | .9923
.9921 | .12360
.12533 | .] | .9 | 52.08
47 . 74 | .01920 | .9998
.9998 | .01920
.02094 | .1 | | .0 | 7.806 | .12810 | .9921 | .12533 | .2 | .8
.7 | 44.07 | .02269 | .9997 | .02269 | .3 | | .8
.7
.6
.5
.4
.3 | 7.700 | .12988 | .9917 | .12880 | .2
.3
.4
.5 | .6 | 40.92 | .02444 | .9997 | .02443 | .2
.3
.4
.5
.6 | | .5 | 7.596 | .13165 | .9914 | .13053 | .5 | .5 | 38.19 | .02619 | .9997 | .02618 | .5 | | .4 | 7.495 | .13343 | .9912 | .13226 | .6
.7 | .4 | 35.80 | .02793 | .9996 | .02792 | .6 | | .3 | 7.396
7.300 | .13521
.13698 | .9910
.9907 | .13399
.13572 | ./
.8 | .3 | 33.69
31.82 | .02968 | .9996
.9995 | .02967
.03141 | .8 | | .1 | 7.207 | .13876 | .9905 | .13744 | .9 | .5
.4
.3
.2 | 30.14 | .03317 | .9995 | .03316 | .9 | | | | .14054 | 0.9903 | .13917 | 8.0 | 88.0 | 00.44 | .03492 | 0.9994 | .03490 | 2.0 | | 82.0
.9 | 7.115
7.026 | .14232 | .9900 | .14090 | .1 | .9 | 28.64
27.27 | .03492 | .9993 | .03664 | | | .8 | 6.940 | .14410 | .9898 | .14263 | .2
.3 | .8
.7 | 26.03 | .03842 | .9993 | .03839 | .2 | | .7 | 6.855 | .14588 | .9895 | .14436 | .3 | .7 | 24.90 | .04016 | .9992
.9991 | .04013 | .3 | | .6
.5 | 6.772
6.691 | .14767
.14945 | .9893
.9890 | .14608
.14781 | .4
.5 | .6
.5 | 23.86
22.90 | .04191 | .9990 | .04188
.04362 | .5 | | .5 | 6.612 | .15124 | .9888 | .14954 | .6 | | 22.02 | .04541 | .9990 | .04536 | .1
.2
.3
.4
.5
.6
.7 | | .4
.3
.2
.1 | 6.535 | .15302 | .9885 | .15126 | .6
.7 | .4
.3
.2 | 21.20 | .04716 | .9989 | .04711 | .7 | | .2 | 6.460 | .15481 | .9882 | .15299 | .8 | .2 | 20.45 | .04891 | .9988 | .04885 | .8 | | .1 | 6.386 | .15660 | .9880 | .15471 | .9 | .ī | 19.74 | .05066 | .9987 | .05059 | .9 | | 81.0 | 6.314 | .15838 | 0.9877 | .15643 | 9.0 | 87.0 | 19.081 | .05241 | 0.9986 | .05234 | 3.0 | | .9 | 6.243 | .16017 | .9874 | .15816
.15988 | .1
.2 | .9 | 18.464
17.886 | .05416 | .9985
.9984 | .05408
.05582 | ٠,١ | | .8
.7 | 6.174
6.107 | .16196
.16376 | .9871
.9869 | .16160 | .3 | .8
.7 | 17.343 | .05766 | .9983 | .05756 | .3 | | .6 | 6.041 | .16555 | .9866 | .16333 | .4 | .6 | 16.832 | .05941 | .9982 | .05931 | .4 | | .5 | 5.976 | .16734 | .9863 | .16505 | .5 | .5 | 16.350 | .06116 | .9981 | .06105 | .5 | | .4 | 5.912 | .16914 | .9860 | .16677 | .4
.5
.6
.7 | .4 | 15.895 | .06291 | .9980
.9979 | .06279 | .6 | | .4
.3
.2 | 5.850
5.789 | .17093
.17273 | .9857
.9854 | .16849
.17021 | '/ | .6
.5
.4
.3 | 15.464 | .06467 | .9979 | .06453 | .1
.2
.3
.4
.5
.6
.7
.8 | | .1 | 5.730 | .17453 | .9851 | .17193 | .8 | .i | 14.669 | .06817 | .9977 | .06802 | .9 | | 80.0 | 5.671 | .1763 | 0.9848 | .1736 | 10.0 | 86.0 | 14.301 | .06993 | 0.9976 | .06976 | 4.0 | | 9 | 5.614 | .1781 | .9845 | .1754 | .1 1 | 0 | 13.951 | .07168 | .9974 | .07150 | | | .8
.7 | 5.558 | .1799 | .9842 | .1771 | .2 | .8
.7 | 13.617 | .07344 | .9973 | .07324 | .2 | | .7 | 5.503
5.449 | .1817 | .9839
.9836 | .1788 | .3 | '/ | 13.300
12.996 | .07519
.07695 | .9972
.9971 | .07498 | .3 | | .6
.5 | 5.396 | .1853 | .9833 | .1822 | .5 | .5 | 12,706 | .07870 | .9969 | .07846 | .5 | | .4 | 5.343 | .1871 | .9829 | .1840 | .2
.3
.4
.5
.6 | .4 | 12,429 | .08046 | .9968 | .08020 | .6 | | .4
.3
.2 | 5.343
5.292 | .1890 | .9826 | .1857 | .7 | .6
.5
.4
.3 | 12.163 | .08221 | .9966 | .08194 | .1
.2
.3
.4
.5
.6
.7
.8 | | .2
.1 | 5.242
5.193 | .1908 | .9823
.9820 | .1874
.1891 | .8
.9 | .2 | 11.909 | .08397 | .9965
.9963 | .08368 | .9 | | | | | | | 1 1 | | | | | | | | 79.0
.9 | 5.145
5.097 | .1944 | 0.9816
.9813 | .1908
.1925 | 11.0 | 85.0 | 11.430
11.205 | .08749 | 0.9962
.9960 | .08716 | 5.0 | | .9 | 5.050 | .1980 | .9810 | .1942 | .2 | .8 | 10.988 | .09101 | .9959 | .09063 | .2 | | .8
.7 | 5.005 | .1998 | .9806 | .1959 | .3 | .7 | 10.780 | .09277 | .9957 | .09237 | .3 | | .6 | 4.959 | .2016 | .9803 | .1977 | .2
.3
.4
.5 | .6 | 10.579 | .09453 | .9956 | .09411 | .1
.2
.3
.4
.5
.6
.7 | | .5 | 4.915
4.872 | .2035 | .9799
.9796 | .1994 | .5 | .5 | 10.385
10.199 | .09629
.09805 | .9954
.9952 | .09585 | .6 | | .4 | 4.872 | .2053 | .9792 | .2028 | .6
.7 | .4
.3
.2 | 10.019 | .09981 | .9951 | .09738 | .7 | | .6
.5
.4
.3 | 4.787 | .2089 | .9789 | .2045 | .8 | .2 | 9.845 | .10158 | .9949 | .10106 | .8 | | .ī | 4.745 | .2107 | .9785 | .2062 | .9 | .1 | 9.677 | .10334 | .9947 | .10279 | .9 | | 78.0 | 4.705 | .2126 | 0.9781 | .2079 | 12.0 | 84.0 | 9.514 | .10510 | 0.9945 | .10453 | 6.0 | | | tan | cot | sin | cos | | deg | tan | cot | sin | cos | | ### for decimal fractions of a degree | deg | sin | cos | tan | cot | | deg | sin | cos | tan | cot | | |--|-----------------|------------------------|--------------------------------|----------------|----------------------------------|----------------------------------|-----------------|------------------------|-----------------|----------------|--| | 12.0 | 0.2079 | 0.9781 | 0.2126 | 4,705 | 78.0 | 18.0 | 0.3090 | 0,9511 | 0.3249 | 3.078 | 72.0 | | .1 | .2096 | .9778 | .2144 | 4.665 | .9 | .1 | .3107 | .9505 | .3269 | 3.060 | .9 | | .2 | .2113
.2130 | .9774
.9770 | .2162
.2180 | 4.625
4.586 | .8
.7 | .2 | .3123
.3140 | .9500
.9494 | .3288 | 3.042
3.024 | .8
.7 | | .4 | .2147 | .9767 | .2199 | 4,548 | .6
.5 | .4 | .3156 | .9489 | .3327 | 3.006 | .6 | | .5 | .2164 | .976 3
.9759 | .2217 | 4.511
4.474 | .5 | .4
.5
.6 | .3173
.3190 | .9483
.9478 | .3346 | 2.989
2.971 | .5 | | .7 | .2198 | .9755 | .2254 | 4.437 | .3 | ., | .3206 | .9472 | .3385 | 2.954 | .3 | | .2
.3
.4
.5
.6
.7
.8 | .2215
.2233 | .9751
.9748 | .2272
.2290 | 4.402
4.366 | .4
.3
.2
.1 | .8
.9 | .3223 | .946 6
.9461 | .3404
.3424 | 2.937
2.921 | .5
.4
.3
.2 | | | | 0.9744 | 0.2309 | 4.331 | 77.0 | 1 | 1 | | | 2.904 | | | 13.0
.1 | 0.2250
.2267 | .9740 | .2327 | 4.331 | .9 | 19.0
.1 | 0.3256
.3272 | 0.9455 | 0.3443
.3463 | 2.904 | 71.0
.9 | | .2 | .2284 | .9736 | .2345 | 4.264 | .8
.7 | | .3289 | .9444 | .3482 | 2.872 | .8 | | .2
.4
.5
.6
.7
.8
.9 | .2300 |
.9732
.9728 | .2364
.2382 | 4.230
4.198 | .6 | .2
.3
.4
.5 | .3305
.3322 | .9438
.9432 | .3502
.3522 | 2.856
2.840 | .8
.7
.6
.5
.4
.3
.2 | | .5 | .2334 | .9724 | .2401 | 4.165 | .5 | .5 | .3338 | .9426 | .3541 | 2.824 | .5 | | .6
7 | .2351 | .9720
.9715 | .2419
.2438 | 4,134
4,102 | .4 | .6
.7 | .3355
.3371 | .9421
.9415 | .3561
.3581 | 2.808
2.793 | .4 | | .8 | .2385 | .9711 | .2456 | 4.071 | .6
.5
.4
.3
.2 | .8 | .3387 | .9409 | .3600 | 2.778 | .2 | | .9 | .2402 | .9707 | .2475 | 4.041 | .1 | .9 | .3404 | .9403 | .3620 | 2.762 | .1 | | 14.0 | 0.2419
.2436 | 0.9703
.9699 | 0.2493
.2512 | 4.011
3.981 | 76.0 | 20.0 | 0,3420
.3437 | 0.9397
.9391 | 0.3640
.3659 | 2.747
2.733 | 70.0 | | .1
.2
.3
.4
.5
.6
.7
.8
.9 | .2453 | .9694 | .2530 | 3.952 | .8
.7 | .1 | .3453 | .9385 | .3679 | 2.718 | .9
.8 | | .3 | .2470
.2487 | .9690
.9686 | .2549
.2568 | 3.923
3.895 | .7 | .3 | .3469
.3486 | .9379 | .3699 | 2.703
2.689 | .8
.7 | | .5 | .2504 | .9681 | .2586 | 3.867 | .5 | .5 | .3502 | .9373
.9367 | .3719
.3739 | 2.675 | .6
.5 | | .6 | .2521
.2538 | .9677
.9673 | .2605
.2623 | 3.839
3.812 | .6
.5
.4
.3
.2 | .2
.3
.4
.5
.6 | .3518 | .9361
.9354 | .3759
.3779 | 2.660 | .5
.4
.3
.2 | | .8 | .2554 | .9668 | .2642 | 3.785 | .2 | .8 | .3535
.3551 | .9354 | .3779 | 2.646
2.633 | .3 | | .9 | .2571 | .9664 | .2661 | 3.758 | .1 | .9 | .3567 | .9342 | .3819 | 2.619 | .ī | | 15.0 | 0.2588 | 0.9659 | 0.2679 | 3.732 | 75.0 | 21.0 | 0.3584 | 0.9336 | 0.3839 | 2.605 | 69.0 | | .1 | .2605
.2622 | .9655
.9650 | .269 8
.271 7 | 3.706
3.681 | .9
.8 | .1 | .3600
.3616 | .9330
.9323 | .3859
.3879 | 2.592
2.578 | .9
8 | | .3 | .2639 | .9646 | .2736 | 3.655 | .7 | .3 | .3633 | .9317 | .3899 | 2.565 | .8
.7 | | .4
5 | .2656
.2672 | .9641
.9636 | .2754
.2773 | 3.630
3.606 | .6 | .2
.3
.4
.5
.6
.7 | .3649
.3665 | .9311
.9304 | ,3919
,3939 | 2.552
2.539 | .6 | | .6 | .2689 | .9632 | .2792 | 3.582 | . <u>4</u> | ة. | .3681 | .9298 | .3959 | 2.526 | .4 | | .2
.3
.4
.5
.6
.7
.8
.9 | .2706 | .9627
.9622 | .2811
.2830 | 3.558
3.534 | .8
.7
.6
.5
.4
.3 | J .7 | .3697
.3714 | .9291
.9285 | .3979
.4000 | 2.513
2.500 | .5
.4
.3
.2 | | .9 | .2740 | .9617 | .2849 | 3.511 | .ī | .8
.9 | .3730 | .9278 | .4020 | 2.488 | iî. | | 16.0 | 0.2756 | 0.9613 | 0.2867 | 3.487 | 74.0 | 22.0 | 0.3746 | 0.9272 | 0.4040 | 2.475 | 68.0 | | .1 | .2773
.2790 | .9608
.9603 | .2886
.2905 | 3.465
3.442 | .9
.8 | .1 | .3762
.3778 | .9265
.9259 | .4061
.4081 | 2.463
2.450 | .9
.8
.7
.6
.5
.4
.3
.2 | | .3 | .2807 | .9598 | .2924 | 3.420 | .8
.7 | .3 | .3795 | .9252 | .4101 | 2.438 | .7 | | .4 | .2823
.2840 | .9593
.9588 | .2943 | 3.398
3.376 | .6 | 4 | .3811
.3827 | .9245
.9239 | .4122
.4142 | 2.426
2.414 | .6 | | .6 | .2857 | .9583 | .2981 | 3.354 | .4 | .2
.3
.4
.5
.6 | .3843 | .9232 | .4163 | 2.402 | .4 | | .2
.3
.4
.5
.6
.7
.8 | .2874 | .9578
.9573 | .3000
.3019 | 3.333
3.312 | .6
.5
.4
.3
.2 | .7 | .3859
.3875 | .9225
.9219 | .4183
.4204 | 2.391
2.379 | .3 | | .9 | .2907 | .9568 | .3038 | 3.291 | ı, î | .8
.9 | .3891 | .9212 | .4224 | 2.367 | .1 | | 17.0 | 0.2924 | 0.9563 | 0.3057 | 3.271 | 73.0 | 23.0 | 0.3907 | 0.9205 | 0.4245 | 2.356 | 67.0 | | .1 | .2940
.2957 | .9558
.9553 | .3076
.3096 | 3.251
3.230 | .9 | 1 .1 | .3923 | .9198 | .4265 | 2.344 | | | .3 | .2974 | .9548 | .3115 | 3.211 | .8
.7 | .2
.3 | .3939
.3955 | .9191
.9184 | .4286
.4307 | 2.322 | .9
.8
.7 | | .4 | .2990 | .9542 | .3134 | 3.191 | .6 | .4
.5 | .3971 | .9178 | .4327 | 2.311
2.300 | .6 | | .5 | .3007
.3024 | .9537
.9532 | .3153
.3172 | 3.172
3.152 | .6
.5
.4
.3
.2 | .5 | .3987 | .9171
.9164 | .4348
.4369 | 2,300 | .5 | | .7 | .3040 | .9527 | .3191 | 3.133 | .3 | .6
.7 | .4019 | .9157 | .4390 | 2.278 | .3 | | .2
.3
.4
.5
.6
.7
.8 | .3057
.3074 | .9521
.9516 | .3211
.3230 | 3.115
3.096 | .1 | .8
.9 | .4035
.4051 | .9150
.9143 | .4411
.4431 | 2.267
2.257 | .6
.5
.4
.3
.2 | | 18.0 | 0.3090 | 0.9511 | 0.3249 | 3.078 | 72.0 | 24.0 | 0,4067 | 0,9135 | 0.4452 | 2.246 | 66.0 | | | cos | sin | cot | tan | deg | | COS | sin | cot | tan | deg | | | 1 | , | | | | | | | | , | | ### for decimal fractions of a degree cont | | | | ! | -1 | 1 | | | | | | | |--|------------------|-------------------------|----------------|----------------|----------------------------|----------------------------|----------------|-----------------|-----------------|-----------------|--| | | cot | tan | cos | sin | deg [| | cot | tan | cos | sin | deg | | 60.0 | 1.7321 | 0.5774 | 0.8660 | 0.5000 | 30.0 | 66.0 | 2.246 | 0.4452 | 0.9135 | 0.4067 | 24.0 | | .9
.8 | 1.7251
1.7182 | .5797
.5820 | .8652
.8643 | .5015
.5030 | ا ۱٫۱ | .9 | 2.236 | .4473 | .9128 | .4083 | .1 | | .7 | 1.7113 | .5844 | .8634 | .5045 | .2
.3 | .8
.7 | 2.225
2.215 | .4494
.4515 | .9121
.9114 | .4099
.4115 | .2 | | .6 | 1.7045 | .5867 | .8625 | .5060 | .4 | .6 | 2.204 | .4536 | .9107 | .4131 | .3 | | .5 | 1.6977 | .5890 | .8616 | .5075 | .5 | 5 | 2,194 | .4557 | .9100 | .4147 | .5 | | .4 | 1.6909 | .5914 | .8607 | .5090 | .6
.7 | .4 | 2.184 | .4578 | .9092 | .4163 | .6 | | .4
.3
.2 | 1.6842
1.6775 | .5938 | .8599 | .5105 | ا ٠٫٠ | .3 | 2.174 | .4599 | .9085 | .4179 | .7 | | .1 | 1.6709 | .5961
.5985 | .8590
.8581 | .5120
.5135 | .8
.9 | .4
.3
.2
.1 | 2.164 | .4621 | .9078 | .4195 | .4
.5
.6
.7
.8 | | | | | | | | ., | 2.154 | .4642 | .9070 | .4210 | .9 | | 59.0 | 1.6643
1.6577 | 0.6009
.6032 | 0.8572 | 0.5150 | 31.0 | 65.0 | 2.145 | 0.4663 | 0.9063 | 0.4226 | 25.0 | | .8 | 1.6512 | .6056 | .8563
.8554 | .5165
.5180 | .1
.2 | .9 | 2.135 | .4684 | .9056 | .4242 | .1 | | .8
.7 | 1.6447 | .6080 | .8545 | .5195 | .3 | .8
.7 | 2.125
2.116 | .4706
.4727 | .9048
.9041 | .4258
.4274 | .2 | | .6 | 1.6383 | .6104 | .8536 | .5210 | .4 | .6 | 2.106 | .4748 | .9033 | .4289 | .2
.3
.4
.5
.6 | | .5 | 1.6319 | .6128 | .8526 | .5225 | .4
.5 | .6
.5 | 2.097 | .4770 | .9026 | .4305 | .5 | | .4 | 1.6255 | .6152 | .8517 | .5240 | .6
.7 | .4
.3 | 2.087 | .4791 | .9018 | .4321 | .6 | | .5 | 1.6191
1.6128 | .6176 | .8508
.8499 | .5255 | 1 .7 | .3 | 2.078 | .4813 | .9011 | .4337 | .7 | | .6
.5
.4
.3
.2 | 1.6066 | .6200
.6224 | .8490 | .5270
.5284 | .8
.9 | .2
.1 | 2.069
2.059 | .4834 | .9003 | .4352 | .8 | | | | | | | | | 2.039 | .4856 | .8996 | .4368 | .9 | | 58.0
.9 | 1.6003 | 0.6249 | 0.8480 | 0.5299 | 32.0 | 64.0 | 2.050 | 0.4877 | 0.8988 | 0.4384 | 26.0 | | 7 | 1.5880 | .6273
.6297 | .8471
.8462 | .5314
.5329 | .i | .9
.8 | 2.041 | .4899 | .8980
.8973 | .4399 | .1 | | 7 | 1.5818 | .6322 | .8453 | .5344 | .2
.3 | .7 | 2.023 | .4942 | .8965 | .4415
.4431 | .2 | | .6 | 1.5757 | .6346 | .8443 | .5358 | <u>.</u> 4 | .6 | 2.014 | .4964 | .8957 | .4446 | .3 | | .5 | 1.5697 | .6371 | .8434 | .5373 | .5 | .5 | 2.006 | .4986 | .8949 | .4462 | .5 | | .4 | 1.5637 | .6395 | .8425 | .5388 | .6 | -4 | 1.997 | .5008 | .8942 | .4478 | .6 | | .3 | 1.5577
1.5517 | .6420
.6445 | .8415
.8406 | .5402
.5417 | 1 % | .3 | 1.988 | .5029 | .8934 | .4493 | .7 | | .8
.7
.6
.5
.4
.3
.2 | 1.5458 | .6469 | .8396 | .5432 | .4
.5
.6
.7
.8 | .5
.4
.3
.2 | 1.980
1.971 | .5051
.5073 | .8926
.8918 | .4509
.4524 | .4
.5
.6
.7
.8 | | 57.0 | 1.5399 | 0.6494 | 0.8387 | 0.5446 | 33.0 | 63.0 | 1.963 | 0.5005 | | | | | .9 | 1.5340 | .6519 | .8377 | .5461 | 33.0 | .9 | 1.954 | 0.5095
.5117 | 0.8910
.8902 | 0.4540
.4555 | 27.0 | | .8 | 1.5282 | .6544 | .8368 | .5476 | .2 | .8
.7 | 1.946 | .5139 | .8894 | .4571 | .1 | | .7 | 1.5224 | .6569 | .8358 | .5490 | .3 | .7 | 1.937 | .5161 | .8886 | .4586 | .3 | | .6 | 1.5166 | .6594 | .8348 | .5505 | .2
.3
.4
.5 | .6 | 1.929 | .5184 | .8878 | .4602 | .4 | | .5 | 1.5108
1.5051 | .6619
.6644 | .8339
.8329 | .5519
.5534 | .5 | .5 | 1.921 | .5206 | .8870 | .4617 | .5 | | .4
.3
.2 | 1.4994 | .6669 | .8320 | .5548 | .6
.7 | .3 | 1.913
1.905 | .5228
.5250 | .8862
.8854 | .4633
.4648 | .2
.3
.4
.5
.6 | | .2 | 1.4938 | .6694 | .8310 | .5563 | .8 | .6
.5
.4
.3
.2 | 1.897 | .5272 | .8846 | .4664 | ۰, | | .1 | 1.4882 | .6720 | .8300 | .5577 | .9 | ,ī | 1.889 | .5295 | .8838 | .4679 | .8 | | 56.0 | 1.4826 | 0.6745 | 0.8290 | 0.5592 | 34.0 | 62.0 | 1.881 | 0.5317 | 0.8829 | 0.4695 | 28.0 | | .9 | 1.4770 | .6771 | .8281 | .5606 | .1 | .9 | 1.873 | .5340 | .8821 | .4710 | | | .8
.7 | 1.4715 | .6796 | .8271 | .5621 | .2
.3 | .8 | 1.865 | .5362 | .8813 | .4726 | .2 | | .6 | 1.4659
1.4605 | .6822
.6847 | .8261
.8251 | .5635
.5650 | .3 | .7 | 1.857 | .5384 | .8805 | .4741 | .3 | | .5 | 1.4550 | .6873 | .8241 | .5664 | .4
.5 | .6
.5 | 1.849
1.842 | .5407
.5430 | .8796
.8788 | .4756 | .4 | | .4 | 1.4496 | .6899 | .8231 | .5678 | .6 | .4 | 1.834 | .5452 | .8780 | .4772
.4787 | .5 | | .4
.3
.2 | 1.4442 | .6924 | .8221 | .5693 | .6
.7 | .4
.3
.2 | 1.827 | .5475 | .8771 | .4802 | .1
.2
.3
.4
.5
.6
.7 | | .2 | 1.4388 | .6950 | .8211 | .5707 | .8 | .2 | 1.819 | .5498 | .8763 | .4818 | .8 | | .1 | 1.4335 | .6976 | .8202 | .5721 | .9 | .1 | 1.811 | .5520 | .8755 | .4833 | .9 | |
55.0 | 1.4281 | 0.7002 | 0.8192 | 0.5736 | 35.0 | 61.0 | 1.804 | 0.5543 | 0.8746 | 0.4848 | 29.0 | | .9 | 1.4229 | .7028 | .8181 | .5750 | 1 1 | .9 | 1.797 | .5566 | .8738 | .4863 | .1 | | .8
.7 | 1.4176
1.4124 | .7054
.7080 | .8171
.8161 | .5764
.5779 | .2 | .8
.7 | 1.789 | .5589 | .8729 | .4879 | .2 | | , 'A | 1.4124 | .7107 | .8151 | .5779 | .3 | 1 ./ | 1.782
1.775 | .5612 | .8721 | .4894 | .3 | | .6
.5 | 1.4019 | .7133 | .8141 | .5807 | .4
.5 | .5 | 1.767 | .5635
.5658 | .8712
.8704 | .4909
.4924 | .4 | | .4 | 1.3968 | .7159 | .8131 | .5821 | .6
.7 | .4 | 1.760 | .5681 | .869.5 | 4939 | ٥. | | .4
.3
.2 | 1.3916 | .7186 | .8121 | .5835 | .7 | .6
.5
.4
.3
.2 | 1.753 | .5704 | .8686 | .4955 | ž | | .2 | 1.3865
1.3814 | .7212
. 7 239 | .8111
.8100 | .5850
.5864 | .8
.9 | .2
.1 | 1.746
1.739 | .5727
.5750 | .8678 | .4970 | .2
.3
.4
.5
.6
.7
.8 | | 54.0 | 1.3764 | 0.7265 | 0.8090 | 0.5878 | 36.0 | 60.0 | 1.737 | 0.5774 | .8669
0.8660 | .4985
0.5000 | .9
30.0 | | deg | tan | cot | sin | cos | L | deg | lan | cot | sin | COS | 30.0 | | | , | , -01 | , | | | | | | . 510 | | | ### for decimal fractions of a degree cor | | 1 co 1 | tan | cos | sin | deg | | cof | tan | cos | sin j | deg | |----------------------------|------------------|----------------|----------------|----------------|----------------------------|----------------------------|------------------|----------------|------------------------|----------------|----------------------------| | 49.5 | 1.1708 | 0.8541 | 0.7604 | 0.6494 | 40.5 | 54.0 | 1.3764 | 0.7265 | 0.8090 | 0.5878 | 36.0 | | .4 | 1.1667 | .8571 | .7593 | .6508 | .6 | .9 | 1.3713 | .7292 | .8080 | .5892 | .1 | | .3 | 1.1626 | .8601 | .7581 | .6521 | .7 | .8 | 1.3663 | .7319 | .8070 | .5906 | .2 | | .2
.1 | 1.1585
1.1544 | .8632
.8662 | .7570
.7559 | .6534
.6547 | .8
.9 | .7
.6 | 1.3613
1.3564 | .7346
.7373 | .8059
.8049 | .5920
.5934 | .3
.4 | | | 1.1544 | .0002 | ., 337 | .0547 | ., | | 1.5504 | ./3/3 | .0047 | .5/54 | - | | 49.0 | 1.1504 | 0.8693 | 0.7547 | 0.6561 | 41.0 | .5 | 1.3514 | .7400 | .8039 | .5948 | .5 | | .9
.8 | 1.1463 | .8724 | .7536 | .6574 | .1 | .4 | 1.3465 | .7427 | .8028 | .5962 | .6 | | .6
.7 | 1.1423 | .8754
.8785 | .7524
.7513 | .6587
.6600 | .2
.3 | .3 | 1.3416
1.3367 | .7454
.7481 | .8018
.8007 | .5976
.5990 | ./
8 | | .6 | 1.1343 | .8816 | .7501 | .6613 | .4 | .4
.3
.2
.1 | 1.3319 | .7508 | .7997 | .6004 | .6
.7
.8
.9 | | .5 | 1,1303 | .8847 | .7490 | .6626 | .5 | 53.0 | 1.3270 | 0.7536 | 0.7986 | 0.6018 | 37.0 | | .5
.4
.3
.2 | 1.1263 | .8878 | .7478 | .6639 | .5
.6
.7
.8
.9 | .9 | 1,3222 | .7563 | .7976 | .6032 | -1 | | .3 | 1.1224 | .8910 | .7466 | .6652 | .7 | .8 | 1.3175 | .7590 | .7965 | .6046 | .2 | | .2 | 1.1184 | .8941 | .7455 | .6665 | 8. | .7 | 1.3127
1.3079 | .7618 | .7955 | .6060 | .3
.4 | | 1 | 1.1145 | .8972 | .7443 | .6678 | ., | .6 | 1.30/9 | .7646 | .7944 | .6074 | .4 | | 48.0 | 1.1106 | 0.9004 | 0.7431 | 0.6691 | 42.0 | .5 | 1.3032 | .7673 | .7934 | .6088 | .5 | | .9 | 1.1067 | .9036 | .7420 | .6704 | 1 1 | .4 | 1.2985 | .7701 | .7923 | .6101 | .6 | | .8
.7 | 1.1028 | .9067
.9099 | .7408
.7396 | .6717
.6730 | .2 | .3 | 1.2938 | .7729
.7757 | .7912
.7902 | .6115
.6129 | .5
.6
.7 | | .6 | 1.0951 | .9131 | .7385 | .6743 | .4 | .5
.4
.3
.2
.1 | 1.2846 | .7785 | .7891 | .6143 | .9 | | .5 | 1,0913 | .9163 | .7373 | .6756 | .5 | 52.0 | 1.2799 | 0.7813 | 0.7880 | 0 6157 | 38.0 | | .4 | 1.0875 | 9195 | .7361 | .6769 | .5
.6
.7 | .9 | 1.2753 | .7841 | .7869 | .6170 | .1 | | .5
.4
.3
.2 | 1.0837 | .9228 | .7349 | .6782 | .7 | .8 | 1.2708 | .7869 | .7859 | .6184 | .2 | | .2 | 1.0799 | .9260 | .7337 | .6794 | .8 | .7 | 1.2662 | .7898 | .7848 | .6198 | .3
.4 | | | 1.0761 | .9293 | .7325 | .6807 | .9 | .6 | 1.2617 | .7926 | .7837 | .6211 | | | 47.0 | 1.0724 | 0.9325 | 0.7314 | 0.6820 | 43.0 | .5
.4
.3
.2 | T.2572 | .7954 | .7826 | .6225 | .5
.6
.7
.8
.9 | | .9 | 1.0686 | .9358
.9391 | .7302
.7290 | .6833
.6845 | ا. ا | .4 | 1.2527
1,2482 | .7983
.8012 | .7815
.7804 | .6239
.6252 | .6 | | .9
.8
. 7 | 1.0649 | .9424 | .7278 | .6858 | .2
.3 | .3 | 1,2437 | .8040 | .7793 | .6266 | .8 | | .6 | 1.0575 | .9457 | .7266 | .6871 | .4 | .î | 1.2393 | .8069 | .7782 | .6280 | .9 | | .5 | 1.0538 | .9490 | .7254 | .6884 | .5 | 51.0 | 1.2349 | 0.8098 | 0.7771 | 0.6293 | 39.0 | | .4 | 1.0501 | .9523 | .7242 | .6896 | .5
.6 | .9 | 1.2305 | .8127 | .7760 | .6307 | .1 | | .3 | 1.0464 | .9556 | .7230 | .6909 | 1 .7 | .8 1 | 1.2261 | .8156 | .7749 | .6320 | .2 | | .5
.4
.3
.2 | 1.0428 | .9590
.9623 | .7218
.7206 | .6921
.6934 | .8 | .7
.6 | 1.2218
1.2174 | .8185
.8214 | .7738
.772 7 | .6334
.6347 | .3
.4 | | | 1 1 | | | | | | | | | | | | 46.0 | 1.0355 | 0.9657 | 0.7193 | 0.6947 | 44.0 | .5 | 1.2131 | .8243 | .7716 | .6361 | .5 | | .9 | 1.0319 | .9691
.9725 | .7181
.7169 | .6959
.6972 | .1 | .4 | 1.2088
1.2045 | .8273
.8302 | .7705
.7694 | .6374
.6388 | .0
7 | | .8
.7 | 1.0263 | .9759 | .7157 | .6984 | .2
.3 | .5
.4
.3
.2 | 1.2002 | .8332 | .7683 | .6401 | .5
.6
.7
.8
.9 | | .6 | 1.0212 | .9793 | .7145 | .6997 | .4 | .ī | 1.1960 | .8361 | .7672 | .6414 | .9 | | .5 | 1.0176 | .9827 | .7133 | .7009 | .5
.6 | 50.0 | 1.1918 | 0.8391 | 0.7660 | 0.6428 | 40.0 | | .4 | 1.0141 | .9861 | .7120 | .7022 | .6 | .9 | 1.1875 | .8421 | .7649 | .6441 | ,ĭ | | .3 | 1.0105 | .9896 | .7108 | .7034 | .7 | .8
.7 | 1.1833 | .8451 | .7638 | .6455 | .2
.3 | | .5
.4
.3
.2
.1 | 1.0070
1.0035 | .9930
.9965 | .7096
.7083 | .7046
.7059 | .8 | .6 | 1.1792
1.1750 | .8481
.8511 | .7627
.7615 | .6468
.6481 | .4 | | 45.0 | 1.0000 | 1.0000 | 0.7071 | 0.7071 | 45.0 | 49.5 | 1.1708 | 0.8541 | 0.7604 | 0.6494 | 40.5 | | deg | tan | cot | sin | cos | | deg | tan | cot | sin | COS | | | aeg | i ian | COL | 2171 | | | geß | , jan | 601 | , sin | cor | | # for decimal fractions of a degree | İ | | | | | | | | | | | | |----------------------------------|------------------|------------------|------------------|------------------|----------------------------|----------------------|------------------|------------------|------------------|------------------|----------------------------| | | L cot | L fan | L cos | Lsin | deg | | L cof | L tan | L cos | L sin | deg | | 84.0 | 0.9784 | 9.0216 | 9.9976 | 9.0192 | 6.0 | 90.0 | _ m | & | 0.0000 | | 0.0 | | .9 | 0.9711 | 9.0289 | 9.9975 | 9.0264 | .1 | .9 | 2.7581 | 7.2419 | 0.0000 | 7,2419 | .1 | | .8
.7 | 0.9640 | 9.0360 | 9.9975 | 9.0334 | .2 | .8
.7 | 2.4571 | 7.5429 | 0.0000 | 7.5429 | .2 | | .7 | 0.9570 | 9.0430 | 9.9974 | 9,0403 | .3 | .7 | 2.2810 | 7.7190 | 0.0000 | 7.7190 | .3 | | .6 | 0.9501 | 9.0499 | 9.9973 | 9.0472 | .4 | .6 | 2.1561 | 7,8439 | 0.0000 | 7.8439 | .4 | | .5 | 0.9433 | 9.0567 | 9.9972 | 9.0539 | .5 | .6
.5
.4
.3 | 2.0591 | 7.9409 | 0.0000 | 7.9408 | .5 | | .4 | 0.9367 | 9.0633 | 9.9971 | 9.0605 | .6
.7 | .4 | 1.9800 | 8.0200 | 0,0000 | 8.0200 | .6
.7 | | .3 | 0,9301 | 9.0699 | 9,9970 | 9.0670 | .7 | .3 | 1.9130 | 8.0870 | 0,0000 | 8.0870 | .7 | | .2 | 0,9236 | 9.0764 | 9,9969 | 9.0734 | .8 | .2 | 1,8550 | 8.1450 | 0.0000 | 8.1450 | .8 | | .6
.5
.4
.3
.2
.1 | 0.9172 | 9.0828 | 9.9968 | 9.0797 | .8
.9 | ı i | 1.8038 | 8.1962 | 9.9999 | 8.1961 | .9 | | 83.0 | 0.9109 | 9.0891 | 9,9968 | 9.0859 | 7.0 | 89.0 | 1.7581 | 8.2419 | 9,9999 | 8.2419 | 1.0 | | .9 | 0.9046 | 9.0954 | 9,9967 | 9.0920 | .1 | .9 | 1.7167 | 8.2833 | 9.9999 | 8.2832 | .1 | | .8 | 0.8985 | 9.1015 | 9.9966 | 9.0981 | .2
.3 | .8
.7 | 1.6789 | 8.3211 | 9,9999 | 8.3210 | .2
.3
.4
.5
.6 | | .7 | 0.8924 | 9.1076 | 9.9965 | 9.1040 | .3 | .7 | 1.6441 | 8.3559 | 9.9999 | 8.3558 | .3 | | .6 | 0.8865 | 9.1135 | 9.9964 | 9.1099 | .4
.5 | .6 | 1.6119 | 8.3881 | 9,9999 | 8.3880 | .4 | | .6
.5
.4
.3 | 0.8806 | 9.1194 | 9,9963 | 9.1157 | .5 | .5 | 1.5819 | 8.4181 | 9.9999 | 8.4179 | .5 | | ., | 0.8748 | 9.1252 | 9,9962 | 9.1214 | .6
.7 | . ă | 1.5539 | 8.4461 | 9.9998 | 8.4459 | .6 | | .7 | 0.8690 | 9.1310 | 9.9961 | 9.1271 | 1 7 | .3 | 1.5275 | 8.4725 | 9.9998 | 8.4723 | .7 | | .3 | 0.8633 | 9.1367 | 9.9960 | 9.1326 |
8. | | 1.5027 | 8.4973 | 9.9998 | 8.4971 | .8 | | .1 | 0.8577 | 9.1423 | 9.9959 | 9.1381 | .ŏ | .2
.1 | 1.4792 | 8.5208 | 9.9998 | 8.5206 | .9 | | 82.0 | 0.8522 | 9.1478 | 9,9958 | 9.1436 | 8.0 | 88.0 | 1.4569 | 8.5431 | 9,9997 | 8.5428 | 2.0 | | .9 | 0.8467 | 9.1533 | 9.9956 | 9.1489 | | .9 | 1.4357 | 8.5643 | 9.9997 | 8.5640 | .1 | | l "á | 0.8413 | 9.1587 | 9.9955 | 9.1542 | .1
.2
.3
.4
.5 | ı " | 1.4155 | 8.5845 | 9,9997 | 8.5842 | .2 | | .8
.7 | 0.8360 | 9.1640 | 9.9954 | 9.1594 | 1 3 | .8
.7 | 1.3962 | 8.6038 | 9,9996 | 8.6035 | .3 | | '.' | 0.8307 | 9.1693 | 9.9953 | 9.1646 | 1 4 | .6 | 1.3777 | 8.6223 | 9.9996 | 8.6220 | .4 | | ٥. | 0.8255 | 9.1745 | 9.9952 | 9.1697 | 1 7 | ا يُ | 1.3599 | 8.6401 | 9.9996 | 8.6397 | .4
.5 | | | | 9.1797 | 9.9951 | 9.1747 | | .5 | | | 9.9996 | 8.6567 | ٠, | | | 0.8203 | | | | 1 .9 | 1 3 1 | 1.3429 | 8.6571 | 9.9995 | 8.6731 | .6
.7 | | .6
.5
.4
.3 | 0.8152 | 9.1848 | 9.9950 | 9.1797 | .6
.7
.8 | .4
.3
.2 | 1.3264 | 8.6736 | 9.9995 | 8.6889 | .8 | | .1 | 0.8102
0.8052 | 9.1898
9.1948 | 9.9949
9.9947 | 9.1847
9.1895 | .9 | :1 | 1.3106
1.2954 | 8.6894
8.7046 | 9.9994 | 8.7041 | .9 | | 81.0 | 0.8003 | 9,1997 | 9,9946 | 9.1943 | 9.0 | 87.0 | 1.2806 | 8,7194 | 9.9994 | 8.7188 | 3.0 | | | | 9.2046 | 9.9945 | 9.1991 | 7.1 | 9.9 | | 8.7337 | 9,9994 | 8.7330 | .1 | | .9 | 0.7954 | | 9.9944 | 9.1991 | - ' | ., | 1.2663 | | 9.9993 | 8.7468 | |
| .8
.7 | 0.7906 | 9.2094 | | | .2
.3 | .8
.7 | 1.2525 | 8.7475 | | 0.7400 | .2
.3
.4
.5
.6 | | ./ | 0.7858 | 9.2142 | 9.9943 | 9.2085 | 1 .3 | | 1.2391 | 8.7609 | 9.9993 | 8.7602 | .3 | | .6
.5 | 0.7811 | 9.2189 | 9.9941 | 9.2131 | 1.4 | .6
.5 | 1.2261 | 8.7739 | 9,9992 | 8.7731 | .4 | | .5 | 0.7764 | 9.2236 | 9.9940 | 9.2176 | 1 .3 | .5 | 1.2135 | 8.7865 | 9.9992 | 8.7857 | .5 | | .4 | 0.7718 | 9.2282 | 9.9939 | 9.2221 | .º | .4 | 1.2012 | 8,7988 | 9.9991 | 8.7979 | .0 | | .4
.3
.2 | 0.7672 | 9.2328 | 9.9937 | 9.2266 | .′. | .4
.3
.2 | 1.1893 | 8.8107 | 9.9991 | 8.8098 | •′ | | .2
.1 | 0.7626
0.7581 | 9.2374
9.2419 | 9.9936
9.9935 | 9.2310
9.2353 | .4
.5
.6
.7
.8 | .2
.1 | 1.1777 | 8.8223
8.8336 | 9.9990
9.9990 | 8.8213
8.8326 | .8
.9 | | | | | | | | l i | | | | | 4.0 | | 80.0 | 0.7537 | 9.2463 | 9.9934 | 9.2397 | 10.0 | 86.0 | 1.1554 | 8.8446 | 9.9989 | 8.8436 | | | .9 | 0.7493 | 9.2507 | 9.9932 | 9.2439 | ار. | .9 | 1.1446 | 8.8554 | 9,9989 | 8.8543 | .1 | | .8 | 0.7449 | 9.2551 | 9.9931 | 9.2482 | .2
.3
.4
.5
.6 | .8
.7 | 1.1341 | 8.8659 | 9.9988 | 8.8647 | .2 | | .7 | 0.7406 | 9.2594 | 9.9929 | 9.2524 | .3 | .7 | 1.1238 | 8.8762 | 9.9988 | 8.8749 | .3 | | .6 | 0.7363 | 9.2637 | 9.9928 | 9.2565 | .4 | .6
.5 | 1.1138 | 8.8862 | 9.9987 | 8.8849 | .4
.5 | | .5 | 0.7320 | 9.2680 | 9.9927 | 9.2606 | .5 | .5 | 1,1040 | 8.8960 | 9.9987 | 8.8946 | .5 | | .4 | 0.7278 | 9.2722 | 9.9925 | 9.2647 | .6 | .4 | 1.0944 | 8.9056 | 9.9986 | 8.9042 | .6 | | .4
.3
.2 | 0.7236 | 9.2764 | 9.9924 | 9.2687 | .7 | .4
.3
.2 | 1.0850 | 8.9150 | 9.9985 | 8.9135 | .7 | | .2 | 0.7195 | 9.2805 | 9.9922 | 9.2727 | .8 | .2 | 1.0759 | 8.9241 | 9.9985 | 8.9226 | .8 | | .1 | 0.7154 | 9.2846 | 9.9921 | 9.2767 | .9 | .1 | 1.0669 | 8.9331 | 9.9984 | 8.9315 | .9 | | 79.0 | 0.7113 | 9.2887 | 9.9919 | 9.2806 | 11.0 | 85.0 | 1.0580 | 8.9420 | 9.9983 | 8.9403 | 5.0 | | .9 | 0.7073 | 9,2927 | 9.9918 | 9.2845 | .1 | .9 | 1.0494 | 8.9506 | 9,9983 | 8.9489 | Į. | | .8 | 0.7033 | 9.2967 | 9.9916 | 9.2883 | .2 | .8 | 1.0409 | 8.9591 | 9,9982 | 8.9573 | .2 | | .8
.7 | 0.6994 | 9.3006 | 9,9915 | 9.2921 | .3 | .7 | 1.0326 | 8.9674 | 9.9981 | 8.9655 | .3 | | .6 | 0.6954 | 9.3046 | 9,9913 | 9.2959 | .4 | .6 | 1.0244 | 8.9756 | 9.9981 | 8.9736 | .4 | | .6
.5
.4 | 0.6915 | 9.3085 | 9,9912 | 9,2997 | .5 | .5 | 1.0164 | 8.9836 | 9.9980 | 8.9816 | .5 | | .4 | 0.6877 | 9.3123 | 9,9910 | 9.3034 | .6 | .4 | 1.0085 | 8,9915 | 9.9979 | 8,9894 | .6
.7 | | . 7 | 0.6838 | 9.3162 | 9.9909 | 9.3070 | .6
.7 | 3 | 1.0008 | 8,9992 | 9.9978 | 8.9970 | .7 | | .3 | 0.6800 | 9.3200 | 9.9907 | 9.3107 | .8 | " I | 0.9932 | 9.0068 | 9.9978 | 9.0046 | .8 | | .1 | 0.6763 | 9.3237 | 9.9906 | 9.3143 | .ŏ | .5
.4
.3
.2 | 0.9857 | 9.0143 | 9.9977 | 9.0120 | .9 | | 78.0 | 0.6725 | 9.3275 | 9.9904 | 9.3179 | 12.0 | 84.0 | 0,9784 | 9.0216 | 9.9976 | 9.0192 | 6.0 | | deg | L tan | L cot | L sin | L cos | <u>'</u> | deg | Ltan | L cot | Lsin | L cos | | | aeg | - ION | 2 (0) | F 9111 | r co. | | aeg | 4 100 | F 601 | - 9111 | | | ### for decimal fractions of a degree | | | | | | | | | | | . 7 | | |----------------------------|------------------|------------------|------------------|------------------|----------------------------|----------------------|------------------|---------------------------|------------------|--------------------------|--| | deg | Lein | Lcos | Lton | L cot | | deg | Lsin | Lcos | L fan | L cot | | | 12.0 | 9.3179 | 9,9904 | 9.3275 | 0.6725 | 78.0 | 18.0 | 9,4900 | 9.9782 | 9.5118 | 0.4882 | 72.0 | | .1 | 9.3214 | 9.9902 | 9.3312 | 0.6688 | .9 | .1 | 9.4923 | 9.9780 | 9.5143 | 0.4857 | .9 | | .2
.3 | 9.3250 | 9,9901 | 9.3349 | 0.6651 | .8
.7 | .2 | 9.4946 | 9.9777 | 9.5169 | 0.4831 | .8 | | .3 | 9.3284 | 9,9899 | 9.3385 | 0.6615 | .7 | .4 | 9.4969 | 9.9775 | 9.5195 | 0.4805 | .7 | | .4
.5 | 9.3319 | 9.9897 | 9.3422 | 0.6578 | .6 | 5 | 9.4992 | 9.9772 | 9.5220 | 0.4780 | .6
.5 | | ٠.٥ | 9.3353 | 9.9896 | 9.3458 | 0.6542 | .5 | .5
.6
.7
.8 | 9.5015
9.5037 | 9.9770
9.9767 | 9.5245
9.5270 | 0.4755
0.4730 | | | .6
.7
.8 | 9.3387 | 9.9894 | 9.3493 | 0.6507 | · -4 | .7 | 9.5060 | 9.9764 | 9.5295 | 0.4705 | .4
.3
.2 | | .8 | 9.3421
9.3455 | 9.9892
9.9891 | 9.3529
9.3564 | 0.6471
0.6436 | .3 | 8. | 9.5082 | 9.9762 | 9.5320 | 0.4680 | .2 | | .9 | 9.3488 | 9.9889 | 9.3599 | 0.6401 | .6
.5
.4
.3
.2 | .9 | 9.5104 | 9.9759 | 9.5345 | 0.4655 | .1 | | ا ۱۰۰۰ | | 1 | | | | 19.0 | | | 0.070 | 0.4400 | 71.0 | | 13.0 | 9.3521 | 9.9887 | 9.3634 | 0.6366 | 77.0 | , i | 9.5126
9.5148 | 9.9757
9.9 7 54 | 9,5370
9,5394 | 0.4630
0.4606 | 71.9 | | 2 | 9.3554
9.3586 | 9.9885
9.9884 | 9.3668
9.3702 | 0.6332
0.6298 | .9 | . 2 | 9.5170 | 9.9751 | 9.5419 | 0.4581 | | | .2 | 9.3618 | 9.9882 | 9.3736 | 0.6264 | .8
.7 | .3 | 9.5192 | 9.9749 | 9.5443 | 0.4557 | .7 | | .4
.5 | 9.3650 | 9.9880 | 9.3770 | 0.6230 | 6. | .4 | 9.5213 | 9.9746 | 9.5467 | 0.4533 | .6 | | .5 | 9.3682 | 9,9878 | 9.3804 | 0.6196 | .6
.5 | .5
.6
.7 | 9.5235 | 9.9743 | 9.5491 | 0.4509 | .5 | | .6
.7 | 9.3713 | 9,9876 | 9.3837 | 0.6163 | .4 | 1 .9 | 9.5256 | 9.9741 | 9.5516 | 0.4484 | .4 | | .7 | 9.3745 | 9.9875 | 9.3870 | 0.6130 | .4
.3
.2 | .8 | 9.5278 | 9.9738 | 9.5539 | 0.4461 | .3 | | .8
.9 | 9.3775 | 9.9873 | 9.3903 | 0.6097 | .2 | , ĕ | 9.5299
9.5320 | 9.9735
9.9733 | 9.5563
9.5587 | 0.4437
0.441 3 | .1 | | | 9.3806 | 9.9871 | 9.3935 | 0.6065 | .1 | | 7.5320 | 7.7/33 | 7,530/ | 0.4413 | " | | 14.0 | 9.3837 | 9.9869 | 9.3968 | 0.6032 | 76.0 | 20.0 | 9.5341 | 9.9730 | 9.5611 | 0.4389 | 70.0 | | .1 | 9.3867 | 9,9867 | 9.4000 | 0.6000 | .9 | .1 | 9.5361 | 9.9727 | 9 5634 | 0.4366 | .9 | | .2
.3 | 9.3897 | 9.9865 | 9.4032 | 0.5968 | .8 | .3 | 9.5382 | 9.9724 | 9.5658 | 0.4342 | .8 | | .3 | 9.3927 | 9.9863 | 9.4064 | 0.5936 | 7 | 1 .4 | 9.5402 | 9.9722 | 9.5681 | 0.4319 | .7 | | - 5 | 9.3957 | 9.9861 | 9.4095 | 0.5905
0.5873 | .6
.5 | .4
.5 | 9.5423
9.5443 | 9.9719 | 9.5704
9.5727 | 0.4273 | .6
.5 | | .4
.5
.6
.7 | 9.3986
9.4015 | 9.9859 | 9.4127
9.4158 | 0.5842 | 1 .2 | .6
.7 | 9.5463 | 9.9713 | 9.5750 | 0.4250 | .4 | | .7 | 9.4044 | 9.9855 | 9.4189 | 0.5811 | .3 | .7 | 9.5484 | 9.9710 | 9.5773 | 0.4227 | .4
.3
.2 | | .8
.9 | 9.4073 | 9.9853 | 9.4220 | 0.5780 | .2 | .8 | 9.5504 | 9.9707 | 9.5796 | 0.4204 | .2 | | .9 | 9.4102 | 9.9851 | 9.4250 | 0.5750 | .ī | .9 | 9.5523 | 9.9704 | 9.5819 | 0.4181 | .1 | | 15.0 | 0.4120 | 0.0040 | 9,4281 | 0.5719 | 75.0 | 21.0 | 9.5543 | 9.9702 | 9.5842 | 0.4158 | 69.0 | | 1.1 | 9.4130
9.4158 | 9.9849
9.9847 | 9.4281 | 0.5689 | 75.0 | .1 | 9.5563 | 9.9699 | 9.5864 | 0.4136 | | | .2 | 9.4186 | 9.9845 | 9.4341 | 0.5659 | .8 | .2 | 9.5583 | 9.9696 | 9,5887 | 0.4113 | .8 | | .2
.3
.4
.5
.6 | 9.4214 | 9.9843 | 9.4371 | 0.5629 | .7 | .3 | 9.5602 | 9.9693 | 9.5909 | 0.4091 | .7 | | ٠.4 | 9.4242 | 9.9841 | 9.4400 | 0.5600 | .6 | 1 .2 | 9.5621 | 9.9690 | 9.5932 | 0.4068 | .6 | | .3 | 9.4269 | 9.9839 | 9.4430 | 0.5570 | .5 | .4
.5
.6
.7 | 9.5641 | 9.9687 | 9.5954 | 0.4046 | 1 .5 | | 7 | 9,4296 | 9.9837 | 9.4459 | 0.5541 | 1 4 | .7 | 9.5660
9.5679 | 9.9684
9.9681 | 9.5976
9.5998 | 0.4024 | 1 3 | | .8 | 9.4323
9.4350 | 9.9835 | 9.4488 | 0.5512 | .4
.3
.2 | .8 | 9.5698 | 9.9678 | 9.6020 | 0.3980 | .9
.8
.7
.6
.5
.4
.3
.2 | | .9 | 9.4377 | 9.9831 | 9.4546 | 0.5454 | 1 .1 | .9 | 9.5717 | 9.9675 | 9.6042 | 0.3958 | .ī | | 16.0 | | | | | | 22.0 | | 1 | | 0.000/ | 68.0 | | 1.0.0 | 9.4403 | 9.9828 | 9.4575 | 0.5425 | 74.0 | .1 | 9.5736
9.5754 | 9.9672
9.9669 | 9.6064 | 0.3936 | .9 | | .2 | 9.4430
9.4456 | 9,9826
9,9824 | 9.4603
9.4632 | 0.5397
0.5368 | .9
.8 | .2 | 9.5773 | 9.9666 | 9.6108 | 0.3892 | .é | | .3 | 9.4482 | 9.9822 | 9,4660 | 0.5340 | .0 | .3 | 9.5792 | 9.9662 | 9.6129 | 0.3871 | .7 | | .4 | 9.4508 | 9.9820 | 9.4688 | 0.5312 | ۵ | .4 | 9.5810 | 9.9659 | 9.6151 | 0.3849 | .6 | | .5 | 9.4533 | 9.9817 | 9.4716 | 0.5284 | .5 | .5 | 9.5828 | 9.9656 | 9.6172 | 0.3828 | .5 | | .6
.7 | 9.4559 | 9.9815 | 9.4744 | 0.5256 | .4 | .6
.7 | 9.5847 | 9.9653 | 9.6194 | 0.3806 | l .4 | | .8 | 9.4584 | 9.9813 | 9.4771 | 0.5229 | .4
.3
.2 | .8 | 9.5865
9.5883 | 9.9650
9.9647 | 9.6215
9.6236 | 0.3785 | 1 .3 | | .9 | 9.4609
9.4634 | 9.9811 | 9.4799
9.4826 | 0.5201 | .1 | .9 | 9.5901 | 9.9643 | 9.6257 | 0.3743 | .6
.5
.4
.3
.2 | | 1 | 7,4034 | 7.7000 | 7.4026 | 0.3174 | ." ! | 22.0 | | l | ĺ | | ı | | 17.0 | 9.4659 | 9.9806 | 9.4853 | 0.5147 | 73.0 | 23.0 | 9.5919 | 9.9640 | 9.6279 | 0.3721 | 67.0 | | .1 | 9.4684 | 9.9804 | 9.4880 | 0.5120 | .9 | .1 | 9.5937 | 9.9637 | 9.6300 | 0.3700 | 2.9 | | .2 | 9.4709 | 9.9801 | 9.4907 | 0.5093 | .8
.7 | .3 | 9.5954 | 9.9634
9.9631 | 9.6321
9.6341 | 0.3679 | 1 .0 | | 1 .4 | 9.4733 | 9.9799 | 9.4934 | 0.5066 | ., | 1 4 | 9.5972
9.5990 | 9.9627 | 9.6362 | 0.3638 | ά. | | .4
.5 | 9.4757
9.4781 | 9.9794 | 9.4987 | 0.5039 | .6
.5 | .5
.6 | 9.6007 | 9.9624 | 9.6383 | 0.3617 | .5 | | .6
.7 | 9.4805 | 9.9792 | 9.5014 | 0.4986 | .4 | .6 | 9.6024 | 9.9621 | 9.6404 | 0.3596 | .4 | | I .7 | 9.4829 | 9.9789 | 9.5040 | 0.4960 | .4
.3
.2 | .7
.8 | 9.6042 | 9.9617 | 9.6424 | 0.3576 | .9
.8
.7
6
.5
.4
.3 | | .8
.9 | 9.4853 | 9.9787 | 9.5066 | 0.4934 | | .8 | 9.6059 | 9.9614 | 9.6445 | 0.3555 | .2
.1 | | ." | 9.4876 | 9.9785 | 9.5092 | 0.4908 | .1 | 1 | 9.6076 | 9.9611 | 9.6465 | 0.3535 | ' ' | | 18.0 | 9.4900 | 9.9782 | 9.5118 | 0.4882 | 72.0 | 24.0 | 9.6093 | 9.9607 | 9.6486 | 0.3514 | 66.0 | | | L cos | Lsin | L cot | L tan | deg | | L cos | Lsin | Lcot | L ton | j deg | | | L | | | | | | | | | | | ### for decimal fractions of a degree continued |
Ltan Lcot | Lcos | Lisin | deg | | L cot | L tan | Lcos | Lsin | deg | |------------------------------------|------------------|------------------|----------|----------------|------------------|--------|------------------|------------------|----------------------| | 1 1 | 9.9375 | 9.6990 | 30.0 | 66.0 | 0.3514 | 9.6486 | 9.9607 | 9.6093 | 24.0 | | 9.7614 0.2386
9.7632 0.2368 | 9.9371 | 9.7003 | 30.0 | .9 | 0.3494 | 9.6506 | 9.9604 | 9.6110 | .1 | | 9.7649 0.2351 | 9.9367 | 9.7016 | . 2 | á | 0.3473 | 9.6527 | 9.9601 | 9.6127 | .2 | | 9.7667 0.2333 | 9.9362 | 9.7029 | .3 | .8 | 0.3453 | 9.6547 | 9.9597 | 9.6144 | .3 | | 9.7684 0.2316 | 9.9358 | 9.7042 | 11 4 | .6 | 0.3433 | 9.6567 | 9.9594 | 9.6161 | .4 | | | 9.9353 | 9.7055 | .5 | .5 | 0.3413 | 9.6587 | 9.9590 | 9.6177 | .5 | | | 9.9349 | 9.7058 | 7 | .3 | 0.3393 | 9.6607 | 9.9587 | 9.6194 | .6 | | 9.7719 0.2281 | 9.9344 | 9.7080 | .6
.7 | .4 | 0.3373 | 9.6627 | 9.9583 | 9.6210 | .6
.7 | | 9.7736 0.2264 | | | | .2 | 0.3353 | 9.6647 | 9.9580 | 9.6227 | .8 | | 9.7753 0.2247
9.7771 0.2229 | 9.9340
9.9335 | 9.7093
9.7106 | 9 | .1 | 0.3333 | 9.6667 | 9.9576 | 9.6243 | .9 | | | 9.9331 | 9.7118 | 31.0 | 65.0 | 0.3313 | 9.6687 | 9.9573 | 9.6259 | 25.0 | | 9.7788 0.2212 | 9.9326 | 9.7131 | 11 5 | .9 | 0.3313 | 9.6706 | 9.9569 | 9.6276 | .1 | | 9.7805 0.2195
9.7822 0.2178 | 9.9322 | 9.7144 | .2 | ·2 | 0.3274 | 9.6726 | 9.9566 | 9.6292 | 2 | | | 9.9317 | 9.7156 | .3 | .8
.7 | 0.3254 | 9.6746 | 9.9562 | 9.6308 | .3 | | 9.7839 0.2161 | 9.9312 | 9.7168 | 11 .4 | .6 | 0.3235 | 9.6765 | 9.9558 | 9.6324 | .4 | | 9.7856 0.2144 | | 9.7181 | .5 | .5 | 0.3215 | 9.6785 | 9.9555 | 9.6340 | .4
.5
.6
.7 | | 9.7873 0.2127 | 9.9308 | | | | 0.3213 | 9.6804 | 9.9551 | 9.6356 | .6 | | 9.7890 0.2110 | 9.9303 | 9.7193 | .6
.7 | .4
.3
.2 | 0.3176 | 9.6824 | 9.9548 | 9.6371 | .7 | | 9.7907 0.2093 | 9.9298 | 9.7205 | .8 | ., | 0.31/6 | 9.6843 | 9.9544 | 9.6387 | .8 | | 9.7924 0.2076 | 9.9294 | 9.7218 | 3 | .1 | | 9.6863 | 9.9540 | 9.6403 | .9 | | 9.7941 0.2059 | 9.9289 | 9.7230 | " | .' | 0.3137 | | 7,7340 | 7.0403 | | | 9.7958 0.2042 | 9.9284 | 9.7242 | 32.0 | 64.0 | 0.3118 | 9.6882 | 9.9537
9.9533 | 9.6418
9.6434 | 26.0 | | 9.7975 0.2025 | 9.9279 | 9.7254 | | .9 | 0.3099 | 9.6901 | | | .2 | | 9.7992 0.2008 | 9.9275 | 9.7266 | .2 | .8
.7 | 0.3080 | 9.6920 | 9.9529 | 9.6449 | .4 | | 9.8008 0.1992 | 9.9270 | . 9.7278 | .3 | .7 | 0.3061 | 9.6939 | 9.9525 | 9.6465 | .3 | | 9.8025 0.1975 | 9.9265 | 9.7290 | 4 | .6 | 0.3042 | 9.6958 | 9.9522 | 9.6480 | .4 | | 9.8042 0,1958 | 9.9260 | 9.7302 | .5 | .5 | 0.3023 | 9.6977 | 9.9518 | 9.6495 | .5 | | 9.8059 0.1941 | 9.9255 | 9.7314 | .6 | .4 | 0.3004 | 9.6996 | 9.9514 | 9.6510 | .6
.7 | | 9.8075 0.1925 | 9.9251 | 9.7326 | 11 7 | .4
.3
.2 | 0.2985 | 9.7015 | 9.9510 | 9.6526 | | | 9.8092 0.1908 | 9.9246 | 9.7338 | 8. | .2 | 0.2966 | 9.7034 | 9.9506 | 9.6541 | .8 | | 9.8109 0.1891 | 9.9241 | 9.7349 | .9 | 1. | 0.2947 | 9.7053 | 9.9503 | 9.6556 | .9 | | 9.8125 0.1875 | 9.9236 | 9.7361 | 33.0 | 63.0 | 0.2928 | 9.7072 | 9.9499 | 9.6570 | 27.0 | | 9.8142 0.1858 | 9.9231 | 9.7373 | .1 | .9 | 0.2910 | 9.7090 | 9.9495 | 9.6585 | .1 | | 9.8158 0.1842 | 9.9226 | 9.7384 | .2 | .8 | .0.2891 | 9.7109 | 9.9491 | 9.6600 | .2 | | 9.8175 0.1825 | 9.9221 | 9.7396 | 11 .3 | .7 | 0.2872 | 9.7128 | 9.9487 | 9.6615 | .3 | | 9.8191 0.1809 | 9.9216 | 9.7407 | .4
.5 | .6 | 0.2854 | 9.7146 | 9.9483 | 9.6629 | .4 | | 9.8208 0.1792 | 9.9211 | 9.7419 | .5 | .5 | 0.2835 | 9.7165 | 9.9479 | 9.6644 | .5 | | 9.8224 0.1776 | 9.9206 | 9.7430 | .6 | .4 | 0.2817 | 9.7183 | 9.9475 | 9.6659 | .6 | | | 9.9201 | 9.7442 | .6
.7 | 3 | 0.2798 | 9.7202 | 9.9471 | 9.6673 | .6
.7 | | | 9.9196 | 9.7453 | 8. | .4
.3
.2 | 0.2780 | 9.7220 | 9.9467 | 9.6687 | .8 | | 9.8257 0.1743
9.8274 0.1726 | 9.9191 | 9.7464 | .9 | .ī | 0.2762 | 9.7238 | 9.9463 | 9.6702 | .9 | | 0.0000 0.1710 | 9.9186 | 9.7476 | 34.0 | 62.0 | 0.2743 | 9.7257 | 9.9459 | 9.6716 | 28.0 | | 9.8290 0.1710
9.8306 0.1694 | 9.9181 | 9.7487 | 1 34.0 | .9 | 0.2725 | 9.7275 | 9.9455 | 9.6730 | .1 | | | 9.9175 | 9.7498 | .2 | .8 | 0.2727 | 9.7293 | 9,9451 | 9.6744 | .2 | | | | 9.7509 | .3 | .7 | 0.2689 | 9.7311 | 9.9447 | 9.6759 | .3 | | 9.8339 0.1661 | 9.9170 | | | .6 | 0.2670 | 9.7330 | 9.9443 | 9.6773 | .4 | | 9.8355 0.1645 | 9.9165 | 9.7520 | .5 | .5 | 0.2652 | 9.7348 | 9.9439 | 9.6787 | .5 | | 9.8371 0.1629 | 9.9160 | 9.7531 | 11 : 7 | .5 | 0.2634 | 9.7366 | 9.9435 | 9.6801 | .6 | | 9.8388 0.1612 | 9.9155 | 9.7542 | .6 | .4 | | 9.7384 | 9.9431 | 9.6814 | .6
.7 | | 9.8404 0.1596 | 9.9149 | 9.7553 | .8 | .4
.3
.2 | 0.2616
0.2598 | 9.7402 | 9.9427 | 9.6828 | .8 | | 9.8420 0.1580
9.8436 0.1564 | 9.9144
9.9139 | 9.7564
9.7575 | .9 | .1 | 0.2580 | 9.7420 | 9.9422 | 9.6842 | .9 | | | | i | 35.0 | - 1 | | 0.7430 | 0.0416 | 9.6856 | 29.0 | | 9.8452 0.1548 | 9.9134 | 9.7586 | | 61.0 | 0.2562 | 9.7438 | 9.9418 | | .1 | | 9.8468 0.1532 | 9.9128 | 9.7597 | .2 | .9 | 0.2545 | 9.7455 | 9.9414 | 9.6869 | ٠, | | 9.8484 0.1516 | 9.9123 | 9.7607 | 11 .2 | .8
.7 | 0.2527 | 9.7473 | 9.9410 | 9.6883 | .2
.3
.4 | | 9.8501 0.1499 | 9.9118 | 9.7618 | .3 | .7 | 0.2509 | 9.7491 | 9.9406 | 9.6896 | | | 9.8517 0.1483 | 9.9112 | 9.7629 | .4 | .6
.5
.4 | 0.2491 | 9.7509 | 9.9401 | 9.6910 | -7 | | 9.8533 0.1467 | 9.9107 | 9.7640 | .5 | .5 | 0.2474 | 9.7526 | 9.9397 | 9.6923 | .5 | | 9.8549 0.1451 | 9.9101 | 9.7650 | .6 | .4 | 0.2456 | 9.7544 | 9.9393 | 9.6937 | .6
.7 | | 9.8565 0.1435 | 9.9096 | 9.7661 | .7 | .3 | 0.2438 | 9.7562 | 9.9388 | 9.6950 | .7 | | 9.8581 0.1419 | 9.9091 | 9.7671 | .8 | .2 | 0.2421 | 9.7579 | 9.9384 | 9.6963 | .8 | | 9.8597 0.1403 | 9.9085 | 9.7682 | .9 | .ī | 0.2403 | 9.7597 | 9.9380 | 9.6977 | .9 | | 9.8613 0.1387 | 9.9080 | 9.7692 | 36.0 | 60.0 | 0.2386 | 9.7614 | 9.9375 | 9.6990 | 30.0 | | L cot L ton | Lsin | L cos | | deg | L tan | L cot | Lsin | L cos | | for decimal fractions of a degree continued | | | | | | | | | | | | 1 | |----------|------------------|------------------|------------------|------------------|----------|------------|------------------|------------------|------------------|--------|------------| | deg | Lsin | L cos | L ton | L cot | | deg | LSIN | L cos | Lian | L cot | | | 36.0 | 9.7692 | 9.9080 | 9.8613 | 0.1387 | 54.0 | 40.5 | 9.8125 | 9.8810 | 9.9315 | 0.0685 | 49.5 | | ١. | 9.7703 | 9.9074 | 9.8629 | 0.1371 | .9 | ٥. | 9.8134 | 9.8804 | 9.9330 | 0.0670 | .4 | | .2 | 9.7713 | 9.9069 | 9.8644 | 0.1356 | .8 | .7
.8 | 9.8143
9.8152 | 9.8797
9.8791 | 9.9346
9.9361 | 0.0654 | .3
.2 | | .3
.4 | 9.7723
9.7734 | 9.9063
9.9057 | 9.8660
9.8676 | 0.1340
0.1324 | .7
.6 | .9 | 9.8161 | 9,8784 | 9.9376 | 0.0639 | .1 | | | ĺ | | | 10.1 | | l ' | | | | | | | .5 | 9.7744 | 9.9052 | 9.8692 | 0.1308 | .5 | 41.0 | 9.8169 | 9.8778 | 9.9392 | 0.0608 | 49.0 | | .6
.7 | 9.7754 | 9.9046 | 9.8708
9.8724 | 0.1292 | 4 | اٍ. ا | 9.8178
9.8187 | 9.8771
9.8765 | 9.9407
9.9422 | 0.0593 | .9
.8 | | ./
.8 | 9.7764
9.7774 | 9.9035 | 9.8724 | 0.1276
0.1260 | .3 | .2
.3 | 9.8195 | 9.8758 | 9.9422 | 0.05/8 | .6
.7 | | .9 | 9.7785 | 9.9029 | 9.8755 | 0.1245 | | .4. | 9.8204 | 9.8751 | 9.9453 | 0.0547 | .6 | | 37.0 | 9.7795 | 9.9023 | 9.8771 | 0.1229 | 53.0 | .5 | 9.8213 | 9.8745 | 9.9468 | 0.0532 | .5 | | .1 | 9.7805 | 9.9018 | 9.8787 | 0.1213 | .9 | .6 | 9.8221 | 9.8738 | 9.9483 | 0.0517 | .4 | | .2 | 9.7815 | 9.9012 | 9.8803 | 0.1197 | .8 | .7 | 9.8230 | 9.8731 | 9.9499 | 0.0501 | .3 | | .3 | 9.7825 | 9.9006 | 9.8818 | 0.1182 | .7 | .8
.9 | 9.8238 | 9.8724 | 9.9514 | 0.0486 | .2 | | .4 | 9.7835 | 9.9000 | 9.8834 | 0.1166 | .6 | .9 | 9.8247 | 9.8718 | 9.9529 | 0.0471 | .1 | | .5 | 9.7844 | 9.8995 | 9.8850 | 0.1150 | .5 | 42.0 | 9.8255 | 9.8711 | 9.9544 | 0.0456 | 48.0 | | .6
.7 | 9.7854 | 9.8989 | 9.8865 | 0.1135 | .4 | 1.1 | 9.8264 | 9.8704 | 9.9560 | 0.0440 | .9 | | .8 | 9.7864 | 9.8983 | 9.8881 | 0.1119 | .3 | .2 | 9.8272 | 9.8697 | 9.9575 | 0.0425 | .8 | | .9 | 9.7874
9.7884 | 9.8977
9.8971 | 9.8897 | 0.1103 | .2
.1 | .3
.4 | 9.8280
9.8289 | 9.8690
9.8683 | 9.9590
9.9605 | 0.0410 | .7
.6 | | | | | - | 0.1000 | " | | 7.0207 | 7.0003 | 7.7003 | 0.0373 | | | 38.0 | 9.7893 | 9.8965 | 9.8928 | 0.1072 | 52.0 | .5 | 9.8297 | 9.8676 | 9.9621 | 0.0379 | .5 | | ., | 9.7903 | 9.8959 | 9.8944 | 0.1056 | .9 | .6 | 9.8305 | 9.8669 | 9.9636 | 0.0364 | .4 | | .2
.3 | 9.7913 | 9.8953
9.8947 | 9.8959
9.8975 | 0.1041 | .8
.7 | .8 | 9.8313
9.8322 | 9.8662
9.8655 | 9.9651
9.9666 | 0.0349 | .3
.2 | | .3 | 9.7932 | 9.8941 | 9.8990 | 0.1023 | 6. | .9 | 9.8330 | 9.8648 | 9.9681 | 0.0334 | .2 | | | | | | | | | | | ļ | | | | .5
.6 | 9.7941
9.7951 | 9.8935 | 9.9006 | 0.0994 | .5
.4 | 43.0
.1 | 9.8338
9.8346 | 9.8641
9.8634 | 9.9697
9.9712 | 0.0303 | 47.0
.9 | | .7 | 9.7960 | 9.8923 | 9.9037 | 0.0963 | .3 | .2 | 9.8354 | 9.8627 | 9.9727 | 0.0273 | .8 | | .8 | 9.7970 | 9.8917 | 9.9053 | 0.0947 | .2 | .3 | 9.8362 | 9.8620 | 9,9742 | 0.0258 | .7 | | .9 | 9.7979 | 9.8911 | 9.9068 | 0.0932 | .1 | .4 | 9.8370 | 9.8613 | 9.9757 | 0.0243 | .6 | | 39.0 | 9,7989 | 9.8905 | 9.9084 | 0.0916 | 51.0 | .5 | 9.8378 | 9.8606 | 9,9772 | 0.0228 | .5 | | .1 | 9.7998 | 9.8899 | 9.9099 | 0.0901 | .9 | .6 | 9.8386 | 9.8598 | 9.9788 | 0.0212 | .4 | | .2 | 9.8007 | 9.8893 | 9.9115 | 0.0885 | .8 | .7 | 9.8394 | 9.8591 | 9.9803 | 0.0197 | .3 | | .3
.4 | 9.8017
9.8026 | 9.8887
9.8880 | 9.9130 | 0.0870 | .7 | .8
.9 | 9.8402
9.8410 | 9.8584 | 9.9818 | 0.0182 | .2 | | | 9.0020 | 9.0000 | 7.7140 | 0.0654 | .6 | | 9.0410 | 9.8577 | 9.9833 | 0.0167 | '' | | .5 | 9.8035 | 9.8874 | 9.9161 | 0.0839 | .5 | 44.0 | 9.8418 | 9.8569 | 9,9848 | 0.0152 | 46.0 | | .6
.7 | 9.8044 | 9.8868 | 9.9176 | 0.0824 | .4 | j .j | 9.8426 | 9.8562 | 9.9864 | 0.0136 | .9 | | .8 | 9.8053
9.8063 | 9.8862
9.8855 | 9.9192 | 0.0808 | .3 | .2 | 9.8433
9.8441 |
9.8555
9.8547 | 9.9879
9.9894 | 0.0121 | .8 | | .9 | 9.8072 | 9.8849 | 9.9223 | 0.0777 | .1 | .4 | 9.8449 | 9.8540 | 9.9909 | 0.0091 | .7
.6 | | 40.0 | 9.8081 | 9.8843 | 9,9238 | 0.0762 | 50.0 | .5 | 9.8457 | 9.8532 | 9,9924 | 0.0076 | , | | 10.0 | 9.8090 | 9.8836 | 9.9254 | 0.0746 | .9 | .6 | 9.8464 | 9.8525 | 9.9939 | 0.0078 | .5
.4 | | .2 | 9.8099 | 9.8830 | 9.9269 | 0.0731 | .8 | .6
.7 | 9.8472 | 9.8517 | 9.9955 | 0.0045 | .3 | | .3 | 9.8108 | 9.8823 | 9.9284 | 0.0716 | .7 | .8 | 9.8480 | 9.8510 | 9.9970 | 0.0030 | .2 | | .4 | 9.8117 | 9.8817 | 9.9300 | 0.0700 | .6 | .9 | 9.8487 | 9.8502 | 9.9985 | 0.0015 | .ī | | 40.5 | 9.8125 | 9.8810 | 9.9315 | 0.0685 | 49.5 | 45.0 | 9.8495 | 9.8495 | 0.0000 | 0.0000 | 45.0 | | | L cos | Lsin | L cot | Ltan | deg | | L cos | Lsin | Lcot | Ltan | deg | # 1108 CHAPTER 38 ### Natural logarithms | | اما | 1 | | 3 | ا ، ا | | | | | ١. | mean differences | | | | | | | | | |---------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|----------------------------|----------------------------|------------------|----------------------------|----------------------|----------------|----------------------------|----------------------------| | | 0 | ' | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 14 | 5 | 6 | 7 | 8 | 9_ | | 1.0
1.1
1.2
1.3
1.4 | 0.0000
0.0953
0.1823
0.2624
0.3365 | 0100
1044
1906
2700
3436 | 0198
1133
1989
2776
3507 | 0296
1222
2070
2852
3577 | 0392
1310
2151
2927
3646 | 0488
1398
2231
3001
3716 | 0583
1484
2311
3075
3784 | 0677
1570
2390
3148
3853 | 0770
1655
2469
3221
3920 | 0862
1740
2546
3293
3988 | 9
8
7 | 19
17
16
15
14 | 26
24
22 | 35
32
30 | 48
44
40
37
35 | 52
48
44 | 61
56
52 | 76
70
64
59
55 | 78
72
67 | | 1.5
1.6
1.7
1.8
1.9 | 0.4055
0.4700
0.5306
0.5878
0.6419 | 4121
4762
5365
5933
6471 | 4187
4824
5423
5988
6523 | 4253
4886
5481
6043
6575 | 4318
4947
5539
6098
6627 | 4383
5008
5596
6152
6678 | 4447
5068
5653
6206
6729 | 4511
5128
5710
6259
6780 | 4574
5188
5766
6313
6831 | 4637
5247
5822
6366
6881 | 6 | 13
12
11
11 | 18
17
16 | 24
23 | 32
30
29
27
26 | 36
34
32 | 42
40
38 | 52
48
46
43
41 | 51
49 | | 2.0
2.1
2.2
2.3
2.4 | 0.6931
0.7419
0.7885
0.8329
0.8755 | 6981
7467
7930
8372
8796 | 7031
7514
7975
8416
8838 | 7080
7561
8020
8459
8879 | 7129
7608
8065
8502
8920 | 7178
7655
8109
8544
8961 | 7227
7701
8154
8587
9002 | 7275
7747
8198
8629
9042 | 7324
7793
8242
8671
9083 | 7372
7839
8286
8713
9123 | 5
5
4
4
4 | 9 | 15
14
13
13
12 | 19
18
17 | 24
23
22
21
20 | 28
27
26 | 33
31
30 | 39
37
36
34
33 | 42
40
38 | | 2.5
2.6
2.7
2.8
2.9 | 0.9163
0.9555
0.9933
1.0296
1.0647 | 9203
9594
9969
0332
0682 | 9243
9632
1.0006
0367
0716 | 9282
9670
0043
0403
0750 | 9322
9708
0080
0438
0784 | 9361
9746
0116
0473
0818 | 9400
9783
0152
0508
0852 | 9439
9821
0188
0543
0886 | 9478
9858
0225
0578
0919 | 9517
9895
0260
0613
0953 | 4
4
4
3 | | 12
11
11
11 | 15
15
14 | 20
19
18
18
17 | 23
22
21 | 25
25 | 31
30
29
28
27 | 35
34
33
32
31 | | 3.0
3.1
3.2
3.3
3.4 | 1.0986
1.1314
1.1632
1.1939
1.2238 | 1019
1346
1663
1969
2267 | 1053
1378
1694
2000
2296 | 1086
1410
1725
2030
2326 | 1119
1442
1756
2060
2355 | 1151
1474
1787
2090
2384 | 1184
1506
1817
2119
2413 | 1217
1537
1848
2149
2442 | 1249
1569
1878
2179
2470 | 1282
1600
1909
2208
2499 | 3
3
3
3 | 7 6 6 6 6 | 10
10
9
9 | 13
12
12 | 16
15
15
15 | 19 | 22
22
21 | 26
25
25
24
23 | 28
27 | | 3.5
3.6
3.7
3.8
3.9 | 1,2528
1,2809
1,3083
1,3350
1,3610 | 2556
2837
3110
3376
3635 | 2585
2865
3137
3403
3661 | 2613
2892
3164
3429
3686 | 2641
2920
3191
3455
3712 | 2669
2947
3218
3481
3737 | 2698
2975
3244
3507
3762 | 2726
3002
3271
3533
3788 | 2754
3029
3297
3558
3813 | 2782
3056
3324
3584
3838 | 3
3
3
3 | 6
5
5
5
5 | 8
8
8
8 | 11 | 14
14
13
13 | 16
16 | 19
19 | 23
22
21
21
20 | 25
24 | | 4.0
4.1
4.2
4.3
4.4 | 1.3863
1.4110
1.4351
1.4586
1.4816 | 3888
4134
4375
4609
4839 | 3913
4159
4398
4633
4861 | 3938
4183
4422
4656
4884 | 3962
4207
4446
4679
4907 | 3987
4231
4469
4702
4929 | 4012
4255
4493
4725
4951 | 4036
4279
4516
4748
4974 | 4061
4303
4540
4770
4996 | 4085
4327
4563
4793
5019 | 2 2 2 2 | 5
5
5
5 | 7
7
7
7 | 10
9
9 | 12
12
12
12 | 14
14
14 | 17
16 | 20
19
19
18
18 | 22
21
21 | | 4.5
4.6
4.7
4.8
4.9 | 1.5041
1.5261
1.5476
1.5686
1.5892 | 5063
5282
5497
5707
5913 | 5085
5304
5518
5728
5933 | 5107
5326
5539
5748
5953 | 5129
5347
5560
5769
5974 | 5151
5369
5581
5790
5994 | 5173
5390
5602
5810
6014 | 5195
5412
5623
5831
6034 | 5217
5433
5644
5851
6054 | 5239
5454
5665
5872
6074 | 2222 | 4 4 4 4 | 7
6
6
6 | 9 | 11
11
11
10
10 | 13
13 | 15
15
14 | 18
17
17
16
16 | 20
19
19
19
19 | | 5.0
5.1
5.2
5.3
5.4 | 1.6094
1.6292
1.6487
1.6677
1.6864 | 6114
6312
6506
6696
6882 | 6134
6332
6525
6715
6901 | 6154
6351
6544
6734
6919 | 6174
6371
6563
6752
6938 | 6194
6390
6582
6771
6956 | 6214
6409
6601
6790
6974 | 6233
6429
6620
6808
6993 | 6253
6448
6639
6827
7011 | 6273
6467
6658
6845
7029 | 2 2 2 2 2 | 4
4
4
4 | 6
6
6
5 | 8
8
7
7 | 10
10
10
9 | 12
12
11
11 | 14
13
13 | 16
15 | 18
18
17
17 | ### Natural logarithms of 10⁺ⁿ | n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |----------------------|--------|--------|--------|--------|---------|---------|---------|---------|---------| | loge 10 ⁿ | 2.3026 | 4.6052 | 6.9078 | 9.2103 | 11.5129 | 13.8155 | 16.1181 | 18.4207 | 20.7233 | | Natural | log | aritl | nms | co | ntinued | |---------|-----|-------|-----|----|---------| | | | | | | | | | | | | | | | | ١ ـ | | ا ـ ا | - 1 | | ı _ 1 | ا . ا | _ 1 | | 1 | mean differences | | | | | | | | | |---|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------------|----------------------------| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 5.5
5.6
5.7
5.8
5.9 | 1.7047
1.7228
1.7405
1.7579
1.7750 | 7066
7246
7422
7596
7766 | 7084
7263
7440
7613
7783 | 7102
7281
7457
7630
7800 | 7120
7299
7475
7647
7817 | 7138
7317
7492
7664
7834 | 7156
7334
7509
7681
7851 | 7174
7352
7527
7699
7867 | 7192
7370
7544
7716
7884 | 7210
7387
7561
7733
7901 | 2
2
2
2
2 | 4
4
3
3
3 | 5 5 5 5 | 7
7
7
7 | 9 | 11
10
10
10 | 12
12
12 | 14
14
14
14
13 | 16
16
15 | | 6.0
6.1
6.2
6.3
6.4 | 1.7918
1.8083
1.8245
1.8405
1.8563 | 7934
8099
8262
8421
8579 | 7951
8116
8278
8437
8594 | 7967
8132
8294
8453
8610 | 7984
8148
8310
8469
8625 | 8001
8165
8326
8485
8641 | 8017
8181
8342
8500
8656 | 8034
8197
8358
8516
8672 | 8050
8213
8374
8532
8687 | 8066
8229
8390
8547
8703 | 2 2 2 2 2 | 3
3
3
3 | 5 5 5 5 | 7
6
6
6 | 8
8
8
8
8 | 10
10
10
9 | 11
11
11 | 13
13
13
13
12 | 15
14
14 | | 6.5
6.6
6.7
6.8
6.9 | 1.8718
1.8871
1.9021
1.9169
1.9315 | 8733
8886
9036
9184
9330 | 8749
8901
9051
9199
9344 | 8764
8916
9066
9213
9359 | 8779
8931
9081
9228
9373 | 8795
8946
9095
9242
9387 | 8810
8961
9110
9257
9402 | 8825
8976
9125
9272
9416 |
8840
8991
9140
9286
9430 | 8856
9006
9155
9301
9445 | 2
2
1
1 | 3
3
3
3 | 5
4
4
4 | 6 6 6 | 8
8
7
7
7 | 9 9 9 | 11
10
10
10 | 12 | 14 | | 7.0
7.1
7.2
7.3
7.4 | 1.9459
1.9601
1.9741
1.9879
2.0015 | 9473
9615
9755
9892
0028 | 9488
9629
9769
9906
0042 | 9502
9643
9782
9920
0055 | 9516
9657
9796
9933
0069 | 9530
9671
9810
9947
0082 | 9544
9685
9824
9961
0096 | 9559
9699
9838
9974
0109 | 9573
9713
9851
9988
0122 | 9587
9727
9865
2.0001
0136 | 1 1 1 | 3
3
3
3 | 4 4 4 4 | 6 6 5 5 | 7
7
7
7 | 9
8
8
8 | | 11 | 13
13
12
12
12 | | 7.5 7.6 7.7 7.8 7.9 | 2.0149
2.0281
2.0412
2.0541
2.0669 | 0162
0295
0425
0554
0681 | 0176
0308
0438
0567
0694 | 0189
0321
0451
0580
0707 | 0202
0334
0464
0592
0719 | 0215
0347
0477
0605
0732 | 0229
0360
0490
0618
0744 | 0242
0373
0503
0631
0757 | 0255
0386
0516
0643
0769 | 0268
0399
0528
0656
0782 | 1 1 1 | 3
3
3
3 | 4 4 4 4 | 5
5
5
5
5 | 7
7
6
6
6 | 8
8
8
8 | 9
9
9
9 | 10
10 | 12
12
12
11 | | 8.0
8.1
8.2
8.3
8.4 | 2.0794
2.0919
2.1041
2.1163
2.1282 | 0807
0931
1054
1175
1294 | 0819
0943
1066
1187
1306 | 0832
0956
1078
1199
1318 | 0844
0968
1090
1211
1330 | 0857
0980
1102
1223
1342 | 0869
0992
1114
1235
1353 | 0882
1005
1126
1247
1365 | 0894
1017
1138
1258
1377 | 0906
1029
1150
1270
1389 | 1 1 1 | 3 2 2 2 2 2 | 4
4
4
4 | 5
5
5
5
5 | 6 6 6 6 | 7
7
7
7 | 9
9
9
8
8 | 10
10
10
10 | 11 | | 8.5
8.6
8.7
8.8
8.9 | 2.1401
2.1518
2.1633
2.1748
2.1861 | 1412
1529
1645
1759
1872 | 1424
1541
1656
1770
1883 | 1436
1552
1668
1782
1894 | 1448
1564
1679
1793
1905 | 1459
1576
1691
1804
1917 | 1471
1587
1702
1815
1928 | 1483
1599
1713
1827
1939 | 1494
1610
1725
1838
1950 | 1506
1622
1736
1849
1961 | 1 1 1 | 2
2
2
2
2 | 4
3
3
3
3 | 5
5
5
4 | 6 6 6 6 | 7
7
7
7 | 8
8
8
8 | 9
9
9
9 | 11
10
10
10 | | 9.0
9.1
9.2
9.3
9.4 | 2.1972
2.2083
2.2192
2.2300
2.2407 | 1983
2094
2203
2311
2418 | 1994
2105
2214
2322
2428 | 2006
2116
2225
2332
2439 | 2017
2127
2235
2343
2450 | 2028
2138
2246
2354
2460 | 2039
2148
2257
2364
2471 | 2050
2159
2268
2375
2481 | 2061
2170
2279
2386
2492 | 2072
2181
2289
2396
2502 | 1 1 1 | 2 2 2 2 | 3
3
3
3 | 4 4 4 4 | 6
5
5
5
5 | 7
7
6
6 | 8
8
7
7 | 9
9
9
8 | 10
10
10
10 | | 9.5
9.6
9.7
9.8
9.9
0.0 | 2.2513
2.2618
2.2721
2.2824
2.2925
2.3026 | 2523
2628
2732
2834
2935 | 2534
2638
2742
2844
2946 | 2544
2649
2752
2854
2956 | 2555
2659
2762
2865
2966 | 2565
2670
2773
2875
2976 | 2576
2680
2783
2885
2986 | 2586
2690
2793
2895
2996 | 2597
2701
2803
2905
3006 | 2607
2711
2814
2915
3016 | 1 1 1 | 2
2
2
2
2 | 3
3
3
3 | 4
4
4
4 | 5
5
5
5
5 | 6 6 6 6 | 7
7
7
7 | 8
8
8
8 | 9
9
9
9 | # Natural logarithms of 10⁻ⁿ | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 9 | |-----------------------|--------|--------|--------|---------|---------|---------|---------|---------|---------| | log, 10 ⁻⁸ | 3.6974 | 5.3948 | 7.0922 | 10.7897 | 12.4871 | 14.1845 | 17.8819 | 19.5793 | 21.2767 | ### Logarithms to base 2 and powers of 2 | x | log ₂ x | у | 2 ^y | |---------------------------|--|--------------------|------------------------------| | | | | 1.000 | | 1.0 | -3.32193 | 0.1 | 1.072 | | 0.2 | -2.32193 | 0.2
0.3 | 1.149
1.231 | | 0.3 | — 1.73697 | 0.4 | 1.320 | | 0.4 | -1.32193 | 0.5 | 1.414 | | 0.5 | -1.00000 | 0.6 | 1.515 | | 0.6 | -0.73697 | 0.7 | 1.625 | | 0.7 | -0.51458 | 8.0 | 1.741 | | 8.0 | -0.32193 | 0.9 | 1.866 | | 0.9 | -0.15200 | : 1 | 2 | | 1.0 | 0.00000 | 2 | 4 | | 1.1 | 0.13749 | 3 | 8 | | 1.2 | 0.26303 | . 4 | 16 | | 1.3 | 0.37850 | 5 | 32 | | 1.4 | 0.48543 | 6
7 | 64 | | 1.5 | 0.58496 | ΄ Ω | 128
256 | | 1.6 | 0.67807 | 9 | 512 | | 1.7 | 0.76554 | 10 | 1 024 | | 1.8 | 0.84798 | 11 | 2 048 | | 1.9 | 0.92599 | 12 | 4 096 | | 2.0 | 1.00000 | 13 | 8 192 | | 10 | 3.32193 | 14 | 16 384 | | 100 | 6.64386 | 15 | 32 768 | | 1000 | 9.96578 | 16 | 65 536 | | | | 17 | 131 072 | | 2 ^y | у | 18
19 | 262 144
524 288 | | | | 20 | 1 048 576 | | | | 21 | 2 097 152 | | $\log_2 x = \log$ | $g_2 10 \log_{10} x = \log_2 e \log_e x$ | 22 | 4 194 304 | | | | 23 | 8 388 608 | | $2^{y} = e^{y}$ | $\log_e 2 = 10^{\nu \log_{10} 2}$ | 24 | 16 777 216 | | | | 25 | 33 554 432 | | log- 10 — 3.3 | $32193 = 1/\log_{10} 2$ | 26 | 67 108 864 | | 10g ₂ 10 — 5.5 | 2175 — 1/10910 2 | 27 | 134 217 728 | | | 1/1 10 | 28 | 268 435 456 | | $\log_{10} 2 = 0.3$ | $10103 = 1/\log_2 10$ | 29
30 | 536 870 912
1 073 741 824 | | | | 31 | 2 147 483 648 | | $log_2 e = 1.4$ | $4269 = 1/\log_e 2$ | 32 | 4 294 967 296 | | | | 02 | 2,1,5,2,5 | | $\log_{e} 2 = 0.6$ | 9315 = 1/log ₂ e | log ₂ x | x | | -30 - 010 | -, | 32 ~ | | # Hyperbolic sines [sinh $x = \frac{1}{2}(e^x - e^{-x})$] | x | 0 | i | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | avg
diff | |------------------------------|--|--|--|--|--|--|--|--|--|--|---------------------------------| | 0.0
.1
.2
.3
.4 | 0.0000
0.1002
0.2013
0.3045
0.4108 | 0.0100
0.1102
0.2115
0.3150
0.4216 | 0.0200
0.1203
0.2218
0.3255
0.4325 | 0.0300
0.1304
0.2320
0.3360
0.4434 | 0.0400
0.1405
0.2423
0.3466
0.4543 | 0.0500
0.1506
0.2526
0.3572
0.4653 | 0,0600
0.1607
0.2629
0.3678
0,4764 | 0.0701
0.1708
0.2733
0.3785
0.4875 | 0.0801
0.1810
0.2837
0.3892
0.4986 | 0.0901
0.1911
0.2941
0.4000
0.5098 | 100
101
103
106
110 | | 0.5
.6
.7
.8 | 0.5211
0.6367
0.7586
0.8881
1.027 | 0.5324
0.6485
0.7712
0.9015
1.041 | 0.5438
0.6605
0.7838
0.9150
1.055 | 0.5552
0.6725
0.7966
0.9286
1.070 | 0.5666
0.6846
0.8094
0.9423
1.085 | 0.5782
0.6967
0.8223
0.9561
1.099 | 0.5897
0.7090
0.8353
0.9700
1.114 | 0.6014
0.7213
0.8484
0.9840
1.129 | 0.6131
0.7336
0.8615
0.9981
1.145 | 0.6248
0.7461
0.8748
1.012
1.160 | 116
122
130
138
15 | | 1.0
.1
.2
.3
.4 | 1.175
1.336
1.509
1.698
1.904 | 1.191
1.352
1.528
1.718
1.926 | 1.206
1.369
1.546
1.738
1.948 | 1.222
1.386
1.564
1.758
1.970 | 1.238
1.403
1.583
1.779
1.992 | 1.254
1.421
1.602
1.799
2.014 | 1.270
1.438
1.621
1.820
2.037 | 1.286
1.456
1.640
1.841
2.060 | 1.303
1.474
1.659
1.862
2.083 | 1.319
1.491
1.679
1.883
2.106 | 16
17
19
21
22 | | 1.5
.6
.7
.8 | 2.129
2.376
2.646
2.942
3.268 | 2.153
2.401
2.674
2.973
3.303 | 2.177
2.428
2.703
3.005
3.337 | 2.201
2.454
2.732
3.037
3.372 | 2,225
2,461
2,761
3,069
3,408 | 2.250
2.507
2.790
3.101
3.443 | 2.274
2.535
2.820
3.134
3.479 | 2.299
2.562
2.850
3.167
3.516 | 2.324
2.590
2.881
3.200
3.552 | 2.350
2.617
2.911
3.234
3.589 | 25
27
30
33
36 | | 2.0
.1
.2
.3
.4 | 3.627
4.022
4.457
4.937
5.466 | 3.665
4.064
4.503
4.988
5.522 | 3.703
4.106
4.549
5.039
5.578 | 3.741
4.148
4.596
5.090
5.635 | 3.780
4.191
4.643
5.142
5.693 | 3.820
4.234
4.691
5.195
5.751 | 3.859
4.278
4.739
5.248
5.810 | 3.899
4.322
4.788
5.302
5.869 | 3.940
4.367
4.837
5.356
5.929 | 3.981
4.412
4.887
5.411
5.989 | 39
44
48
53
58 | | 2.5
.6
.7
.8 | 6.050
6.695
7.406
8.192
9.060 | 6.112
6.763
7.481
8.275
9.151 | 6.174
6.831
7.557
8.359
9.244 | 6.237
6.901
7.634
8.443
9.337 | 6.300
6.971
7.711
8.529
9.431 | 6.365
7.042
7.789
8.615
9.527 | 6.429
7.113
7.868
8.702
9.623 | 6.495
7.185
7.948
8.790
9.720 | 6.561
7.258
8.028
8.879
9.819 | 6.627
7.332
8.110
8.969
9.918 | 64
71
79
87
96 | | 3.0
.1
.2
.3
.4 | 10.02
11.08
12.25
13.54
14.97 | 10.12
11.19
12.37
13.67
15.12 | 10.22
11.30
12.49
13.81
15.27 | 10.32
11.42
12.62
13.95
15.42 | 10.43
11.53
12.75
14.09
15.58 | 10.53
11.65
12.88
14.23
15.73 | 10.64
11.76
13.01
14.38
15.89 | 10.75
11.88
13.14
14.52
16.05 | 10.86
12.00
13.27
14.67
16.21 | 10.97
12.12
13.40
14.82
16.38 |
11
12
13
14
16 | | 3.5
.6
.7
.8 | 16.54
18.29
20.21
22.34
24.69 | 16.71
18.47
20.41
22.56
24.94 | 16.88
18.66
20.62
22.79
25.19 | 17.05
18.84
20.83
23.02
25.44 | 17.22
19.03
21.04
23.25
25.70 | 17.39
19.22
21.25
23.49
25.96 | 17.57
19.42
21.46
23.72
26.22 | 17.74
19.61
21.68
23.96
26.48 | 17.92
19.81
21.90
24.20
26.75 | 18.10
20.01
22.12
24.45
27.02 | 17
15
21
24
26 | | 4.0
.1
.2
.3 | 27.29
30.16
33.34
36.84
40.72 | 27.56
30.47
33.67
37.21
41.13 | 27.84
30.77
34.01
37.59
41.54 | 28.12
31.08
34.35
37.97
41.96 | 28.40
31.39
34.70
38.35
42.38 | 28.69
31.71
35.05
38.73
42.81 | 28,98
32.03
35.40
39.12
43.24 | 29.27
32.35
35.75
39.52
43.67 | 29.56
32.68
36.11
39.91
44.11 | 29.86
33.00
36.48
40.31
44.56 | 25
33
33
45 | | 4.5
.6
.7
.8 | 54.97
60.75 | 45.46
50.24
55.52
61.36
67.82 | 45.91
50.74
56.08
61.98
68.50 | 46.37
51.25
56.64
62.60
69.19 | 46.84
51.77
57.21
63.23
69.88 | 47.31
52.29
57.79
63.87
70.58 | 47.79
52.81
58.37
64.51
71.29 | 48.27
53.34
58.96
65.16
72.01 | 48.75
53.88
59.55
65.81
72.73 | 49.24
54.42
60.15
66.47
73.46 | 4:
5:
5:
6:
7 | If x > 5, $\sinh x = \frac{1}{2}(e^x)$ and $\log_{10} \sinh x = (0.4343)x + 0.6990 - 1,$ correct to four significant figures. Hyperbolic cosines [cosh $x = \frac{1}{2}(e^x + e^{-x})$] | x | 0 | , | 2 | , | 4 | 9 | 6 | 7 | 8 | 9 | diff | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------| | 0.0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 1.001 | 1.002 | 1.002 | 1.003 | 1.004 | 1 | | .1 | 1.005 | 1.006 | 1.007 | 1.008 | 1.010 | 1.011 | 1.013 | 1.014 | 1.016 | 1.018 | 2 | | .2 | 1.020 | 1.022 | 1.024 | 1.027 | 1.029 | 1.031 | 1.034 | 1.037 | 1.039 | 1.042 | 3 | | .3 | 1.045 | 1.048 | 1.052 | 1.055 | 1.058 | 1.062 | 1.066 | 1.069 | 1.073 | 1.077 | 4 | | .4 | 1.081 | 1.085 | 1.090 | 1.094 | 1.098 | 1.103 | 1.108 | 1.112 | 1.117 | 1.122 | 5 | | 0.5 | 1.128 | 1.133 | 1.138 | 1.144 | 1.149 | 1.155 | 1.161 | 1.167 | 1.173 | 1,179 | 6 | | .6 | 1.185 | 1.192 | 1.198 | 1.205 | 1.212 | 1.219 | 1.226 | 1.233 | 1.240 | 1,248 | 7 | | .7 | 1.255 | 1.263 | 1.271 | 1.278 | 1.287 | 1.295 | 1.303 | 1.311 | 1.320 | 1,329 | 8 | | .8 | 1.337 | 1.346 | 1.355 | 1.365 | 1.374 | 1.384 | 1.393 | 1.403 | 1.413 | 1,423 | 10 | | .9 | 1.433 | 1.443 | 1.454 | 1.465 | 1.475 | 1.486 | 1.497 | 1.509 | 1.520 | 1,531 | 11 | | 1.0 | 1.543 | 1.555 | 1.567 | 1.579 | 1.591 | 1.604 | 1.616 | 1.629 | 1.642 | 1.655 | 13 | | .1 | 1.669 | 1.682 | 1.696 | 1.709 | 1.723 | 1.737 | 1.752 | 1.766 | 1.781 | 1.796 | 14 | | .2 | 1.811 | 1.826 | 1.841 | 1.857 | 1.872 | 1.888 | 1.905 | 1.921 | 1.937 | 1.954 | 16 | | .3 | 1.971 | 1.988 | 2.005 | 2.023 | 2.040 | 2.058 | 2.076 | 2.095 | 2.113 | 2.132 | 18 | | .4 | 2.151 | 2.170 | 2.189 | 2.209 | 2.229 | 2.249 | 2.269 | 2.290 | 2.310 | 2.331 | 20 | | 1.5 | 2.352 | 2.374 | 2.395 | 2.417 | 2.439 | 2.462 | 2.484 | 2.507 | 2.530 | 2.554 | 23 | | .6 | 2.577 | 2.601 | 2.625 | 2.650 | 2.675 | 2.700 | 2.725 | 2.750 | 2.776 | 2.802 | 25 | | .7 | 2.828 | 2.855 | 2.882 | 2.909 | 2.936 | 2.964 | 2.992 | 3.021 | 3.049 | 3.078 | 28 | | .8 | 3.107 | 3.137 | 3.167 | 3.197 | 3.228 | 3.259 | 3.290 | 3.321 | 3.353 | 3.385 | 31 | | .9 | 3.418 | 3.451 | 3.484 | 3.517 | 3.551 | 3.585 | 3.620 | 3.655 | 3.690 | 3.726 | 34 | | 2.0 | 3.762 | 3.799 | 3.835 | 3.873 | 3.910 | 3.948 | 3.987 | 4.026 | 4.065 | 4.104 | 38 | | .1 | 4.144 | 4.185 | 4.226 | 4.267 | 4.309 | 4.351 | 4.393 | 4.436 | 4.480 | 4.524 | 42 | | .2 | 4.568 | 4.613 | 4.658 | 4.704 | 4.750 | 4.797 | 4.844 | 4.891 | 4.939 | 4.988 | 47 | | .3 | 5.037 | 5.087 | 5.137 | 5.188 | 5.239 | 5.290 | 5.343 | 5.395 | 5.449 | 5.503 | 52 | | .4 | 5.557 | 5.612 | 5.667 | 5.723 | 5.780 | 5.837 | 5.895 | 5.954 | 6.013 | 6.072 | 58 | | 2.5 | 6.132 | 6.193 | 6.255 | 6.317 | 6.379 | 6.443 | 6.507 | 6.571 | 6.636 | 6.702 | 64 | | .6 | 6.769 | 6.836 | 6.904 | 6.973 | 7.042 | 7.112 | 7.183 | 7.255 | 7.327 | 7.400 | 70 | | .7 | 7.473 | 7.548 | 7.623 | 7.699 | 7.776 | 7.853 | 7.932 | 8.011 | 8.091 | 8.171 | 78 | | .8 | 8.253 | 8.335 | 8.418 | 8.502 | 8.587 | 8.673 | 8.759 | 8.847 | 8.935 | 9.024 | 86 | | .9 | 9.115 | 9.206 | 9.298 | 9.391 | 9.484 | 9.579 | 9.675 | 9.772 | 9.869 | 9.968 | 95 | | 3.0 | 10.07 | 10.17 | 10.27 | 10.37 | 10.48 | 10.58 | 10.69 | 10.79 | 10.90 | 11.01 | 11 | | .1 | 11.12 | 11.23 | 11.35 | 11.46 | 11.57 | 11.69 | 11.81 | 11.92 | 12.04 | 12.16 | 12 | | .2 | 12.29 | 12.41 | 12.53 | 12.66 | 12.79 | 12.91 | 13.04 | 13.17 | 13.31 | 13.44 | 13 | | .3 | 13.57 | 13.71 | 13.85 | 13.99 | 14.13 | 14.27 | 14.41 | 14.56 | 14.70 | 14.85 | 14 | | .4 | 15.00 | 15.15 | 15.30 | 15.45 | 15.61 | 15.77 | 15.92 | 16.08 | 16.25 | 16.41 | 16 | | 3.5 | 16.57 | 16.74 | 16.91 | 17.08 | 17.25 | 17.42 | 17.60 | 17.77 | 17.95 | 18.13 | 17 | | .6 | 18.31 | 18.50 | 18.68 | 18.87 | 19.06 | 19.25 | 19.44 | 19.64 | 19.84 | 20.03 | 19 | | .7 | 20.24 | 20.44 | 20.64 | 20.85 | 21.06 | 21.27 | 21.49 | 21.70 | 21.92 | 22.14 | 21 | | .8 | 22.36 | 22.59 | 22.81 | 23.04 | 23.27 | 23.51 | 23.74 | 23.98 | 24.22 | 24.4.7 | 23 | | .9 | 24.71 | 24.96 | 25.21 | 25.46 | 25.72 | 25.98 | 26.24 | 26.50 | 26.77 | 27.04 | 26 | | 4.0 | 27.31 | 27.58 | 27.86 | 28.14 | 28.42 | 28.71 | 29.00 | 29.29 | 29.58 | 29.88 | 29 | | .1 | 30.18 | 30.48 | 30.79 | 31.10 | 31.41 | 31.72 | 32.04 | 32.37 | 32.69 | 33.02 | 32 | | .2 | 33.35 | 33.69 | 34.02 | 34.37 | 34.71 | 35.06 | 35.41 | 35.77 | 36.13 | 36.49 | 35 | | .3 | 36.86 | 37.23 | 37.60 | 37.98 | 38.36 | 38.75 | 39.13 | 39.53 | 39.93 | 40.33 | 39 | | .4 | 40.73 | 41.14 | 41.55 | 41.97 | 42.39 | 42.82 | 43.25 | 43.68 | 44.12 | 44.57 | 43 | | 4.5 | 45.01 | 45.47 | 45.92 | 46.38 | 46.85 | 47.32 | 47:80 | 48.28 | 48.76 | 49.25 | 47 | | .6 | 49.75 | 50.25 | 50.75 | 51.26 | 51.78 | 52.30 | 52:82 | 53.35 | 53.89 | 54.43 | 52 | | .7 | 54.98 | 55.53 | 56.09 | 56.65 | 57.22 | 57.80 | 58:38 | 58.96 | 59.56 | 60.15 | 58 | | .8 | 60.76 | 61.37 | 61.99 | 62.61 | 63.24 | 63.87 | 64:52 | 65.16 | 65.82 | 66.48 | 64 | | .9 | 67.15 | 67.82 | 68.50 | 69.19 | 69.89 | 70.59 | 71:30 | 72.02 | 72.74 | 73.47 | 71 | | 5.0 | 74.21 | t | | ţ | 1 | Į | l | l | | 1 | | If x > 5, cosh $x = \frac{1}{2}(e^x)$, and $\log_{10} \cosh x = (0.4343)x + 0.6990 - 1$, correct to four significant figures. | Ну | perbol | ic tan | ge | nts (i | anh , | _ | (e* | - e | -*)/- | (e ^x | +e | - ^x) : | = si | nh | x/C | :osi | X | | |------------|---------------------------------|-----------------|--------------------|----------------|------------------|------------------------|-----------------------|-----|--------------|-----------------|----------------------------|--------------------|-----------------|------------|-------------|----------------------|----------|--------------| | x | 0 | 1 | | 2 | 3 | | 4 | | 5 | | 6 | - | ' | | } - | 9 | | diff | | 0.0 | .0000 | .0100 | | 0200
1194 | .0300 | | 400
391 | | 500
489 | .0. | 599
587 | .06 | 99
84 | .07 | | .08
.18 | | 100
98 | | .1 | .0997
.1974 | .1096
.2070 | ١. | 2165 | .2260 | .2 | 355 | .2 | 449 | .2 | 543 | .26 | 36 | .27 | 29 | .28 | 21 | 94 | | .3 | .2913
.3800 | .3004
.3885 | | 3095
3969 | .3185
.4053 | | 1275
1136 | .4 | 364
219 | | 452
301 | | 340
382 | .36 | 27
62 | .37
.45 | | 89
82 | | 0.5 | .4621 | .4700 | | 4777 | .4854 | | 1930 | | 005 | .5 | 080 | .51 | 54 | .52 | 27 | .52 | 99 | 75 | | .6
.7 | .5370
.6044 | .5441
.6107 | | .5511
.6169 | .5581
.6231 | 1 3 | 291 | -5 | 717
352 | .5 | 784
411 | | 350
169 | .59 | 15
27 | .65 | | 67 | | .8 | .6640
.7163 | .6696
.7211 | ١. | 6751
7259 | .6805
.7306 | 1.5 | 858
352 | | 911
398 | .6 | 963
443 | | 187 | .70
.75 | 64 | .71
.75 | 14
74 | 52
45 | | 1.0 | .7616 | .7658 | | 7699 | .7739 | 1,7 | 779 | | 818 | | 857 | | 395 | .79 | | .79 | | 39 | | .1 | .800 <i>5</i>
.8 3 37 | .8041
.8367 | . | 8076
8397 | .8110
.8426 | 3. | 3144
3455 | | 178
483 | | 210
511 | .82 | 38 | .82 | 75
65 | .83
.85 | | 33
28 | | .3 | .8617 | .8643 | | 8668 | .8693 | 3. | 3717 | 3. | 741 | .8 | 764 | .87 | 787 | .88 | 10 | .88 | 32 | 24 | | .4 | .8854 | .8875 | | .8896 | .8917 | | 3937 | | 957
138 | | 977
154 | | 796
170 | | 15
86 | .90 | | 17 | | 1.5 | .9052
.9217 | .9069
.9232 | | .9087
.9246 | .9104
.9261 | 1 .5 | 275
275 | .9 | 289 | .9 | 302 | .93 | 316 | .93 | 29 | .93 | 42 | 14 | | .7 | .9354
.9468 | .9367
.9478 | | .9379
.9488 | .9391
.9498 | | 7402
7508 | | 414
518 | .9
.9 | 425
527 | .94 | 136
536 | .94
.95 | 47
45 | .94
.95 | | 11 | | .9 | .9562 | .9571 | | 9579 | .9587 | | 595 | .5 | 603 | .9 | 611 | .90 | 519 | | 26 | .96 | | 8 | | 2.0 | .9640
.9705 | .9647
.9710 | | .9654
.9716 | .9661
.9722 | | 7668
7727 | | 7674
7732 | | 68 0
73 8 | | 587
743 | | 93
48 | .96 | | 5 | | .2 | .97 <i>5</i> 7
.9801 | .9762
.9805 | 1. | 9767
9809 | .9771
.9812 | 1 .5 | 776
7816 | .5 | 780
820 | .9 | 785
823 | .97 | 789
327 | .97 | 93
30 | .97 | 97 | 4 | | .4 | .9837 | .9840 | | .9843 | .9846 | 3 | 849 | .5 | 852 | | 855 | | 358 | .98 | | .98 | | 3 | | 2.5 | .9866
.9890 | .9869
.9892 | | .9871
.9895 | .9874
.9897 | | 9876
9899 | | 879 | | 881 | | 384
905 | | 886
906 | .98 | | 2 2 2 | | .6
.7 | .9910 | .9912 | | .9914 | .9915 | 1 .5 | 917 | .5 | 901
919 | .9 | 903
920 | .99 | 222 | .99 | 23 | .99 | 25 | 2 | | .8
.9 | .9926
.9940 | .9928
.9941 | | .9929
.9942 | .9931
.9943 | | 7932
7944 | .5 | 933
945 | .9
.9 | 935
946 | .99
| 936
947 | | 37
49 | .99 | 38
50 | 1 | | 3.0
4.0 | .9951
.9993 | .9959
.9995 | | .9967
.9996 | .9973
.9996 | | 9978
9997 | | 7982
7998 | | 985
998 | | 988
998 | | 90
99 | .99 | | 4 | | 5.0 l | .9999
> 5, tan | h x = ' | ا
1 .0 0 | 00 to f | i
four dec | ı
imal | plac | es. | | ı | | i | | ı | | ı | | | | Μu | Itiples | of O | 43 | 43 [0 | 0.434 | 294 | 148 | == | log | 10 € | e) | | | | | | | | | × | 1 0 | | 1 | 2 | 3 | | 4 | | 5 | | . 6 | | 7 | , | 1 | B | | 9 | | 0.0 | 0.000 | 0.0 | (34 | 0.086 | 9 0.13 | 303 | 0.17 | 37 | 0.21 | 71 | 0.26 | 106 | 0.30 | 040 | 0.3 | 474 | 0.3 | 3909 | | 1.0
2.0 | 0.434 | 3 0.4 | 777 | 0.521 | 2 0.5 | 46 | 0.60
1.04 | 80 | 0.65 | 14 | 0.69 | 49 | 0.73 | 383 | 0.7 | 817
160 | 0.8 | 3252
2595 | | 3.0 | 1.302 | 9 1.3 | 463 | 1.389 | 7 1.43 | 332 | 1.47 | 66 | 1.52 | 00 | 1.56 | 35 | 1.60 | 069 | 1.6 | 503 | 1.6 | 5937 | | 4.0
5.0 | | 1 | | 1.824 | | | 1.91 | | 1.95 | | 1.99 | | 2.04 | | | 846 | | 1280 | | 6.0 | 2.605 | 8 2.6 | 492 | 2.692 | 26 2.73 | 361 | 2. 3 4
2.77 | 95 | 2.82 | 29 | 2.86 | 63 | 2.47 | 098 | 2.9 | 189
532 | 2.5 | 5623
7966 | | 7.0
8.0 | 3.474 | 4 3.5 | 178 | 3.126
3.561 | 2 3.60 |)46 | 3.21
3.64 | 81 | 3.25 | 15 | 3.30 | 349 | 3.34
3.77 | 441
784 | 3.3
3.8 | 875
218 | 3.8 | 309
3652 | | 9.0 | 0,,00 | | | 3.995 | | | 4.08 | | 4.12 | | 4.16 | | 4.2 | | | 561 | 4.3 | 2995 | | Μu | Aultiples of 2.3026 [2.302 | | | | 2.302 | 85 | 1 = | = 1 | /0. | 434 | 43 = | = | \mathbf{og}_e | 10 | Ì | | | | | <u>_x</u> | 1 0 | <u> </u> | | 2 | 1 3 | | 4 | | 5 | | 6 | | 7 | | | 8 | | 9 | | 0.0
1.0 | | | 303
328 | 0.46 | 0.6 | 908 | 0.92 | | 1.15 | | | 816 | 1.6 | 118 | 1,8 | 3421 | | 0723 | | 2.0 | 4.605 | 2 4.8 | 354 | 2.76
5.06 | 57 5.2 | 934
95 9 | 3.22
5.52 | 262 | 3.45
5.75 | 565 | 3.6
5.9 | 867 | 6.2 | 144
170 | 6.4 | 1447
1472
7498 | 6. | 3749
6775 | | 3.0
4.0 | | 78 7.1
3 9.4 | 380
406 | 7.36
9.67 | 83 7.5
09 9.9 | 985
011 | 7.82
10.13 | | 8.0.
10.3 | 590
52 | 8.2
10.5 | | 8.5
10.8 | 196
22 | 8.7
11.0 | 7498
052 | | 9801
283 | | 5.0 | | | | 11.97 | | | 12.43 | 14 | 12.60 | | 12.8 | | 13.1 | | 13.3 | | 13. | 585 | | 6.0
7.0 | 16.118 | 3 16.3 | 48 | 14.27 | 9 16.8 | 09 | 14.73 | 39 | 14.96 | 59 | 15.1 | 00 | 15.4
17.7 | 30 | 15.6 | 260 | 18. | 888
190 | | 8.0
9.0 | 18.421 | 18.6 | 51 | 18.88
21.18 | 1 19.1 | 11 | 19.34
21.64 | 12 | 19.5 | 72 | 19.8 | 02 | 20.0 | 32 | 20.2 | 263 | 20. | 493
796 | | 7.0 | 20.720 | 20.7 | - | . 11.10 | 21.4 | | . 21.04 | | . 21.0 | - | - 22.1 | | 22.3 | - | 22. | ~~ | 22. | , , 0 | # Table of random digits* | | | | 1 | | |---|--|---|--|--| | П | 85
38
38
38
85
85 | 8%82%%&%884 | 852448888868 | 84852885487 | | П | 3822225 | 8825884488 | C388483487 | 925853285 | | ı | 58
50
50
50
50
50
50
50
50
50
50
50
50
50 | 34538452215 | 03525833354 | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | | | 125 55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25882844444 | 8825885588 | 28 22 25 25 28 8 | | Н | 67 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2822828288 | 7567822557 | 8255488
8257 | | | | €4-2000E-40 | -00048-00V | www.anaa. | | П | 4524446889 | 584552584 | 325 33 32 33 32 33 33 33 33 33 33 33 33 33 | 25 5 5 3 3 8 3 5 5 5 5 5 5 5 5 5 5 5 5 5 | | П | | 88888732288 | 58 4 26 2 4 2 5 4 5 5 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 | 2383528528 | | Ц | 30 22 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24 | | | | | П | 2898888888
4998888888 | 82228825288 | 8844247858 | 288243832 | | Ц | 28885428477 | 828383828 | 8882728887 | 2844848284 | | | 8248452488 | 3872282887 | 862222288 | 84773883583 | | | | | | | | | 32424257 | 2484821888 | 8282222888 | 8247822283 | | ı | 85787788448 | 232=4242288 | 2858438888 | 885888888888 | | | 333883333333333333333333333333333333333 | 72 83 83 84 7 8 7 2 8 3 8 3 8 3 8 4 8 8 8 8 8 8 8 8 8 8 8 8 | 52823245 | \$\$ 85 5 4 4 5 8 8 5 4 4 5 8 8 5 4 4 5 8 8 5 4 4 8 8 8 8 | | | 22 12 12 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 885
51
72
73
73
74
75
75
75
75
75
75
75
75
75
75
75
75
75 | 228328882 | 54586882524 | | 1 | 3423833854 | 8384883848 | 882238 | 48545588 | | ı | | | | | | ı | 282223288 | 4486282838 | 855 588 383 28 | 88888882 | | 1 | 547%5538588 | 16753728888 | 18822283 | 232323222 | | | 13058122122 | 908
888
888
888
888
888 | 2032832808 | 24 88 88 8 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | 88823888 | 8882228284 | 83823382 | 322 232 232 332 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35 | | - | 8538838538 | 8678888737 | 4388899888 | 57 22 25 25 25 25 25 25 25 25 25 25 25 25 | | | 2-0688862 | 9-40600749 | @WO@O@@@W4 | -04K888484 | | | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 3330888888 | \$ 52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 25 52 52 52 52 52 52 52 52 52 52 52 52 5 | | Į | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 35
99
97
97
13
13
14
15
15
16
16
17 | 23
23
23
23
23
23
23
23
23
24
23 | 90
77
77
77
85
74
85
85
85
85
85
85
85
85
85
85
85
85
85 | | | 088844488 | F8F8284448 | 8788738873 | 5827-2255 | | | 23 23 23 23 23 23 23 23 23 23 23 23 23 2 | 8822588 | 5258658585 | 722 232 232 232 232 232 232 232 232 232 | | 1 | 83.835.23838
83.897.23.8988 | 8228228324838 | 25 8 8 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 | 75 98 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 00.04400000 | 864-666 | -6697694-0 | 00000W4V00 | | | 33327242888 | 8838844885 | 4644568458 | 432547283344 | | | 252832525 | 387843882 | 83238232828 | 64584448333 | | | 388223333888 | 8885282888 | 885888447 | 8784528878 | | | 28888888888888888888888888888888888888 | 25 55 55 55 56 65 56 65 56 65 56 65 56 56 | 22 | 55 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | | | | | | | | | 25 24 54 54 54 54 54 54 54 54 54 54 54 54 54 | 348988448 | 88 64 94 84 85 60 60 60 60 60 60 60 60 60 60 60 60 60 | 82
20
20
20
20
20
20
40
40
40
40
40
40
40
40
40
40
40
40
40 | | | 00
14
55
55
57
51
51
51 | 255 88 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5888588555 | 882
122
144
147
148
148
149
149
149
149
149
149
149
149
149
149 | | | 38382798888 | 37 27 27 28 33 24 37 37 37 37 37 37 37 37 37 37 37 37 37 | 888888888888888888888888888888888888888 | 337 23 4 37 53 68 | | | 25,589,332,332,332,332,332,332,332,332,332,33 | 752142824448 | 5882484424 | 5833445888 | | | 75 1 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 88233888 | 45.89.9.88.888 | 38 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | | | | | | | | | 20
20
20
80
80
83
83
85 | 3282228334 | 8478588888888 | 85 2 8 8 4 8 9 8 1 5 2 5 4 5 8 6 1 5 7 5 1 | | | 880
922
883
89
89
89 | 755587888
8888
8888
8888
8888 | 38
25
25
26
26
27
28
28
26
27
27
27 | 422883344 | | | 445
669
669
677
777
650
649
649
649
649
649
649
649
649
649
649 | 8882382388 | 225447283 | \$284858488 | | | 97
69
69
69
76
76
76
78 | 58243888888 | 2828838288 | 885-3248384 | | | 331
34
35
36
37
37
37
37
37
37
37 | 57888584 | 8425484468 | 22.74 8
27.74 8
35.74 8
35.74 8 | | | 222 7 22 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 | \$25.58
\$25.58
\$25.58
\$25.58
\$25.58
\$25.58 | 22 98 98 98 98 98 98 98 98 98 98 98 98 98 | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 4 8 8 - 2 - 2 6 8 7 | V400040200 | 1440000-WON | 0040041041 | | | | | | | *Reprinted by permission from "The Compleat Strategyst," by J. D. Williams. Copyright, 1954. McGraw-Hill Book Company, Inc. ### Exponentials $[e^n$ and $e^{-n}]$ | _ n | en diff | n | e ⁿ diff | n | ●n (*) | l n | e ⁻ * diff | n | e ⁻ⁿ | l n | e ^{-a} (*) | |----------------------------------|---|----------------------------------|---|-----------------------------|---|----------------------------------|--|----------------------------------|--------------------------------------|--|--| | .01
.02
.03
.04 | 1.000 10
1.010 10
1.020 10
1.030 11
1.041 10 | 0.50
.51
.52
.53
.54 | 1.649
1.665
17
1.682
17
1.699
17
1.716 | 1.0
.1
.2
.3
.4 | 2.718
3.004
3.320
3.669
4.055 | 0.00
.01
.02
.03
.04 | 1.000 — 10
0.990 — 10
.980 — 10
.970 — 10
.971 — 9 | 0.50
.51
.52
.53
.54 | .607
.600
.595
.589
.583 | 1.0
.1
.2
.3
.4 | .368
.333
.301
.273
.247 | | 0.05
.06
.07
.08
.09 | 1.051 11
1.062 11
1.073 10
1.083 11
1.094 11 | 0.55
.56
.57
.58
.59 | 1.733
1.751
1.768
1.766
1.786
1.804
18 | 1.5
.6
.7
.8 | 4.482
4.953
5.474
6.050
6.686 | 0.05
.06
.07
.08
.09 | .951 — 9
.942 — 10
.932 — 9
.923 — 9
.914 — 9 | 0.55
.56
.57
.58
.59 |
.577
.571
.566
.560
.554 | 1.5
.6
.7
.8
.9 | .223
.202
.183
.165
.150 | | 0.10
.11
.12
.13
.14 | 1.105
1.116
11
1.127
12
1.139
11
1.150
12 | 0.60
.61
.62
.63
.64 | 1.622
1.840
1.859
1.859
1.878
1.896
20 | 2.0
.1
.2
.3
.4 | 7.389
8.166
9.025
9.974
11.02 | 0.10
.11
.12
.13
.14 | .905 — 9
.896 — 9
.887 — 9
.878 — 9
.869 — 8 | 0.60
.61
.62
.63
.64 | .549
.543
.538
.533
.527 | 2.0
.1
.2
.3
.4 | .135
.122
.111
.100
.0907 | | 0.15
.16
.17
.18
.19 | 1.162
1.174
1.185
1.197
1.197
1.209
12 | 0.65
.66
.67
.68
.69 | 1.916
1.935
19
1.954
20
1.974
20
1.994
20 | 2.5
.6
.7
.8
.9 | 12.18
13.46
14.88
16.44
18.17 | 0.15
.16
.17
.18
.19 | .861 — 9
.852 — 8
.844 — 9
.835 — 8
.827 — 8 | 0.65
.66
.67
.68
.69 | .522
.517
.512
.507
.502 | 2.5
.6
.7
.8
.9 | .0821
.0743
.0672
.0608
.0550 | | 0.20
.21
.22
.23
.24 | 1.221
1.234
1.246
1.259
1.271
1.271 | 71
.72
.73
.74 | 2.014
2.034
2.034
2.054
2.075
2.075
2.096
21 | 3.0
.1
.2
.3
.4 | 20.09
22.20
24.53
27.11
29.96 | 0.20
.21
.22
.23
.24 | .819 — 8
.811 — 8
.803 — 8
.795 — 8
.787 — 8 | 0.70
.71
.72
.73
.74 | .497
.492
.487
.482
.477 | 3.0
.1
.2
.3
.4 | .0498
.0450
.0408
.0369
.0334 | | 0.25
.26
.27
.28
.29 | 1.284
1.297
1.310
1.323
1.323
1.336
14 | 0.75
.76
.77
.78
.79 | 2.117
2.138 21
2.160 21
2.181 22
2.203 23 | 3.5
.6
.7
.8
.9 | 33.12
36.60
40.45
44.70
49.40 | 0.25
.26
.27
.28
.29 | .779 — 8
.771 — 8
.763 — 7
.756 — 8
.748 — 7 | 0.75
.76
.77
.78
.79 | .472
.468
.463
.458
.454 | 3.5
.6
.7
.8
.9 | .0302
.0273
.0247
.0224
.0202 | | 0.30
.31
.32
.33
.34 | 1.350
1.363
1.377
14
1.371
14
1.405
14 | 0.80
.81
.82
.83
.84 | 2.226
2.248 22
2.270 23
2.293 23
2.316 24 | 4.0
.1
.2
.3
.4 | 54.60
60.34
66.69
73.70
81.45 | 0.30
.31
.32
.33
.34 | .741 — 8
.733 — 7
.726 — 7
.719 — 7
.712 — 7 | 0.80
.81
.82
.83
.84 | .449
.445
.440
.436
.432 | 4.0
.1
.2
.3
.4 | .0183
.0166
.0150
.0136
.0123 | | 0.35
.36
.37
.38
.39 | 1.419
1.433
1.448
1.448
1.462
1.477
1.477 | 0.85
.86
.87
.88
.89 | 2.340
2.363
2.387
2.4
2.411
2.435
2.5 | 4.5
5.0
6.0
7.0 | 90.02
148.4
403.4
1097. | 0.35
.36
.37
.38
.39 | .705 — 7
.698 — 7
.691 — 7
.684 — 7
.677 — 7 | 0.85
.86
.87
.88
.89 | .427
.423
.419
.415
.411 | 4.5
5.0
6.0
7.0 | .0111
.00674
.00248
.000912 | | 0.40
.41
.42
.43
.44 | 1.492
1.507
1.522
1.522
1.537
1.553
1.553 | 0.90
.91
.92
.93
.94 | 2.460
2.484
2.509
2.535
2.535
2.560
26 | 8.0
9.0
10.0
π/2 | 2981.
8103.
22026.
4.810 | 0.40
.41
.42
.43
.44 | .670 — 6
.664 — 7
.657 — 6
.651 — 7
.644 — 6 | 0.90
.91
.92
.93
.94 | .407
.403
.399
.395
.391 | 8.0
9.0
10.0
π/2 | .000335
.000123
.000045 | | 0.45
.46
.47
.48
.49 | 1.568
1.584
1.600
16
1.616
1.632
17 | 0.95
.96
.97
.98
.99 | 2.586
2.612 26
2.638 26
2.664 27
2.691 27 | 2 | 23.14
111.3
535.5
2576.
12392.
59610.
286751. | 0.45
.46
.47
.48
.49 | .638 — 7
.631 — 6
.625 — 6
.619 — 6
.613 — 6 | 0.95
.96
.97
.98
.99 | .387
.383
.379
.375
.372 | 2π/2
3π/2
4π/2
5π/2
6π/2
7π/2
8π/2 | .0432
.00898
.00187
.000388
.000081
.000017 | | 0.50 | 1.649 | 1.00 | 2.718 | | l | 0.50 | 0.607 | 1.00 | .368 | | | ^{*} Note: Do not interpolate in this column. Properties of e are listed on p. 1040. ## Normal probability density function $$\varphi(x) = \frac{1}{(2\pi)^{1/2}} \exp - \frac{x^2}{2}$$ (Standard deviation $\sigma = 1$) | × | φ(x) | × | φ(x) | × | φ(x) | × | φ(x) | |-----|--------|-----|---------------|-----|--------|-----|---------------| | 0.0 | 0.3989 | 1.0 | 0.2420 | 2.0 | 0.0540 | 3.0 | 0.0044 | | 0.1 | 0.3970 | 1.1 | 0.2179 | 2.1 | 0.0440 | 3.1 | 0.0033 | | 0.2 | 0.3910 | 1.2 | 0.1942 | 2.2 | 0.0355 | 3.2 | 0.0024 | | 0.3 | 0.3814 | 1.3 | 0.1714 | 2.3 | 0.0283 | 3.3 | 0.0017 | | 0.4 | 0.3683 | 1.4 | 0.1497 | 2.4 | 0.0224 | 3.4 | 0.0012 | | 0.5 | 0.3521 | 1.5 | 0.1295 | 2.5 | 0.0175 | 3.5 | 0.0009 | | 0.6 | 0.3332 | 1.6 | 0.1109 | 2.6 | 0.0136 | 3.6 | 0.0006 | | 0.7 | 0.3123 | 1.7 | 0.0940 | 2.7 | 0.0104 | 3.7 | 0.0004 | | 0.8 | 0,2897 | 1.8 | 0.0790 | 2.8 | 0.0079 | 3.8 | 0.0003 | | 0.9 | 0.2661 | 1.9 | 0.0656 | 2.9 | 0.0060 | 3.9 | 0.0002 | | | | | | | | 4.0 | 0.0001 | ## Probability of deviation from mean in normal distribution The probability that the absolute deviation from the mean $|x - \mu|$ exceeds t times the standard deviation σ is p/100. | • | P(t) | | p(t) | P | t(p) | P | t(p) | |-----|---------|-----|-------|-----|--------|-------|--------| | | | | | | | | | | 0.0 | 100.000 | 2.2 | 2.781 | 100 | 0.0000 | 40 | 0.8416 | | 0.2 | 84.148 | 2.4 | 1.640 | 95 | 0.0627 | 35 | 0.9346 | | 0.4 | 68.916 | 2.6 | 0.932 | 90 | 0.1257 | 30 | 1.0364 | | 0.6 | 54.851 | 2.8 | 0.511 | 85 | 0.1891 | 25 | 1.1503 | | 8.0 | 42.371 | 3.0 | 0.270 | 80 | 0.2533 | 20 | 1.2816 | | 1.0 | 31.731 | 3.2 | 0.137 | 75 | 0.3186 | 15 | 1.4395 | | 1.2 | 23.014 | 3.4 | 0.067 | 70 | 0.3853 | 10 | 1.6449 | | 1.4 | 16.151 | 3.6 | 0.032 | 65 | 0.4538 | 5 | 1.9600 | | 1.6 | 10.960 | 3.8 | 0.014 | 60 | 0.5244 | 1 | 2.5758 | | 1.8 | 7.186 | 4.0 | 0.006 | 55 | 0.5978 | 0.1 | 3.2905 | | 2.0 | 4.550 | | | 50 | 0.6745 | 0.01 | 3.8906 | | | | İ | | 45 | 0.7554 | 0.001 | 4.4172 | # Cumulative normal distribution function $$\Phi(\mathbf{x}) = \frac{1}{\sigma (2\pi)^{1/2}} \int_{-\infty}^{\mathbf{x}} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{x} - \mu}{\sigma}\right)^{2} d\mathbf{x}\right]$$ | x | Φ(x) | × | Φ(x) | × | Φ(x) | |----------------------|----------------------|-------------------|--------|-------------------|-------------------------| | μ 4.0σ | 3 × 10 ⁻⁶ | $\mu - 1.3\sigma$ | 0.0968 | $\mu + 1.4\sigma$ | 0,9192 | | $\mu - 3.9\sigma$ | 5 × 10 ⁻⁵ | $\mu - 1.2\sigma$ | 0.1151 | $\mu + 1.5\sigma$ | 0.9332 | | $\mu - 3.8\sigma$ | 7 × 10 ⁻⁶ | $\mu = 1.1\sigma$ | 0.1357 | $\mu + 1.6\sigma$ | 0.9452 | | $\mu - 3.7\sigma$ | 0.0001 | $\mu - 1.0\sigma$ | 0.1587 | $\mu + 1.7\sigma$ | 0.9554 | | $\mu - 3.6\sigma$ | 0.0002 | $\mu - 0.9\sigma$ | 0.1841 | $\mu + 1.8\sigma$ | 0.9641 | | $\mu - 3.5\sigma$ | 0.0002 | $\mu - 0.8\sigma$ | 0.2119 | $\mu + 1.9\sigma$ | 0.9713 | | $\mu - 3.4\sigma$ | 0.0003 | $\mu - 0.7\sigma$ | 0.2420 | $\mu + 2.0\sigma$ | 0.9772 | | $\mu - 3.3\sigma$ | 0.0005 | $\mu - 0.6\sigma$ | 0.2743 | $\mu + 2.1\sigma$ | 0.9821 | | $\mu - 3.2\sigma$ | 0.0007 | $\mu - 0.5\sigma$ | 0.3085 | $\mu + 2.2\sigma$ | 0.9861 | | $\mu - 3.1\sigma$ | 0.0010 | $\mu - 0.4\sigma$ | 0.3446 | $\mu + 2.3\sigma$ | 0.9893 | | $\mu - 3.0\sigma$ | 0.0013 | $\mu - 0.3\sigma$ | 0.3821 | $\mu + 2.4\sigma$ | 0.9918 | | $\mu - 2.9\sigma$ | 0.0019 | $\mu - 0.2\sigma$ | 0.4207 | $\mu + 2.5\sigma$ | 0.9938 | | $\mu - 2.8\sigma$ | 0.0026 | $\mu - 0.1\sigma$ | 0.4602 | $\mu + 2.6\sigma$ | 0.9953 | | $\mu-2.7\sigma$ | 0.0035 | μ | 0.5000 | $\mu + 2.7\sigma$ | 0.9965 | | $\mu-2.6\sigma$ | 0.0047 | $\mu + 0.1\sigma$ | 0.5398 | $\mu + 2.8\sigma$ | 0.9974 | | μ — 2.5 σ | 0.0062 | $\mu + 0.2\sigma$ | 0.5793 | $\mu + 2.9\sigma$ | 0.9981 | | $\mu-2.4\sigma$ | 0.0082 | $\mu + 0.3\sigma$ | 0.6179 | $\mu + 3.0\sigma$ | 0.9987 | | $\mu-2.3\sigma$ | 0.0107 | $\mu + 0.4\sigma$ | 0.6554 | $\mu + 3.1\sigma$ | 0.9990 | | $\mu - 2.2\sigma$ | 0.0139 | $\mu + 0.5\sigma$ | 0.6915 | $\mu + 3.2\sigma$ | 0.9993 | | $\mu - 2.1\sigma$ | 0.0179 | $\mu + 0.6\sigma$ | 0.7257 | $\mu + 3.3\sigma$ | 0.9995 | | $\mu - 2.0\sigma$ | 0.0228 | $\mu + 0.7\sigma$ | 0.7580 | $\mu + 3.4\sigma$ | 0.9997 | | $\mu - 1.9\sigma$ | 0.0287 | $\mu + 0.8\sigma$ | 0.7881 | $\mu + 3.5\sigma$ | 0.9998 | | $\mu - 1.8\sigma$ | 0.0359 | $\mu + 0.9\sigma$ | 0.8159 | $\mu + 3.6\sigma$ | 0.9998 | | $\mu - 1.7\sigma$ | 0.0446 | $\mu + 1.0\sigma$ | 0.8413 | $\mu + 3.7\sigma$ | 0.9999 | | $\mu - 1.6\sigma$ | 0.0548 | $\mu + 1.1\sigma$ | 0.8643 | $\mu + 3.8\sigma$ | 1 (7×10 ⁻⁶) | | $\mu - 1.5\sigma$ | 0.0668 | $\mu + 1.2\sigma$ | 0.8849 | $\mu + 3.9\sigma$ | 1-(5×10-5) | | $\mu - 1.4\sigma$ | 8080.0 | $\mu + 1.3\sigma$ | 0.9032 | $\mu + 4.0\sigma$ | 1-(3×10-5) | Bessel functions* Table I—J₀(z) | 6.0 | 3075 | 818 | 243 | -0.4018 | -0.2097 | 1220 | 186 | 944 | 653 | 2403 | 1881 | 0.0250 | 886 | 1836 | 0.0064 | 1650 | |-----|--------|--------|---------|---------|---------|----------|--------|--------|---------|---------|---------|----------|--------|--------|--------|---------| | o. | -
 | 0.0 | -0.2 | -0.4 | -0.2 | <u>.</u> | 0. | 0 | - 0.0 | 10. | -0 | <u>ö</u> | Ö | 0 | | 10 | | 8.0 | 0.8463 | 0.3400 | -0.1850 | -0.4026 | -0.2404 | 0.0917 | 0.2931 | 0.2154 | -0.0392 | -0.2323 | -0.2032 | +0.0020 | 0.1887 | 0.1943 | 0.0271 | -0.1533 | | 0.7 | 0.8812 | 0.3980 | -0.1424 | -0.3992 | -0.2693 | 0.0599 | 0.2851 | 0.2346 | -0.0125 | -0.2218 | -0.2164 | -0.0213 | 0.1766 | 0.2032 | 0.0476 | -0.1401 | | 9.0 | 0.9120 | 0.4554 | -0.0968 | -0.3918 | -0.2961 | +0.0270 | 0.2740 | 0.2516 | 0.0146 | -0.2090 | -0.2276 | -0.0446 | 0.1626 | 0.2101 | 0.0679 | -0.1253 | | 0.5 | 0.9385 | 0.5118 | -0.0484 | -0.3801 | -0.3205 | -0.0068 | 0.2601 | 0.2663 | 0.0419 |
-0.1939 | -0.2366 | -0.0677 | 0.1469 | 0.2150 | 0.0875 | -0.1092 | | 0.4 | 0.9604 | 0.5669 | 0.0025 | -0.3643 | -0.3423 | -0.0412 | 0.2433 | 0.2786 | 0.0692 | -0.1768 | -0.2434 | -0.0902 | 0.1296 | 0.2177 | 0.1065 | -0.0919 | | 0.3 | 0.9776 | 0.6201 | 0.0555 | -0.3443 | -0.3610 | -0.0758 | 0.2238 | 0.2882 | 0960.0 | -0.1577 | -0.2477 | -0.1121 | 0.1108 | 0.2183 | 0.1245 | -0.0736 | | 0.2 | 0.9900 | 0.6711 | 0.1104 | -0.3202 | -0.3766 | -0.1103 | 0.2017 | 0.2951 | 0.1222 | -0.1367 | -0.2496 | -0.1330 | 0.0908 | 0.2167 | 0.1414 | -0.0544 | | 0.1 | 0.9975 | 0.7196 | 0.1666 | -0.2921 | -0.3887 | -0.1443 | 0.1773 | 0.2991 | 0.1475 | -0.1142 | -0.2490 | -0.1528 | 0.0697 | 0.2129 | 0.1570 | -0.0346 | | 0 | 1.0000 | 0.7652 | 0.2239 | -0.2601 | -0.3971 | -0.1776 | 0.1506 | 0.3001 | 0.1717 | -0.0903 | -0.2459 | -0.1712 | 0.0477 | 0.2069 | 0.1711 | -0.0142 | | × | 0 | | 2 | က | 4 | 5 | 9 | 7 | æ | 6 | 2 | = | 12 | 13 | 7 | 15 | * See also discussion and graph on Bessel functions on p. 1066. | × | 0 | 0.1 | 0.2 | 0.3 | - 0.4 | 0.5 | 0.6 | 0.7 | 9.0 | 6.0 | |----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | 0 | 0.0000 | 0.0499 | 0.0995 | 0.1483 | 0.1960 | 0.2423 | 0.2867 | 0.3290 | 0.3688 | 0.4059 | | - | 0.4401 | 0.4709 | 0.4983 | 0.5220 | 0.5419 | 0.5579 | 0.5699 | 0.5778 | 0.5815 | 0.5812 | | 2 | 0.5767 | 0.5683 | 0.5560 | 0.5399 | 0.5202 | 0.4971 | 0.4708 | 0.4416 | 0.4097 | 0.3754 | | 9 | 0.3391 | 0.3009 | 0.2613 | 0.2207 | 0.1792 | 0.1374 | 0.0955 | 0.0538 | 0.0128 | -0.0272 | | 4 | -0.0660 | -0.1033 | -0.1386 | -0.1719 | -0.2028 | -0.2311 | -0.2566 | -0.2791 | -0.2985 | -0.3147 | | 2 | -0.3276 | -0.3371 | -0.3432 | -0.3460 | -0.3453 | -0.3414 | -0.3343 | -0.3241 | -0.3110 | -0.2951 | | 9 | -0.2767 | -0.2559 | -0.2329 | -0.2081 | 0.1816 | -0.1538 | -0.1250 | -0.0953 | -0.0652 | -0.0349 | | 7 | -0.0047 | +0.0252 | 0.0543 | 0.0826 | 0.1096 | 0.1352 | 0.1592 | 0.1813 | 0.2014 | 0.2192 | | 8 | 0.2346 | 0.2476 | 0.2580 | 0.2657 | 0.2708 | 0.2731 | 0.2728 | 0.2697 | 0.2641 | 0.2559 | | ٥ | 0.2453 | 0.2324 | 0.2174 | 0.2004 | 0.1816 | 0.1613 | 0.1395 | 0.1166 | 0.0928 | 0.0684 | | 9 | 0.0435 | 0.0184 | -0.0066 | -0.0313 | -0.0555 | -0.0789 | -0.1012 | -0.1224 | -0.1422 | -0.1603 | | Ξ | -0.1768 | -0.1913 | -0.2039 | -0.2143 | -0.2225 | -0.2284 | -0.2320 | -0.2333 | -0.2323 | -0.2290 | | 12 | -0.2234 | -0.2157 | -0.2060 | -0.1943 | -0.1807 | -0.1655 | -0.1487 | -0.1307 | -0.1114 | -0.0912 | | 13 | -0.0703 | -0.0489 | -0.0271 | -0.0052 | +0.0166 | 0.0380 | 0.0590 | 0.0791 | 0.0984 | 0.1165 | | 7 | 0.1334 | 0.1488 | 0.1626 | 0.1747 | 0.1850 | 0.1934 | 0.1999 | 0.2043 | 0.2066 | 0.2069 | | 15 | 0.2051 | 0.2013 | 0.1955 | 0.1879 | 0.1784 | 0.1672 | 0.1544 | 0.1402 | 0.1247 | 0.1080 | | | | | | | | | | | | | Bessel functions continued Table II— $J_1(z)$ ### Index | A | | | | |----------------------------|-----------------|----------------------------|-----------------| | ABCD matrix | 660 | Alpha particle | 890 | | Absolute zero | 33 | Alrok | 926 | | Absorption | | Alternating current suppli | ies 929 | | atmospheric | 749 | Alternating-gradient field | 90 | | coefficient | 866 | Altitude-pressure graph | 920 | | factor, earth | 783 | Aluminum electrolytic cap | pacitor 102 | | unit | 866 | AM (see alsa Amplitude n | nodulation) 548 | | AC capacitor | 93 | Amateur frequency bands | s 1: | | Accelerated life test | 86 | American Standards Associ | ciation 7 | | Acceleration | 924, 940 | American wire gauge (see | also Wire | | error constant | 362 | tables) | 50 | | measurement | 361 | Ampere-turn | 324 | | Accelerator | | Amplication factor | 376 | | linear | 902 | Amplifier | | | particle | 895 | audio frequency | 442 | | Acceptor impurity | 478 | cascode | 44 | | Acoustic | | cathode coupled | 44 | | compliance | 860 | class of | 43: | | resistance | 859 | clipper | 44 | | spectrum | 871 | differential | 44 | | Acoustics | 850 | distortion factor | 459 | | AC resistance | 129, 131 | electron tube | 43: | | Acrylic spray | 109 | grid current | 43: | | Activity, radioactive | 892 | grounded cathode | 44 | | Adcock antenna | 671 | grounded grid | 44 | | Adding network | 458 | grounded pla te | 44 | | Addition, matrix | 1090 | klystron | 39 | | Adjugate | 1092 | low noise | 39 | | Admittance | 120, 124, 138 | magnetic | 32: | | electrode | 380 | pairs | 446 | | measurement | 269 | plate efficiency | 43: | | Aerial telephone circuits | 820 | power | 869 | | Aging, rectifier | 308 | radio frequency | 43 | | Air pressure | 9 20 | repeater | 82 | | Algebra | 1037 | resistance coupled | 450 | | matrix | 1090 | selective | 459 | | Allegheny alloy | 276 | transistor | 490, 499, 51 | | Allocations, frequency | 9 | traveling wave | 39 | | Alloy 1040 | 276 | video | 41: | | Alloys, physical constants | 45 | Amplitude compression | 973 | | Alphabet, Greek | 39 | Amplitude modulation | 19, 22, 52 | | Alpha cutoff frequency | 486 | interference | 53/ | ## Amplitude, traveling wave | | | | Articulation index | | 87 | 75 | |--|--------|------------|--|-------|----|-------------| | Amplitude, traveling wave | | 858 | Art work, printed circuit | | - | 10 | | Analog, acoustical | | 887 | ASA | | 7 | 76 | | And circuit | | 939 | sheet-metal gauge | | | 61 | | Anemometer | | | | | 80 | 05 | | Angle arrival, departure | | 723 | A scope | | | 76 | | Angstrom unit | | 8 | ASESA | | | 94 | | Angular modulation | | 532 | Askarel impregnant | | 7 | 93 | | Anisotropy constant | | 74 | Aspect ratio | | • | 9 | | Annealed copper wire | | 51 | Assignments, frequency | | 10 | 85 | | Anode | | | Associative law | | | 68 | | magnetron | | 386 | Astable circuit blocking oscillator | | | 73 | | strap | | 382 | gas-tube oscillator | | | 76 | | Anode-follower | | 457 | multivibrator | 465 | | | | Anodizing | | 926 | transistor circuit | | | 14 | | AN system | | 957 | | | | 64 | | Antenna | 662, | | Astronomy, radio Asymmetrical inductive diaphrag | m | | 31 | | Adcock | | 671 | Asymptotic approximation | | | 350 | | array | | 689 | Atlantic City Radio Convention | | | 8 | | array problems | | 706 | Atmospheric | | | _ | | computations | | 662 | absorption | | 7 | 749 | | corner reflector | | 702 | noise | | 7 | 762 | | discone | | 681 | | | | 220 | | effective area | | 750 | pressure | | | 747 | | efficiency | | 673 | refraction | | | 888 | | gain | | 702 | Atom, definition Atomic | | • | | | height | | 740 | | | | 41 | | helical | | 682 | constants | 34 | | 888 | | horn | | 751 | mass
mass unit | 0-1 | | 891 | | isotropic | | 750 | | | | 890 | | loop | | 671 | nucleus
number | 41 | | 890 | | parabolic | | 751 | physical constants | | ′ | 34 | | radar | 803 | , 809 | weight | | | 41 | | rhombic | | 679 | Attenuation | | | • • • | | slot | | 687
723 | atmospheric | | | 749 | | system | | 670 | constant | | | 627 | | vertical | | 911 | feedback control | | | 353 | | Anticoincidence | | 641 | filter | 164 | | 187 | | Aperature | | 683 | free space | | | 750 | | Apparent phase velocity | | 753 | open wire pairs | | | 818 | | Apparent power gain, antenna | | 955 | radio path | | | 751 | | Application, patent | | 321 | relative | 18 | 8. | 190 | | Arc suppression | | 321 | transmission line 569, 57 | | | | | Area | | 676 | Attenuators | ., | | 247 | | antenna | | 1054 | error formulas | | | 254 | | hyperbolic triangle | | 1033 | | | | | | irregular surface | | 1033 | Audio, Audio-frequency | 41 | 2 | 450 | | plane figures | | 1044 | amplifier | 77 | ۷, | 786 | | triangle | | 652 | broadcasting | | | 783 | | Argand diagram | | 1037 | distortion | | | 272 | | Arithmetic progression | | 276 | reactor | | | | | Armco
Armed Services Electro-Standard | | 2/0 | response | | | 783 | | | ,
7 | 5, 612 | transformer 27 | 2, 28 | ٥, | | | Agency | ,, | J, 012 | input | | | 29 3 | | Armed Services lists | | 608 | output | | | 291 | | cables | | 429 | transmissions, WWV | | | 24 | | tubes | | 629 | 1 | | | 792 | | waveguides | | 844 | | | | 725 | | ARQ Moore code | | 574 | Austin-Cohen equation | | | 710 | | Array | | 692 | | | | 945 | | broadside | | 690 | | | | 271 | | linear | | 070 | | | | | ### **Burst frequency** | A | 982 | Dimens (sentinged) | | |---|------------|--|------------------| | Average | 1007 | Binary (continued) pulse-code modulation | 540 | | power value, alternating current | 150 | system | 879 | | Aviation frequency bands | 14 | Binding energy | 891 | | Avogadro's constant | 34 | Binomial | | | AWG, see Wire tables | - | array | 690, 693 | | Axial | İ | distribution | 986 | | mode, helix | 687 | theorem | 1039 | | ratio | 666 | Biological radiation damage | 913 | | slot, cylinder | 689 | Birmingham wire gauge | 50, 61 | | velocity, helix | 684 | Bistable | | | | Í | electron-tube circuit | 466 | | _ | - 1 | switching | 343 | | В | 1 | transistor circuit | 514 | | Background noise | 538 | Bit | 881, 965 | | Backlash | 366 | Bivariate normal distribution | 991
927 | | Backward-wave oscillator | 399 | Black oxide dip | 795 | | Balanced | | Blanking level
Blind speed | 813 | | H attenuator | 252 | Block diagram | 947 | | O attenuator | 252 | Blocking oscillator | 473 | | shielded line | 589 | Blueing | 927 | | Band | | Bode diagram | 3 55 | | frequency assignments | 9 | Bohr electron orbit, Bohr magne | ton 34 | | nomenclature, radar | 802
787 | Bolts | 57 | | television Band-pass filters 170, 189, | | Boltzmann's constant | 34 | | Band-reject filters 179, 189, 217, | | Borel theorem | 1082 | | Bandwidth 21, 189, 236, | | Boron carbon | 82 | | 531, 739, | | Boron-trifluoride counter | 907 | | acoustic | 872 | Brass plate | 927 | | carrier telephone | 830 | Brazing | 47 | | electron tube | 396 | Breakaway point | 3 57 | | factor, noise 765, | 768 | Breakdown voltage | 921
| | pulse | 542 | atmospheric component rating | 77 | | relative | 190 | junction | 478 | | Base, transistor | | Brewster's angle | 698 | | region | 478 | Bridges, Bridged networks | | | resistance 486,
B & S, see Wire tables | 494 | H attenuator | 252, 258 | | Basic Radio Propagation Predictions | 724 | measuring | . 263 | | | 846 | rectifier | 305 | | Beam S41, | 040 | section | 145 | | angle | 753 | T attenuator | 25 2, 258 | | coupling coefficient | 383 | T network | 358 | | | 803 | T repeater | 830 | | Beat frequency | 811 | T section | 247 | | Bessel function 535, 1064, 1081, | 1118 | Bright acid dip
Brightness | 927
400 | | Beta particle | 888 | Bright-tungsten emitter | 367 | | Betatron | 898 | British standard wire gauge | 50 | | | 757 | Broadcast, Broadcasting | 22, 778 | | Bias | 400 | antenna | 674 | | electron tube | 432 | FCC requirements | 782 | | magnetic amplifier | 327 | interference | 773 | | transistor 478, 497,
Biased rectangular wave | | links, remote pickup | 14 | | Bilateral device | 464 | Broadside antenna | 690 | | Binary | 511 | Bubble chamber | 905 | | code 540, 880, | 070 | Buenos Aires Convention | 9 | | counter 540, 880, | 465 | Build, coil | 279 | | digit | 881 | Burching | 383
794 | | uigit | 001 | Burst frequency | / 94 | ### **Business** computer | Business computer | 884 | I Comban to the B | |-----------------------------------|------------|---| | Butterworth filter | 191 | Carrier (continued) telephone 830, 834 | | Button-mica capacitor | 90 | telephone 830, 834 | | - | ,, | Carter chart 652 | | _ | | Cascade, Cascaded | | С | | compensation 358 | | Cable (see also Transmission | | junctions 648 | | line) | 549, 824 | networks 201, 241, 447, 451, 507 | | code | 842 | noise in 769 | | list of RG | 606 | particle 889 | | Cadmium | | Cassiopeia, noise 764 | | plate | 927 | Castor-oil impregnant 92 | | sulfide | 481 | Catenary 933 | | Calculus | | Cathode | | differential | 1062 | coupled | | integral | 1067 | amplifier 447 | | operational | 158 | phantastron 470 | | Call letters | 15 | emission 367 | | Cancellation circuit | 813 | follower 444, 448, 462, 465 | | Candle | 400 | gas tube 425 | | Capacitor, Capacitance | 116, 133 | material 367 | | aluminum electrolytic | 101 | phototube 407 | | balance | 264 | ray tube 402 | | bridge | 264 | Cavity | | button mica | 90 | coupling 641 | | charge, discharge | 152 | impedance 383 | | coaxial | 134 | resonator 383, 635 | | coupling | 239 | tuning 639 | | diaphragm
differentiation | 630 | Cayley-Hamilton theorem 094 | | discoidal | 460 | CCIT 2 5-unit code 844 | | drift | 86 | Cellulose acetate dielectric 101 | | electrolytic | 86
101 | Centigrade-fahrenheit 33 | | fixed ceramic | 83 | Centimetric wave 8 Central limit theorem 980 | | impregnated paper | 91 | | | input filter | 317 | Central Radio Propagation Labora-
tories 724 | | integration | 462 | fories 724
 CEP 991 | | life of | 90 | Ceramic-dielectric capacitor 83 | | line pair | 816 | Cerenkov counter 909 | | measurement | 268 | CGS unit 34 | | metalized paper | 97 | Channel | | molded mica | 87 | capacity 977 | | parallel plate | 133 | communication 973 | | plastic film | 99 | spacing 849 | | polar electrolytic | 105 | television 787 | | reactance | 135 | Characteristic | | resonance in | 86 | function 984 | | space factor | 105 | impedance 35, 588, 596, 658, 855 | | tolerance | 84 | of component 77 | | transmission lines | 608 | polygon 657 | | tubular | 86 | vector 1093 | | tuning | 236 | Charge | | type designation | 87 | capacitor 152 | | unit | 36 | RLC 154 | | Carbonyl
Carrier | 284 | Chebishev filter 191 | | | 536, 542 | Check bit 884 | | operating line
radio-frequency | 439
527 | Chemical film dielectric 101 | | semiconductor | 527
478 | Chi-square | | stability | 783 | distribution 992 test 996 | | telegraph | | 211 | | ·-g·=p·· | 0-77 | Chlorinated synthetic impregnant 94 | ### Conductor | Choke | Coincidence 911 | |--|--| | filter 271, 282, 317 | Cold-cathode tube 425 | | swinging 285, 319 | Collector, transistor 478 | | Chrominance frequency 793 | capacitance 486, 497 | | Chromium plate 927 | curves 492 | | Circle | cutoff current 486, 496 | | area 1032 | resistance 486, 494 | | diagram 147 | Collision ionization 375 | | Circuit | Color | | diagrams 947 | coding 76 | | efficiency, microwave tube 383 | components 76 | | element, waveguide 630 | transforme: lead 106 | | parameters, general 143, 522, 555 | signal 793 | | printed 109 | television 787 | | transistor 499 | Combinations 1038 | | tuned (see also Tuned circuit) 577 | Comité Consultatif International Radio 8 | | vacuum-tube 432 | Commercial power supplies 929 | | Circular | Cammon | | error probable 991 | base circuit 500, 506 | | normal distribution 992 | carrier frequency bands 13 | | polarization 666 | collector circuit 501, 506 | | ring 133 | emitter circuit 502, 506 | | waveguide 622 | logarithms 1098 | | Citizens' radio bands 13 | Communication | | Claim, patent 954 | accuracy 964 | | Class, Classification | channel 973 | | A-amplifier transformer 297 | process 964 | | amplifier 298, 432, 512 | speed 964 | | broadcast stations 784 | Commutative law 1085 | | Clearance drill 58 | Compandors 838 | | Clipped, Clipping | Comparator 363 | | circuit 447, 470, 541 | Complement 881 | | regenerative 469 | Complementary symmetry 513 | | sawtooth wave 1020 | Complex | | speech 876 | conjugate 1005, 1091 | | Cloud chamber 905 | plane 355 | | Coating 926 | quantity 1039, 1085 | | Coaxial | relative attenuation 190 | | capacitor 134 | Components 76 | | hybrid 634 | indicator 957 | | line (see also Transmission line) 549, | symbols 947 | | 588, 595, 608, 612, 825
Code 541 | Composite | | | filter 182 | | card 845
character 541 | signal, television 794 Compression, amplitude 838, 972 | | color 76 | Compression, ampirtude 638, 972 Compromise network 832 | | computor 880 | Compton wavelength 34 | | element 541 | Computer, digital 879 | | raster 540 | Conditionally stable system 349 | | signal reporting 950 | Conditional probability 970 | | telegraph 842 | Conduction | | Coefficient | band 478 | | coupling 141, 215, 236 | current 383, 1025 | | resistance 80 | Conductivity | | Cofactor 1092 | earth 714, 783 | | Coherent | ground 714, 783 | | signal 812 | unit 36 | | pulse operation 383 | Conductor | | Coho 812 | electrical 114, 278, 932 | | Coil 112, 271 | gauge 50 | | build 279 | printed circuit 110 | | | , | ### Conductor | Conductor (continued) | 1 | Cosine (continued) | | |------------------------------|---------------|------------------------------|------------------| | size | 54 | squared pulse | 1014 | | skin effect | 128 | table of | 1100 | | Conduit | 932 | Cosmic noise | 764 | | Cone volume | 1035 | Cotangent | 1100 | | Confidence interval | 995 | Countermeasures | 959 | | Conformal | | Counter, particle | 905 | | model, hyperbolic space | 1050 | Counting circuit | 465 | | reflection chart | 652 | Countries | | | Conic frustum volume | 1036 | call letters | 15 | | Conjugate | 151 | power supplies | 929 | | hyperbola | 1060 | Coupled, Coupling | | | Conpernik | 276 | circuits | 236, 241 | | Constant-current | | coefficient of 14 | 1, 215, 236 | | characteristic | 433 | aptimum | 141 | | supply | 509 | to cavity | 639 | | Constant-K filter | 166, 191 | | 1, 625, 626 | | Constants | 29, 924 | transistors | 512 | | Constant-voltage generator 1 | | Covariance matrix | 990 | | Constraints | 973 | Coverage data, broadcast | 779 | | Contact protection | 321 | Cramer's rule | 1092 | | Continuous variate | 981 | Critical | | | Continuous-wave | , | coupling | 236 | | modulation | 527 | damping | 356 | | radar | 811 | frequency | 720 | | Contour, field intensity | 731 | Cross | | | Control | , | polarization | 749 | | inductor | 327 | product | 1086 | | point | 723 | ratio | 652 | | system component | 363 | section | 892 | | system, feedback | 344 | section paper, profile | 743 | | transformer | 364 | Crosstalk | 544 | | Conversion factors | 29, 36 | pulse modulation | 544 | | Convolution | 1003 | units | 832 | | integral | 985 | Crystal counter | 907 | | theorem | 1082 | Cumulative | | | Cooling | | distribution function | 982 | | electron tube | 369 | normal distribution function | 1117 | | rectifier | 310 | probability function | 981 | | Copper | | Curie | 892 | | oxide | 481 | temperature | 74, 276 | | rectifier | 308, 481 | Curl | 1088 | | plate | 927 | Current | | | sulfide | 481 | amplification, transistor | 500 | | wire (see Wire tables) | | antenna | 662 | | Copperweld wire table | 53 | capacity, printed circuit | 108 | | Core Core | 33 | division, array | 695 | | | 280 | gain, transistor | 495 | | loss | | in matrixes | 657 | | | 280, 284, 337 | ratio, decibels | 40 | | Corner reflector | | unit of | 36 | | Corona | 304 | voltage dual | 509 | | Corrected wind velocity | 924 | wire melting | 55 | | Correlation | | Curvature of curve | 1064 | | coefficient | 990 | Cutoff | | | function | 1000 | frequency | 624 , 872 | | Corrosion | 42, 926 | transistor | 497 | | Cosine | | rate of | 190 | | hyperbolic | 1112 | waveguide | 618 | | law of | 1053 | wavelength | 626 | | pulse | 1014 | Cyclic accelerator | 896 | | | | | | | Cyclotron | 896 | Differential (continued) | | |---------------------------------|-----------------------------|----------------------------------|------------| | Cylinder, Cylindrical | | discriminator | 911 | | capacitor | 134 | equation | 460 | | cavity | 635 | Differentiation | | | coordinates | 1088 | capacitive | 460 | | helix | 682 | circuits | 458, 460 | | volume | 1034 | Digit | 879 | | | | random | 1114 | | D | | Digital computers | 879 | | - | 0.40 | Digram | 965 | | Damped, Damping | 943 | Dimensions | 29 | | critical
oscillation | 356
356 | Diode | 490 | | Danger, radiation |
913 | double-base
semiconductor | 481 | | Dark spot | 732 | Dipole | 401 | | Daylight saving time | 953 | elementary | 662 | | Decametric waves | 8 | half wave | 676 | | Decay time | 524 | Dip-soldering | 111 | | Decibel | 40 | Dirac function | 1003, 1081 | | Decimal symbol | 881 | Direct | , | | Decimetric, Decimillimetric | | capacitance measurement | 267 | | Decoding | 964 | current supply | 929 | | Dee | 896 | feedback system | 344 | | Definite integral | 1079 | Directivity, antenna | 689 | | Deflection, electron beam | 403 | Direct, reflected rays | 745 | | Degree | | Discharge | | | freedom | 992 | capacitor | 152 | | functions of | 1100 | RLC circuit | 154 | | longitude | 924 | Disclosure, invention | 954 | | modulation | 529 | Discone | 681 | | Del | 1086 | Discontinuity, waveguide | 647 | | Delay line | 813 | Discrete variate | 981 | | spiral
Deltamax | 600
276, 326 | Dispersion | 975 | | Delta-Y transformation | 142 | Displacement current | 36, 1025 | | Demodulation | 531 | motion | 942 | | Density function | 1116 | Display, radar | 805 | | Depletion layer | 478, 497 | Dissector, image | 410 | | Deposited-carbon resistor | 82 | Dissipation | 410 | | Depth, skin | 128 | factor | 63 | | Derating, rectifier | 310 | loss | 579, 581 | | Derivative | 1004 | Distant field, antenna | 664 | | Deschamp's method | 649 | Distortion | 531, 877 | | Detector, particle | 905 | amplifier | 459 | | Determinant | 1092 | factor | 459 | | Deuteron | 890 | harmonic | 289, 455 | | Deviation | 983 | Distributed capacitance meas | | | from mean | 1116 | Distribution | 1116 | | Diagram, electrical | 947 | binomial | 986 | | Dichromate treatment Dielectric | 927
62 , 302, 304 | chi-square | 992 | | constant | 62, 302, 304 | exponential | 987
982 | | free space | 35 | function, cumulative
Gaussian | 989 | | ground | 714 | law | 1086 | | loss | 606 | multivariate normal | 990 | | strength | 6 3, 89 | normal | 989 | | Die stamping | 109 | Poisson | 986 | | Difference limen | 872 | Raleigh | 991 | | Differential | | Disturbed sun noise | 764 | | amplifier | 447 | Diurnal variation | 718 | | calculus | 1062 | Divergence | 1088 | | | | | | ### Diversity reception | Diversity reception D layer | 746
718 | Electric, Electrical (continued) | | |---|-----------------|----------------------------------|------------| | Domestic public frequency bar | | field
deflection | 400 | | Donor impurity | 478 | intensity | 403 | | Doping, semiconductor | 478 | flux density | 36
1026 | | Doppler radar | 811 | induction flux | 1026 | | Dosimeter | 914 | interference . | 765 | | Dot product | 1085 | length | 648 | | Double-base diode | 490 | motor | 932 | | Double-polarity pam | 547 | potential | 36 | | Double-shielded transformer | 263 | supply | 929 | | Double-tuned circuit | 241, 520 | wave filter | 187 | | Drawing symbols | 947 | Electroacoustics | 850 | | Drift space | 383 | Electrode | | | Drill | | cooling | 369 | | clearance and tap | 58 | dissipation | 369 | | gauge table
Driven blocking oscillator | 59 | Electrolytic capacitors | 101 | | Driver transformer | 475 | Electromagnetic | | | Duality | 272, 296
509 | deflection | 403 | | Dummy antenna | 767 | field | 644 | | Duty ratio, radar | 383, 800 | horn
Electromagnetism | 698 | | Dynamic | 303, 800 | laws | 1005 | | accuracy | 361 | units | 1025 | | resistance | 136 | wave | 36
7 | | | , , | Electromotive force | 42 | | - | | Electron, Electronic | 42 | | E | | efficiency, microwave tube | 383 | | E and M leads | 833 | emission, secondary | 407 | | Ear sensitivity | 871 | inertia effect | 380 | | Earth profile paper | 743 | particle | 888 | | Ebers and Moll circuit | 523 | charge | 34 | | Eccentric line | 593 | synchrotron | 899 | | Echo, radar | 800 | tubes | 367 | | Effective area, antenna
Effective | 702, 750 | analogy | 509 | | bandwidth, noise | | circuits | 432 | | earth radius | 769 | nomenclature | 371 | | height | 710 | plate efficiency | 432 | | nelix | 671
684 | volt | 34, 891 | | horizon | 742 | Electroplating Electrostatic | 926 | | value | 742 | deflection | 400 | | alternating current | 150 | generator | 403 | | modulated wave | 529 | units | 895
36 | | Efficiency | | Elementary dipole | 662 | | line | 564 | Element, atomic | 41 | | magnetron | 389 | electromotive series | 42 | | power supply | 273 | work function | 43 | | transformer | 280 | Ellipse | 1059 | | transistor | 513 | area | 1033 | | transmission line | 566 | Ellipsoid | 1062 | | Eigenvalue | 659, 1093 | volume | 1036 | | Elastance | 36 | Elliptic, Elliptical | | | E layer | 719 | angle 655, | 666, 1051 | | Electric, Electrical | ,,, | function shape | 205 | | analog | 858 | polarization | 666 | | charge | 36 | Emergency cable | 824 | | diagrams | 947 | Emitter, Emission | | | dipole | 662 | electron tube
secondary | 367 | | moment | 36 | radio signal | 407 | | | . 00 | . adio signal | 19 | ### Flat-topped double-polarity pam | Emitter, Emission (continued) | | Extremely high frequency | 8 | |-------------------------------|-------------|--|------------------| | resistance | 486, 494 | Eye response | 401 | | thermal | 369 | | | | transistor | 478, 493 | _ | | | Emulsion, nuclear | 905 | F | | | Enamel | 303 | Facsimile 19, | 23, 959 | | Encoding | 964 | interferenc e | 771 | | binary | 970 | Factorial | 1038 | | methods | 539 | | 747, 755 | | End-fire helix | 687 | margin | 749 | | End shield, End space | 383 | nonsimultaneous | 756 | | Energy | | Fahrenheit-centigrade | 33 | | atomic | 891 | Faraday's constant | 34 | | capacitor | 152 | Far field, antenna | 664
57 | | dissipation | 859
478 | Fasteners | 924, 939 | | gap, semiconductor | 152 | Fastest single mile Federal Communications Commiss | | | inductor
storage | 860 | | 335, 452 | | unit of | 36 | amplifier | 452 | | Engineer's notebo ok | 956 | compensation | 358 | | Engine vibration | 944 | control systems | 344 | | ENSI | 767 | oscillator | 515 | | Entropy | 965 | Felici mutual-inductance balance | 267 | | Envelope | | Ferrites | 72 | | delay | 799 | Ferromagnetic material (see Core | | | detector | 531 | material) | | | E plane, antenna | 665 | Fictitious earth | 745 | | Ероху | 109 | Field | | | e, properties | 1040 | intensity | 710, 779 | | Equalizer | 147 | antenna | 662, 663 | | resistor | 105 | contour | 731 | | Equal loudness contour | 877 | requirements | 779 | | Equations, mathematical | 1031 | | 61 7, 625 | | Equivalent | | Film-badge service | 915 | | noise resistance | 374 | Film-type resistor | 81 | | noise sideband input | 767 | Filter | | | resonant circuit | 121 | image-parameter design | 164 | | Equivocation | 9 75 | lattice | 231 | | ERF, ERFC | 989
999 | LC | 149
187 | | Ergodic
Error | 999 | modern network theory noise weighting | 839 | | coefficient | 361 | power supply | 305 | | formulas, attenuator | 254 | capacitor input | 317 | | measuring system | 363 | inductor input | 316 | | signal | 346 | | 272, 282 | | statistical | 989 | resistor input | 317 | | Etched circuit | 109 | quartz crystal | 231 | | E wave | 617 | RC | 147 | | Excess scatter loss | 7 57 | RL | 149 | | Excess-3 code | 881 | section | 147 | | Excitation loss, transformer | 280 | simple bandpass design | 236 | | Expandor | 838 | wave | 187, 285 | | Expansion theorem, Heaviside | 161 | | 109, 926 | | Expected value | 984 | Fission | 891 | | Experiment, random | 981 | Five-wire line | 591 | | Exponential | 1115 | Fixed | | | distribution | 987 | ceramic capacitor | 83 | | function | 153 | composition resistor | 79 | | integral
pulse | 1074 | F layer | 719 | | • | 1015 | Flat tapped double relative new | 566 | | External Q | 383 | Flat-topped double-polarity pam | 547 | ### Flicker effect | Flicker effect | 375 | Frequency (continued) | | |--------------------------------------|-------------|--------------------------------|----------------------| | Fluorescent, Fluorescence | 905 | tolerance | 17 | | cathode-ray tube | 405 | vibration | 944 | | lamps | 427 | wavelength conversion | | | Flux | | Freon 12 | 922 | | density | 324, 1026 | Fresnel zone | 811 | | unit of | 36 | clearance | 744 | | f number | 401 | Frying noise | 839 | | Focusing, magnetic | 404, 901 | Full | | | Foot-candle | 400 | section, filter | 164 | | Force, unit of
Forced-air cooling | 36 | wave amplifier | 327 | | Forecast of propagation | 369
724 | wave rectifier Functions | 305 | | Form factor | 112 | hyperbolic | 1048 | | Formulas, mathematical | 1031 | mathematical | 1098 | | Formyar | 303 | Fundamental(s) | 1070 | | Forward drop, rectifier | 309 | networks | 112 | | Foundation, tower | 938 | particle | 8 88 | | Fourier waveform analysis | 1002 | Fungicidal coating | 926 | | Four-terminal network | | Fusing | | | input admittance | 138 | current of wire | 55 | | input impedance | 137 | motor | 932 | | Four-wire termination | 831 | Fusion | 891 | | Fractional | 222 | FIA weighting network | 839 | | midfrequency
sine wave | 223
1024 | G | | | Fractions, inch, millimeter | 38 | Gain | | | FRAME code | 950 | | 76, 702, 753, 803 | | Free | ,,,, | margin | 348 | | electron density | 718 | RC amplifier | 450 | | running multivibrator | 471 | reduction, feedback | 453 | | space | | resonant circuit | 236 | | attenuation | 750 | traveling-wave tube | 399 | | path | 740 | Galactic plane noise | 764 | | properties of | 35 | Galvanic series | 42, 926 | | range, radar | 808 | Galvanizing | 926 | | Frequency | 9 | Gamma | 1020 1001 | | allocations | 833 | function | 1039, 1081
888 | | carrier systems
bands | 8
8 | ray
Gas | 005 | | critical | 720 | constant | 34 | | data | 720 | ionization | 424 | | deviation ratio | 17, 537 | pressure | 425 | | divider, counter | 465, 468 | sound in | 853 | | intermediate, amplifier | 106 | tubes | | | lettered bands | 9 | cold cathode
 425 | | lowest useful high | 722 | hot cathode | 426 | | maximum usable | 720 | microwave | 428 | | modulation | 19, 23, 532 | noise generator | 427 | | broadcasting | 778, 784 | oscillator | 476
906 | | frequency bands
interference | 13
537 | particle detector
rectifier | 314 | | optimum working | 7 22 | Gate, transistor | 489 | | power supply | 929 | Gauge | 407 | | propagation | 710 | drill | 59 | | pulling | 384 | sheet metal | 60 | | response, television | 797 | wire | 50, 278, 9 32 | | selective network (see Filte | ers) | Gauss, Gaussian | | | shift telegraphy | 23 | distribution | 989 | | spectrum | 527 | noise | 991 | | standard | 24 | process | 998 | | | | | | | Gauss, Gaussian (continued) | 1 | H (continued) | | | | |---|------------------|---------------------------------|------|----------------|------------| | pulse | 1015 | pad | | 2 | 262 | | theorem | 1087 | plane, antenn a | | (| 665 | | unit | 36 | waves | (| 617, 6 | 526 | | GCT | 953 | Half | | | | | Geiger-Müller counter | 906 | life | | 8 | 893 | | | 43, 522, 555 | wave | | | | | Generator, resistive | 188 | amplifier | | | 327 | | Geodesic | 1050 | dipole | (| 67 6, 6 | | | Geographic projection | 668 | rectifier | | ; | 305 | | Geometry, Geometric | | Halowax impregnant | | | 94 | | analytic | 1055, 1061 | Hanna curve | | | 282
52 | | midfrequency | 189 | Hard-drawn copper wire | | | 32 | | progression | 1037 | Harmonic | | | 459 | | Germanium | 480, 485 | content | , | 289, | | | rectifier | 308
107 | distortion | • | 18, | 771 | | Glass mat, impregnated | 604 | interference by
motion | | | 940 | | G line (surface wave) | 76 | Hartley | | | 965 | | GMV | 109 | Hartree voltage | | | 390 | | Gold plate | 12 | Haversine | | 1 | 042 | | Government frequency bands
Grade, television service | 790 | Hay bridge | | | 266 | | Gradient | 1088 | Health physics | | | 917 | | voltage | 595 | Heat | | | 888 | | Graphical | | dissipation | | | 369 | | design, amplifier | 435 | Heaviside | | | | | symbols | 947 | expansion theorem | | | 161 | | Great circle | | function | | 1 | 081 | | calculation | 732 | Hectometric waves | | | 8 | | chart | 726, 739 | Helical | | | | | distance | 724 | antenna | | | 682 | | Greek alphabet | 39 | line | | | 600 | | Green's theorem | 1087 | resonator | | | 601
395 | | Greenwich Mean Time | 25, 953 | traveling-wave tube | | | 393 | | Grid | 314 | Hermitian
matrix | | 1 | 1091 | | controlled rectifier | 432 | product | | | 092 | | current | 433 | Hertz vector | | | 029 | | drive po we r
temperature | 370 | High | | | •=- | | voltage | 432 | frequency | | | 8 | | Ground, Grounded | 102 | compensation | | | 516 | | cathode amplifier | 432, 446 | propagation | | | 718 | | conductivity | 714 | transformer | | | 272 | | dielectric constant | 714 | triode | | | 379 | | effect, antenna | 696 | K capacitor | | | 86 | | grid amplifier | 444 | pass filter | 168, | 192, | | | plate amplifier 4 | 44, 445, 448 | Perm | | | 276 | | | 462, 465 | Q resonator | | | 231 | | system, antenna | 675 | side capacitance coupling | | | 227
563 | | wave | 714 | standing-wave ratio | | | 920 | | field intensity | 779 | voltage insulation | | | 549 | | Group velocity | 621
487 | Higher mode Highest temperature | | | 922 | | Grown-junction npn triode Guaranteed minimum value | 76 | Hill bondwidth | | | 209 | | Gudermannian | 1049 | Hipernik | | 276. | 326 | | Guide wavelength | 624 | Hole | | | | | Gust factor | 939 | semiconductor | | | 479 | | 555. 156101 | ,,,, | sizes, printed circuit | | | 110 | | Н | | Hook-collector transistor | | | 489 | | н | | Hops | | | 720 | | attenu ator | 2 55, 258 | Horizon | | | 742 | | | | - · | | | | ### Horizontal | Horizontal | | Image (continued) | | |---|-------------------|--------------------------------|-------------| | polarization | 665 | parameter design | 165 | | scanning frequency | 793 | limitations | 187 | | vee | 679 | phase constant | 253 | | Horn antenna | 690, 698, 751 | response | 775 | | Horsepower | 933 | transfer constant | 165, 319 | | Hot | | | , 164, 187, | | dippi ng | 926 | | , 247, 644 | | solder coating
Hum | 109 | acoustical | 852 | | Human voice, spectrum | 375
871 | admittance matrix | 659 | | Humidity | 6/1 | antenna | 674 | | capacitor | 89 | capacitor
characteristic | 101 | | relative | 925 | connected directly | 588
140 | | Hybrid | | formulas | 120, 124 | | coil | 268 | image | 138 | | junction | 633 | lines | 608 | | telephone | 831 | matching 290 |), 449, 512 | | Hydrogen atomic mass | 34 | measurement | 263 | | Hygrometry | 925 | parallel | 136 | | Hymu | 276, 284, 326 | slot | 688 | | Hyperbola | 1060 | space | 35 | | Hyperbolic | | terminating | 188 | | amplitude | 648, 656 | transfer | 137 | | cosines | 1112 | transformation | 566 | | distance | 652, 1050 | Impregnant, paper capacitor | 94 | | equations | 253 | Improvement factor | F.40 | | functions
midpoint | 1048 | threshold | 543
537 | | protractor | 651, 1051 | Impulse | 53/ | | sines | 652 | noise | 537 | | space | 1111 | response | 1000 | | tangents | 1050 | unit | 159 | | triangles | 1113 | Inch-millimeter | 38 | | trigonometry | 1053
652, 1050 | Incremental permeability | 292 | | Hyperboloid of revolution | 1062 | Independent variable | 985 | | Hyperco, Hypernik | 276 | Index | | | Hyperon | 889 | modulation | 542 | | Hypersil | 276, 326 | refraction
Indicator, radar | 741 | | Hysteresis loop | 324 | Induced | 805 | | , | 024 | noise | 375 | | _ | | voltage | 336 | | ſ | | | 285, 323 | | IBF | 28 | charge, discharge of | 154 | | Iconocenter | 650 | circular ring | 133 | | Ideal | | coupled elements | 145, 239 | | network | 189 | cylindrical post | 632 | | transformer | 144 | decrease, shielding | 115 | | Illumination | | earth | 783 | | factor | 753 | filter | 282 | | light | 400 | input filter | 316 | | image | | line pair | 816 | | antenna | 664 | measurement of | 268 | | attenuation constant | 253 | reactance of | 134 | | dissector | 410 | solenoid | 112 | | impedance | 138, 164 | surge | 321 | | load | 650 | swinging | 319 | | optical | 59 5 | tuning by | 236 | | orthico n | 412 | unit of | 36 | | | | | | ### Keyboard, teleprinter | | 12 15 1 | Intrinsic | | |-------------------------------|---------------|-------------------------------|---------------| | Industrial frequency bands | 12, 15 | barrier transistor | 488 | | Information content | 965 | semiconductor | 479 | | rate | 969 | Invention | 954 | | source | 969 | Inverse | | | theory | 964 | distance field | 713 | | units | 965 | feedbac k | 452 | | Input | } | hyperbolic shape | 205 | | admittance, network | 138 | matrix | 1092 | | capacitance | 448 | transform | 1003, 1082 | | gap | 384 | trigonometric integral | 1078 | | impedance of 4-terminal | net- | Inverted vee | 679 | | work | 137 | Inverter | 886 | | transformer | 272, 295 | Ionization | 906 | | resistance, transistor | 500 | chamber | 718 | | Insertion | | density | 424 | | gain | 828 | gas tube | 905 | | 1000 | 290, 579, 648 | radiation
source | 897 | | Instantaneous | 532 | spark gap | 921 | | frequency, phase | 532 | Ionosphere | 718 | | sample | 530 | scatter propagation | 739 | | Insulation
material | 62, 302, 920 | Iris, resonant | 643 | | resistance | 86, 96 | Iron | | | Integral | 1004 | core | | | calculus | 1067 | reactor | 323 | | convolution | 985 | transformers and reactors | 271 | | discriminator | 910 | wire gauge | 50 | | Integrator circuit | 458, 462 | Irrational integral | 1074 | | Intelligible crosstalk | 833 | Irregular plane surface, area | 1033 | | Intelligibility | 875 | Isobar | 891 | | Intensity, sound | 852 | Isoceles-triangle pulse | 1013 | | Interaction space | 384 | Isolation transformer | 271
941 | | Interbase current, transistor | 479 | Isolator, vibration | 276 | | Intercarrier-channel telegrap | | Isoperm
Isotone | 891 | | Interchangeability | 76 | Isotope | 891 | | Interchannel crosstalk | 544 | Isotropic radiator | 675, 750 | | Interference | • | Isotropic radiator | , | | patent | 956 | | | | rejection | 536 | J | | | | 762, 771, 779 | Jet aircraft | 94 5 | | suppression | 321 | JETEC | 76 | | wove | 745 | 11Y | 28 | | Interlace | 793 | Johannesburg | 28 | | Intermediate-frequency | | Joint | Council 76 | | amplifier | 517 | Electron Tube Engineering | 957 | | tronsformer | 106, 272 | military nomenclature | 757 | | Internal loss, copacitor | 86 | Junction(s) | 482 | | International | | diode | 633 | | broodcasting | 778 | hybrid
in cascade | 648 | | cable code | 842 | transistor | 487, 494, 507 | | control frequency bands | 13 | waveguide | 632, 644 | | Morse code | 842 | "aregailee | • | | nautical mile | 32 | | | | Telecommunications Con- | ference 9 | l | | | telegraph alphabet | 2, 847 | K | | | Interstage | | Kel-F | 107 | | resonant | 517 | Kelvin (centigrade absolute) | 33 | | stagger-tuned | 228 | Keyboard, teleprinter | 845 | | | | | | ### Keying | Varian | | | | |-------------------------------------|------------------
---|-------------| | Keying
Kilometric waves | 842 | | 541 | | Kirchhoff's laws | 8 | Line (see also Transmission line) | 549 | | Klystron | 188 | cable | 824 | | K particle | 391, 903 | flux | 621 | | Kronecker index | 889 | impedance | 586 | | Monecker maex | 1090 | noise | 839 | | | | of sight propagation | 740 | | | | open-wire pairs | 816 | | _ | | telephone | 816 | | L | | Linear | | | Laboratories, military | 961 | accelerator
array | 902 | | Ladder | 701 | control system | 690 | | attenuator | 247 | factor | 346 | | network | 199, 660 | magnetic amplifier | 350 | | coefficients | 215 | | 335 | | Lagrange's equations | 858 | 101, 200, | | | Lambert, Lambert's law | 400 | phase 201, polarization | 665 | | Land transportation frequency | bands 12 | radiator | 690 | | Laplace transform | 158, 1081 | system | 366 | | Laplacian | 1087 | Links, microwave | 750 | | Large-signal transistor
Latitude | 512 | Liquid, sound in | 856 | | Lattice | 732 | Load | | | constant | 145 | compensation | 3 58 | | filter | 74 | line, amplifier | 434 | | Law | 231 | resistive | 188 | | | 1045 1050 | stabilization | 361 | | electromagnetism | 1045, 1053 | Loaded Q 384, 576, | 639 | | patent | 1025
954 | Lobes, radar antenna | 809 | | probability | 934
981 | Logarithm, Logarithmic | | | • | 1046, 1053 | h 0 | 108 | | tangents | 1044 | h 10 | 110 | | Layer, ionosphere | 718 | 1-41 | 098 | | Lead-lag network | 360 | notural | 074 | | Lead sulfide, telluride | 481 | -1.1 | 924 | | Leakage | | 349, | 353
110 | | conductance, line pair | 816 | Anton a de la companya del companya della | 104 | | inductance | 2 71, 299 | 10n | 108 | | Legal information | 954 | London gauge | 61 | | Length | | Longitude | 732 | | transmission line
unit of | 585 | doores | 924 | | Lengthened dipole | 36 | Loop | | | Lens | 691 | antenna 641, 662, 671, 690, 6 | 691 | | Letter symbols | 401 | vertically stacked | 704 | | electron tubes | | | 521 | | frequency | 371 | feedback | 345 | | Greek | 9 | Loss | | | Level | 39 | atmospheric | 749 | | power | | dissipation 579, | 581 | | quantization | 832 | | 885 | | Life | 544 | insertion | 48 | | capacitor | <u>.</u> . i | mismatch 569, 573, 579, 5 | 82 | | semiconductor carriers | 91 | network | 247 | | Light meson | 479 | transducer | 69 | | Light wave | 889 | Lossless junction | 47 | | flux, intensity | 888 | Loudness 852, 8 | | | velocity | 400 | Low | | | Limen unit | 34, 924 | frequency | 8 | | | 872 | antenna 6 | 70 | | | | | | ### Meteorological frequency bands | Low (continued) | , | Mass | | |-------------------------------------|----------------|-----------------------------|------------| | frequency (continued) | . 1 | atomic | 888 | | compensation | 516 | defect | 891 | | propagation | 713 | energy equivalence | 893 | | tube | 375 | number | 890 | | impedance | | unit of | 36 | | measurement | 269 | Matched load | 645 | | switching tube | 427 | Matching section | 583 | | noise amplifier | 397 | Materials, properties of | 41 | | pass filter 147, 149, 166, 187, 192 | 2, 215 | Mathematical | | | Q filter | 222 | expectation | 984 | | Lowest | | formulas | 1031 | | required power | 723 | tables | 1098 | | temperature | 922 | Matrix(es) | 1090 | | useful high frequency | 722 | algebra | 659 | | L particle | 889 | junction | 968 | | LRRP | 723 | probability | 644 | | LUHF | 722
400 | scattering
tabulation | 144 | | Lumen | 400 | transistor network | 503 | | Lumped | 659 | Maximum | | | constant network
discontinuity | 829 | unambiguous range | 801 | | element | 630 | usable frequency | 720 | | element | 000 | Maxwell | | | | | bridge | 265 | | M | | equations | 646, 1025 | | Machine screws | 57 | derivative form | 1027 | | Maclaurin's theorem | 1084 | integral form | 1025 | | MAE | 983 | M-derived filter | 167, 205 | | Magic T | 634 | Mean | 982, 994 | | Magnesil | 326 | absolute deviation | 983 | | Magnesium | 927 | Measurement | 242 | | Magnet, Magnetism, Magnetic 36, 7 | | bridge, impedance | 263
529 | | amplifier | 323 | modulation modulation index | 535 | | bias | 327
335 | radiation index | 905 | | linearity | 314 | scattering matrix | 649 | | rectifier | 36 | transistor | 525 | | charge
dìpole antenna | 662 | Mechanical resonance | 231 | | dipole moment | 36 | Median | 984, 991 | | field | • | Medical frequency bands | 15 | | deflection | 403 | Medium frequency | 8 | | | 4, 901 | propagation | 713 | | intensity | 36 | tube | 375 | | vector | 1025 | Melting point, metal | 47 | | flux density | 1026 | Mensuration formulas | 1031 | | gap | 384 | Mercury-pool cathode | 426 | | moment | 893 | Meson | 890 | | potential, unit of | 36 | Message | 964 | | saturation | 324 | Metal, Metallic | | | wire | 114 | antenna | 687 | | Magnetostriction | 231 | galvanic series | 42 | | | 37, 903
479 | gauge, sheet | 61 | | Majority carrier Man-made noise | 765 | lens | 703 | | Manufacturing printed circuits | 109 | oxide film | 82 | | Maps | 739 | physical constants of | 45 | | Marine finish | 926 | rectifier | 308 | | Maritime frequency bands | 15 | spraying | 109 | | Marker pulse | 543 | Metalized-paper capacitor | 97 | | Markoff process | 970 | | ds 1∕ | | | | | | ### Metric system | Metric system | | Morse code | 842 | |--|----------------|--|-----------| | multiplier prefixes | 38 | Motor | 042 | | units | 35 | characteristic | 364 | | waves | 8 | electric | 932 | | Mica capacitor | 87 | Mount, equipment | 939 | | Microcrystalline carbon | 82 | Moving-target-indicator radar | 813 | | Micron | 8 | MSF | 28 | | Microphonic | 375 | MTI radar | 813 | | Microstrip | 595, 612 | MUF | 722 | | Microwave | | Multicavity klystron | 394 | | links | 742 | Multichannel loading | 842 | | tube | 382 | Multicollector electron tube | 373 | | Midseries image impedance | 164 | Multielement array | 690 | | Military | 057 | Multigrid tube | 379 | | nomenclature | 957 | Multipath transmission | 747 | | tanks
Miller integrator | 945 | Multiple events | 969 | | Millimeter-inch | 458, 462
38 | Multiples of 0.4343 and 2.3026 | 1113 | | Millimetric waves | 8 | | 544, 966 | | MIL specifications | 76 | Multiplication, matrix Multiplier | 1090 | | Mineral oil, wax impregnants | 94 | phototube | 400 | | Minimum | /- | prefixes | 408
38 | | loss pad | 260 | voltage | 305 | | matching | 252 | Multivariate | 982 | | sampling frequency | 539 | normal distribution | 990 | | Minority carrier | 479 | Multivibrator | 465 | | Mirage effect | 748 | Mumetal | 276 | | Miscellaneous data | 920 | Music | 872 | | Mismatch loss 569, 573, 579, | 582, 652 | Musical | 0.2 | | Mismatched slotted line | 654 | instruments, spectrum | 871 | | MKS unit | 35, 36 | pitch | 24 | | Mode | 384, 644 | Mutual | | | cylinder cavity | 638 | conductance | 377 | | number | | inductance balance | 268 | | klystron | 384 | Mylar dielectric | 101 | | magnetron | 384 | Myriametric waves | 8 | | statistica! | 984 | | | | waveguide | 620, 646 | N. | | | Modern network theory | 187 | | | | Modification letters, AN Modified Bessel functions | 958 | N curve | 514 | | Modular constant | 1067
205 | n-type semiconductor | 479 | | Modulation 19, 527, 782, | | | 6, 1053 | | crest | 440 | Narrow-beam antenna | 704 | | index | 532, 536 | Nary pulse-code modulation
National Bureau of Standards | 541 | | percent | 529 | National Electrical Manufacturer | 724 | | transformer | 272, 295 | Association | s
76 | | Moisture absorption | 63 | Nations, call letters | 15 | | Molybdenum-permalloy dust | 284 | Natural Natural | 13 | | Moment | 254 | frequency | | | magnetic | 893 | coil | 269 | | statistical | 983, 990 | vibration | 943 | | Monimax | 276 | | 4, 1108 | | Monitor, radiation | 905 | pdm, ppm | 546 | | Monostable | | trigonometric functions | 1100 | | blocking oscillator | 473, 475 | Nautical mile | 32 | |
electron-tube circuit | 465, 468 | Navigation table | 739 | | transistor circuit | 514 | Navy-Army cables | 608 | | Monte Carlo method | 997 | NBS gauge | | | Moore code | 844 | sheet metal | 61 | | Mo-Permalloy | 276 | wire | 50 | | | | | | | Near field, antenna | | | 664 ! | Noise (continued) | | |---|------|--------|--------------|---|-------------------| | Negative | | | | reduction (continued) | | | feedback | 335, | 344, | 452 | frequency modulation | 537 | | impedance repeater | | | 828 | suppression | 537 | | proton | | | 890 | thermal | 766 | | resistance | 490, | 509, | | transistor | 496
783 | | oscillator | | | 515 | transmitter | 783
372 | | temperature coefficient | | E00 | 82 | tubes
vidicon | 420 | | Negative resistance
NEMA | | 509, | 513
76 | weighting | 839 | | Neper | | | 40 | Noisy, Noiseless channels | 973 | | Net | | | 70 | Nomenclature, AN | 957 | | loss | | | 833 | Nominal value, component | 77 | | power flow | | | 658 | Non-Euclidean space | 1050 | | Network (see also Filter) | | | | Nonlinear amplifiers, oscillators | 458, 4 6 5 | | admittance | | | 138 | Nonresonant antenna | 678 | | attenuator | | | 247 | Nonsimultaneous fading | 756 | | b andpass | | | 236 | Nonsinusoidal oscillator | 458, 4 65 | | bridged T | | | 358 | Normal | 000 1114 | | formula | | | 133 | distribution | 989, 1116
682 | | fundamentals of | | | 112
164 | mode helix probability density function | 1116 | | image-parameter design
input impedance | | | 137 | process | 998 | | linear | | | 161 | Normalized | , | | modern theory | | | 187 | admittance | 587 | | phase lead, lag | | | 359 | coefficient, coupling | 215 | | theorems | | | 132 | current, voltage | 657 | | transfer admittance | | | 138 | impedance, admitt ance | 658 | | transistor | | 499 | 503 | Q | 215 | | Neutralization, transistor | | | 522 | susceptance | 630 | | Neutrino | | | 890 | Norm, vector | 1092
956 | | Neutron | | | 888 | Notebook, engineer's | 954 | | detection | | | 907 | Novelty investigation Nucleon | 888 | | recoil detector | | | 907 | Nucleus, Nuclear | 888 | | Ngram | | | 965 | charge | 890 | | Nicaloi | | | 276 | emulsion | 905 | | Nicalloy | | | 284 | instrumentation | 905 | | Nickel plate | | | 927 | particle | 888 | | NIF | | | 755 | physics | 888 | | NIT | | | 965 | pulse amplifier | 910 | | Noise | | | | radius | 892 | | am, fm | | | 536 | reaction | 892 | | amplifier | | | 766 | Null | 263 | | dissector | | | 411
762 | Number | 1114 | | electrical | 275 | 740 | | random | 1114
879 | | figure
Gaussian | 3/3 | , /00 | , 804
991 | system | 924 | | | | | 427 | Numerical data | 959 | | generator
improvement factor | 541 | 755 | , 770 | Nupac | 348 | | impulse | J41 | , ,,,, | 537 | Nyquist stability criterion | 340 | | level | | | 840 | | | | measurement | | 767 | , 838 | 0 | | | orthicon | | , ., | 415 | O attenuator | 257 | | quieting | | | 868 | Oblate spheroid | 1061 | | radio | | 719 | , 762 | Oblique triangle | 1043 | | random | | , | 537 | Obstacle | | | receiver | | | 755 | line | 655 | | reduction | | | | waveguide | 647 | | coefficient | | | 868 | Ohmic contact | 479 | | | | | | • | | ### Omnidirectional antenna | Omnidirectional antenna | 682 | ! Parallel | | |----------------------------------|------------------|--|--------------------| | One-shot multivibrator | 468 | | 122, 507 | | Open | | compensation | 358 | | circuited line | 560 | impedances | 136 | | window unit | 867 | plate capacitor | 133 | | wire | 004 | resonant interstage | 518 | | carrier systems
line | 834
816 | strip line | 591 | | Operational calculus | 158 | T bridge
tuned circuit | 270 | | Optical imaging | 401 | wires | 136
5 88 | | Optimum | | Parallelogram area | 1031 | | coupling | 141 | Parameters | 1031 | | current, array | 694 | | , 522, 555 | | reverberation time | 86 3 | transistor | 525 | | working frequency | 722 | Parceval's theorem | 1005 | | Or circuit | 886 | Parent distribution | 994 | | Order, matrix | 1090 | Partial fraction | 162 | | Orthicon, image
Orthogonal | 412 | Particle | | | curvilinear coordinates | 1089 | accelerator
atomic | 895 | | matrix | 1092 | detection | 888
905 | | vector | 1092 | Partition noise, electron tube | 905
373 | | Orthonik | 276 | Pass band | 165, 239 | | Orthonol | 2 76, 326 | Passivating treatment | 927 | | | 6, 437, 450 | Passive | | | backward wave | 399 | junction | 647 | | damped | 3 56 | linear network | 253 | | magnetron
nonlinear | 387 | reflector | 700, 757 | | relaxation | 458, 465 | Patent | 954 | | transistor | 465
515 | Path
attenuation | | | Output | 313 | plotting | 751 | | gap | 384 | PCM | 742
538 | | resistance, transistor | 500 | level | 530
541 | | stage | 512 | PDM, PFM | 538 | | transformer | 272, 295 | Peak | 000 | | Over-all response | 826 | clipping | 876 | | Over- (beyond) horizon propage | | factor | 873 | | ionospheric | 739 | infinite attenuation | 200 | | tropospheric Overcoupled circuit | 757
239, 245 | power, radar | 801 | | Overload current | 237, 245
55 | to valley ratio | 199 | | Owen bridge | 265 | Peaking transformer Penetration of current | 273 | | OWF | 722 | Percent | 131 | | OW unit | 867 | distortion | 544 | | Oxide emitter | 367 | modulation | 529 | | Oxygen absorption | 749 | Perfluoromethylcyclohexane | 922 | | P | Í | Performance chart, magnetron | 388 | | Pad | | Periodic | | | minimum-loss | 247
260 | chart | 43 | | PAM | 538 | field focusing | 901 | | Paper | 550 | | 06, 1082 | | capacitor | 97 | Permeability | 276, 326 | | insulated cable | 822 | ferromagnetic | 276 | | Parabola | 700, 1057 | free space | 35 | | area | 1032 | incremental | 292 | | Parabolic reflector | 698, 751 | unit of | 36 | | gain
Pershadaid a Cara Juli | 803 | Permendur, Permenite, Permenorm | 276 | | Parabolaid of revolution volume | 1062 | Permeron | 326 | | Totulle | 1036 | Perminvar | 276 | | Permittivity | | Plate (continued) | | |---------------------------------------|------------|---|-------------------| | free space | | 5 efficiency | 432 | | unit of | - | 6 resistance | 377 | | Permutations | 103 | | 926 | | Persistance of phosphor | 40 | 1 | 109 | | Perveance | 37 | 1 | 479, 483 | | Phantastron | 47 | | 487
914 | | Phase | | Pocket dosimeter | 667 | | angle | 120, 12 | | | | carrier | 52
53 | | r 460, 307
986 | | excursion | 64 | | 1.77 | | field | 45 | | 662, 792 | | inverter
lead, lag net work | 35 | - | 666 | | margin | 34 | | 667 | | modulation | 19, 53 | | 666 | | response | .,, 50 | helix | 685 | | linear | 20 | | 665 | | transformer | 28 | | 36 | | shift 241, 361, 45 | 2, 457, 45 | , - | 666 | | feedback control | 35 | | 665 | | thyration | 31 | 6 Pole | 192, 205, 355 | | splitter | 44 | 4 Polyethylene dielectric | | | velocity 39 | 6, 596, 62 | 1 Polygon area | 1031 | | helix | 68 | | 9 81 | | Phosphate dip | 92 | - 1 | 646 | | Phosphor, cathode-ray tube | 40 | • | anism 363 | | Photoconductive cell | 48 | | | | Photodiode, semiconductor | 479, 48 | | 1094 | | Photoelectric cell | 48 | | 465 | | Photoemission | 40 | | 470 | | Photographic film | 91 | | 473
475 | | Photometry units, relations | 4 0 | | 475
890 | | Photomultiplier
Photon | 88 | | 151, 868 | | Photosensitive tube | 40 | | 399 | | Phototransistor | 47 | | 512 | | Physical constants | 7. | factor | 121 | | atomic | | 14 capacitor | 96 | | metals, alloys | - | 5 flow | 644 | | Pi | | net | 658 | | attenuator | 2! | 7 full modulation | 529 | | mode | | gain | 448 | | section 14 | 6, 164, 2 | 17 antenna | 703, 753 | | T transformation | | transistor | 500 | | Piston-engine aircraft | 94 | 15 level | 832 | | Planck's constant | ; | lowest required | 723 | | Plane | | on line | 564 | | analytic geometry | 10 | 55 radiated | 723 | | figures, area | 10 | rating | | | reflector | 7 | cables | 616 | | trigonometry | 10- | film resistor | 82 | | wave, sound | 8 | lines | 612 | | Plan-position indicator | _ | ratio
rectifier circuit | 40 | | Plastic | | semiconductor | 306
311 | | dielectric | | 52 resistor | 81 | | film capacitor | | 99 spectrum | 999, 1001 | | scintillator | | 08 supply | 305, 929 | | Plate | • | efficiency | 273 | | current supply | 2 | 32 television broadcast | | | | _ | | | #### Power | Power (continued) | 1 | Protractor, hyperbolic | 652 | |----------------------------|----------------|----------------------------------|-----------------| | transfer | 140, 290 | Pseudospherical trigonometry | 1050 | | transformer | 271, 273 | Psophometric electromotive force | | | color code | 106 | P-type semiconductor | 479 | | transistor | 487 | Public | | | transmitter | 755 | address system | 868 | | unit of | 36 | disclosure | 956 | | Powers of 2 | 1110 | domain | 954 | | Poynting vector | 644, 1029 | safety frequency bands | 12 | | P-percent value | 984
805 | Publication, patent | 956 | | PPI | 538 | Pulling figure Pulse | 385
385 | | PPM
PPM/°C | 84 | amplitude modulation | 539 | | Practical units | 36 | application of capacitor | 93 | | Precious-metal alloy | 82 | bandwidth | 23 , 542 | | Precipitation extremes | 923 | carrier | 539 | | Prediction, propagation | 724 | circuit | 460, 523 | | Preemphosis | 785 | code modulation | 540 | | Preferred | | decay time | 541 | | numbers | 77 | Doppler rodar | 812 | | tubes, Armed Services | 429 | duration | 541 | | values, component | 77 | modulation | 540 | | Prefixes | | form | 1012 | | call sign | 15 | frequency modulation | 540 | | metric system | 38 | generator | 465 | | Pressure | | height analyzer | 911 | | versus altitude | 920 | improvement threshold | 541 | | wind | 939 | length | 846 | | Principle of superposition | 133 | modulation | 20, 538
 | Printed circuit | 107 | spectrums
 | 545 | | Printing-telegraph code | 844 | operation | 385 | | Probability | 966, 981, 1116 | position modulation | 540 | | conditional | 970
982 | radar
regeneration | 800 | | density function
error | 982 | rise time | 541
542 | | function | 981 | subcarrier | 542 | | matrix | 968 | time modulation | 539 | | transition | 970 | train | 538, 542 | | Probe coupling | 621, 641 | analysis | 1016 | | Product demodulator | 531 | transformer | 272, 300 | | Profile | | Punch-through, transistor | 480 | | chart | 742 | Pushing figure | 385 | | paper | 743 | Push-pull amplifier | 298 | | Progression | 1037 | magnetic | 331 | | Projective | | transformer | 297 | | chart | 653 | transistor | 513 | | model, hyperbolic space | 1050 | Pyramidic-frustum volume | 1035 | | Prolate spheroid | 1061 | Pyramid volume | 1035 | | Propagation of waves | 617, 644, 662, | ,,,,,,,, | ,,,,, | | | 710, 779 | | | | constant | 617, 644 | . Q | | | earth reflection | 810 | · Q | | | notices | 27 | Q 88 | 236, 385 | | tropospheric scatter | 757 | cavity | 380, 636 | | velocity of | 8 | code | 950 | | Properties of materials | 41 | filter | 199 | | Proportional counter | 906 | helix | 685 | | Protective finish | 109, 926 | inductance | 285 | | Proton | 888 | line | 575 | | synchrotron | 901 | measurement | 268 | | | | | • | | Q (continued) | - 1 | Radioactivity, Radioactive (cor | ıtinued) | |--------------------------------------|-------------|-----------------------------------|--------------------| | meter, Boonton | 268 | nucleus | 892 | | mode | 385 | Radioisotope | 917 | | normaliz ed | 215 | handling | 913 | | resonator | 575 | Radiotelephony, interference | 772 | | tuned circuit | 121 | Radix | 879 | | Quadratic | | RAD unit | 914 | | • | 1037
350 | RAFISBENQO code
Railroad train | 950
945 | | factor
Quantization | 542 | Rainfall | 923 | | distortion | 542 | Random | ,25 | | noise 542, | | experiment | 981 | | Quarter-wave matching section | 583 | digits | 1114 | | Quartile | 984 | function | 998 | | Quartz-crystal filter | 231 | noise | 537 | | Quiet sun noise | 764 | numbers | 997 | | QRK, QRM, QRN | 951 | process | 9 81, 998 | | | 1 | variable | 981 | | R | 1 | Range | | | == | 050 | equation, radar | 808
800 | | Radar
cross section | 959
803 | finding
sample | 995 | | fundamentals | 800 | Rankine (fahrenheit absolute) | 33 | | indicators | 807 | Rate | 33 | | Radiac | 959 | generotor | 366 | | Radian | 924 | of cutoff | 190, 206 | | Radiatio n | | Rating | | | ongle | 679 | conductor | 54 | | cooli ng | 369 | rectifier | 308 | | dosimetry | 914 | Rational algebroic integrals | 1067 | | effect | 918 | Rationolized unit | 35 | | end-fed conductor | 678 | Rayleigh distribution
RBE unit | 991
914 | | monitor | 905 | RC | 914 | | pattern 662, 673, 690, | 691 | amplifier | 451 | | resistance, helix | 685 | circuit | 460 | | safety, tolerance | 913 | filter section | 147 | | Radiator | į | Reactance | 120, 236 | | above ground | 697 | capacitor | 135 | | isotropic | 675 | chart | 116 | | parallel to screen | 697 | inductor | 134 | | Radio | | Reactor | 27 î | | ostronomy | 764 | filter | 282 | | Electronics-Television Manufacturers | .,, | swinging | 2 85 | | Association 76, frequency | 612 | wave filter | 285 | | amplifier | 437 | Received power | 676 | | cables | 608 | Receiver | 755 | | reactor | 272 | noise
radar | 755 | | horizon distance | 740 | Receiving area | 804
6 76 | | location frequency bands | 14 | Reception, diversity | 746 | | navigation frequency bands | 14 | Reciprocal | 1092 | | noise and interference | 762 | junction | 646 | | signal reporting code | 950 | Reciprocity | 648 | | tower | 936 | theorem | 132, 1030 | | wave propagation | 710 | Record, engineer's | 956 | | Radioactivity, Radioactive 890, | | Rectangular | | | decay constant | 893 | cavity | 636 | | isotope handling | 913 | coordinates | 1057, 1085 | | materi al | 888 | pulse | 461, 1012 | | | | | • | ### Rectangular | Rectangular (continued) | | Resistance, Resistor (continued) | | |----------------------------------|------------------|--|-------------| | wavequide | 618 | copper | 45 | | wave train | 463 | coupled amplifier | 450 | | Rectifier | 305, 327 | equivalent naise | 374 | | aging | 308 | film | 82 | | filter | 316 | fixed composition | 79 | | gaseous | 314 | fixed film | 81 | | magnetic amplifier | 314 | hybrid | 831 | | metallic | 308 | input filter | 317 | | rating | 308 | line pair | 816 | | semiconductor | 308, 481 | per square | 128 | | Recursion formula | 1065 | temperature coefficient | 45 | | Reduction in gain, feedback | 453 | termination | 188 | | Redundancy | 972 | units of | 36 | | Reference | | wire wound | 81 | | black level | 793 | Resolution | 964 | | marks, printed circuit | 111 | Resonance | 116 | | noise | 839 | bridge | 265 | | signal level | 853 | frequency | 236 | | Reflected | | mechanical | 231 | | binary code | 882 | Resonant | | | wave | 646 | antenna | 678 | | Reflection | | cavity | 635 | | chart | 650 | temperature and humidity effect | t 639 | | coefficient 562, 644, | 646, 667 | coupling | 517 | | ionospheric | 718 | frequency | 135 | | lobes, antenna | 809 | helix | 600 | | zone | 811 | iris | 643 | | Reflector | 385 | line | 574 | | characteristic, klystr on | 393 | admittance | 576 | | corner | 702 | coupled | 580 | | passive | 70 0, 757 | current | 580 | | Reflex | | equivalent lumped circuit | 57 7 | | bunching | 385 | helical inner conductor | 601 | | klystron | 392 | impedance | 576 | | Refraction, atmospheric | 747 | | 9, 581 | | Regenerative clipper | 469 | pair of | 580 | | Registration | 111 | power | 579 | | Regular | | Q | 576 | | matrix | 1092 | selectivity | 579 | | polygon area | 1031
344 | | 8, 582 | | Regulator
Relative | 344 | voltage | 580
636 | | attenuation | 190 | wavelength Resonator (see also Resonant lines) | 575 | | bandwidth | 190 | Response | 3/3 | | biological effectiveness | 914 | cascaded stages | 451 | | frequency | 994 | frequency | 164 | | humidity | 925 | hill | 209 | | level | 832 | | 7, 341 | | resistance | 46 | Retarded potential | 1028 | | Relativistic mass | 893 | RETMA | 76 | | Relativity | 893 | waveguides | 629 | | Relaxation oscillator | 426, 465 | Return loss | 832 | | Relay contact protection | 321 | Reverberation time | 863 | | Reliable tubes, Armed Services | 430 | RF pulse duration | 385 | | Reluctance | 36 | RG lines | 608 | | REM unit | 914 | Rhodium | 109 | | Repeater, telephone | 828 | | 9, 690 | | Resistance, Resistor | | Ridged waveguide | 626 | | AC | 129, 131 | Rieke diagram | 389 | | bridge | 263 | Right triangle | 1043 | | | | | | | Rigid copper coaxial line | 612 | Segment | | |--|------------------|--------------------------------|------------------| | Ripple | 282, 318 | circle, area | 1032 | | RISAFMONE code | 950 | sphere, volume | 1034 | | Rise time, pulse | 542 | Selective circuit, Selectivity | 237, 263, 582 | | Rising-sun magnetron | 387 | amplifier | 459 | | Rms | 982 | equation | 77 5 | | deviation | 983 | far from resonance | 239 | | Roentgen | 913 | feedback amplifier | 459 | | equivalent mammal | . 914 | network | 187 | | equivalent physical unit | 913 | Selenium | 481 | | Room | | diode | 482 | | acoustics | 863 | rating | 309 | | noise | 839 | rectifier | 308 | | | 354 | Semiconductor | 478, 480 | | Root-mean-square value | 150, 982 | applications | 480 | | Routh's criterion | 346 | definitions | 478
308 | | Rugby | 28 | rectifier | 308 | | Run-away effect | 512 | power | 276 | | Rydberg wave number | 34 | Sendust | 964 | | S | | Sequential selection Series | 704 | | Safety, radiation | 913 | arm impedance | 187 | | Sag calculation | 933 | circuit | 120, 122, 507 | | Sample mean, median, variance | | compensation | 358 | | Sampling frequency | 539 | mathematical | 1084 | | Saturation | 307 | Fourier | 1006 | | flux density | 326 | M-derived filter | 166 | | humidity percent | 925 | repeater | 828 | | junction current | 480, 523 | shunt | 830 | | magnetic | 273, 324 | RLC in | 157 | | moment | 74 | charge, discharge of | 154 | | Sawtooth | | tuned circuit | 135 | | generator | 470, 476 | interstage | 517 | | pulse | 1013 | Servomechanism | 344 | | Scalar | | Servomotor | 36 5 | | multiplication | 1086 | Set | | | product | 1085, 1092 | indicator | 9 57 | | triple product | 1086 | telephone | 826 | | Scaling | | Shaping circuit | 458, 460, 470 | | circuit | 910 | Sheet-metal gauge | 60 | | factor, electron tube | 381 | Shielding | 115, 132 | | magnetron | 389 | transformer | 263 | | Scanning sequence | 793 | Shifting theorem | 1004, 1082 | | Scattering | | Ships | 944 | | coefficient | 650 | Shock isolation | 939 | | matrix | 644 | Short | 66 2, 691 | | propagation | 739 , 757 | antenna | 560 | | Schematic diagrams | 947 | circuited line | 718 | | Schering bridge | 266
468 | wave propagation Shorted turn | 115 | | Schmitt trigger Scientific frequency bands | 15 | Shot effect | 372 | | Scintillation counter | 908 | Shunt | 3/2 | | Scope, radar | 805 | M-derived filter | 166 | | Scott connection | 271 | repeater | 828 | | Screws, machine | 57 | Sideband energy, angular | | | Seasonal variation | 718 | tion | 534 | | Secondary electron emission | 407 | Side-lobe level | 694 | | Section, filter | 164 | Sidetone level | 82 7 | | Sector | | Signal, Signaling | | | circle, area | 1032 | carrier | 830 | | sphere, volume | 1034 | channel | 542 | | | | | | ### Signal, Signaling | Signal, Signaling (continued) | Solid | | |--|-----------------------------------|------------| | information 527 | analytic geometry | 1061 | | intensity contour 779 | copper wire | 50 | | reporting code
950 | sound in | 857 | | speed 541, 846 | Sonar | 959 | | to noise | Sound | 850 | | improvement factor 543 | absorption coefficient | 867 | | ratio 536, 543, 544, 755 | in gas | 853 | | Silectron 276, 326 | in liquid | 856 | | Silicon 480 carbide 481 | in solid | 857
853 | | | intensity | 54, 924 | | | 1 | 965 | | properties of 485 rectifier 308 | Source symbols Space-charge | 703 | | Silicone 303 | debunching | 385 | | resin coating 109 | layer widening | 497 | | rubber 107 | Space-diversity reception | 746 | | Silver plate 927 | Sparkgap voltage | 921 | | Simple am 548 | Spark suppression | 321 | | Simpson's rule 1033 | Special feedback circuit | 457 | | Sine 1100 | Specific | | | hyperbolic 1111 | acoustical impedance | 852 | | law of 1044, 1046, 1053 | gravity | 45 | | wave, rectified 1022 | heat | 75 | | Singing margin 833 | Spectral response, eye | 401 | | Single | Spectrum | | | hop transmission 721 | acoustic | 871 | | layer solenoid 112 | modulation | 527 | | phase rectifier 306 | signal | 1012 | | polarity pam 547 | Speech | 872 | | shot multivibrator 468 | bandwidth | 830 | | sideband modulation 531
telephony interference 773 | clipping | 876
875 | | telephony, interference 773 tuned circuit 241 | intelligibility Speed of response | 341 | | interstage 228, 520 | Sphere, Spherical | 341 | | Sinimax 276 | coordinate | 1088 | | SINPFEMO, SINPO code 950 | excess | 1047 | | Sinusoidal angular modulation 532 | resonator | 636 | | Six-phase rectifier 307 | triangle | 668 | | Sizes, component 76 | | 2, 1045 | | Skin | volume | 1034 | | depth 128 | wave 8 | 51, 853 | | effect 112, 128 | Spheroid | 1061 | | Skirt 192 | Spin | 893 | | Sky wave 716 | Spinel crystal structure | 72 | | Slater's rule 390 | Spiral | | | Slot antenna 687 | delay line | 600 | | Slotted | four cable | 824 | | line 586 | Sporadic E | 719 | | air 594 | Spur | 1093 | | section 644
Slow wave 396 | Spurious | 539 | | Slow wave 396
Small-signal amplifier, transistor 511, 525 | distortion response | 774 | | Smith chart 587, 652 | Squaremu | 326 | | Softening point 63 | Square, resistance per | 128 | | Solar | Squaring circuit | 470 | | noise 764 | Stability, Stabilization | 346 | | zenith angle 737 | criterion, transistor | 500 | | Soldering 47 | load | 361 | | dipping 111 | method | 358 | | Solenoid, single-layer, inductance 112 | Stable nucleus | 892 | | | | | | Stack, selenium rectifier | 309 | Superposition | | |------------------------------------|------------------|---------------------------------------|------------------| | Stacked loops | 704 | principal of | 133 | | Stage gain | 450 | theorem | 1030 | | Stagger tuning | 228 | Support, tower | 936 | | Stainless steel | 927 | Suppressed-carrier modulation | 531 | | Stalo | 812 | Surface | | | Standard | | area | 1034 | | broadcasti ng | 778 | density | 36 | | cables | 608 | protection | 926 | | deviation | 983 | wave | 714 | | frequ encies | 24 | line | 604 | | stations | | Surge suppression | 156, 321
630 | | non USA | 28 | Susceptance | 470, 476 | | USA | 24 | Sweep generator | 285, 319 | | preemphasis curve | 786 | Swinging reactor | 524 | | pressure, temperature | 920 | Switch, Switching circuit | 885 | | time | 953
34 | contact protection | 321 | | volume | 628 | tube, gas | 427 | | waveguides | 76 | Syllabic compandor | 838 | | Standards
Standing-wav e | 644 | Syllable articulation | 875 | | | 645, 682 | Symbol | 964 | | sound | 864 | ensemble | 965 | | Static | 004 | graphical | 947 | | accuracy | 361 | information theory | 964 | | error coefficient | 362 | letter | 39 | | friction | 366 | number | 879 | | interference, noise | 764 | Symmetrical | | | Stationary process | 998 | band-pass filter | 192 | | Station, broadcast | 778 | band-reject filter | 192 | | Statistics, Statistical | 981 | clipper | 447 | | independence | 968 | inductive diaphragm | 631 | | Steel tower | 936 | multivibrator | 466, 471 | | Stefan-Boltzmann constant | 34 | pi, O attenuator | 252, 257 | | Step, unit | 160 | T, H attenuator | 2 52, 255 | | Stirling's formula | 1038 | Symmetry | 1005 | | Stochastic process | 981, 998 | complementary | 513 | | Stop band | 165 | Synchrocyclotron | 898 | | Storage time | 524 | Synchronized, Synchronizing | 474 | | Straight vertical antenna | 671 | blocking oscillator | 476 | | Stranded copper wire | 56 | pulse | 543
899 | | Strapped magnetron | 386 | Synchrotron | 364 | | Strip transmission line | 598
901 | Synchro transmitter Synthesis, filter | 187 | | Strong-focusing synchrotron | | Synthesis, Intel | 107 | | Stub, impedance matching | 584 | | | | Stubs gauge | | ↓ T | | | sheet metal | 61 | Tables | | | wire | 50 | mathematical | 1098 | | Styroflex cable | 612 | wire, see Wire tables | | | Subcarrier pulses | 538 | | , 363, 366 | | Subclutter visibility | 814 | Tangent | 1100 | | Subscriber's set | 826 | law | 1044 | | Substitution, high impedance | 266 | hyperbolic | 1113 | | Sulfur hexafluoride | 922 | Tangential distance | 741 | | Sunspot | | Tantalum electrolytic capacitor | 101 | | cycl e
· | 716 | Тар | | | maximum | 718 | drill | 58 | | Superheterodyne spurious responses | | screws | 58 | | Super-high frequency | 8 | Target, radar | 803 | | Supermalloy | 276, 32 6 | Taylor's theorem | 1084 | #### Teflon dielectric | Teflon dielectric | 101, 107, 303 | Thermal (continued) | | |----------------------------|------------------|-----------------------------|--------------------| | Telegraph | | noise | 766 | | Alphabet 2 | 847 | shock, capacitor | 89 | | bandwidth | 22 | Thermionic emission | 367 | | carrier | 849 | Thermistor | 480, 483 | | emission | 19 | Thermocouple | 43 | | facilities | 842 | Thévenin's theorem | 132
367 | | interferenc e | 771
846 | Thoriated-tungsten emitter | 58 | | speed
Telemetering | 959 | Thread, screw Three-phase | 36 | | Telephone | ,,, | magnetic amplifier | 330 | | emission | 19 | rectifier | 306 | | line data | 816 | Threshold, painful sound | 852 | | set | 826 | Thyratron | 314 | | Teleprinter code | 844 | Tilt angle, antenna | 681 | | Teletype 7-unit code | 844 | Time | | | Television | | chart | 953 | | bandwidth | 22 | constant | 151, 460 | | broadcasting | 7 78, 787 | division multiplex | 542
54 2 | | channels | 787
787 | gate | 25 | | color
frequency bands | 13 | intervals
signal | 24 | | spectrum | 792 | unit of | 36 | | camera tube | 410 | Tin plate | 927 | | emission | 19 | Tissue damage | 913 | | pickup frequency bands | 13 | TM mode | 617, 622 | | TE mode | 617 , 622 | Tokyo | 28 | | Temperature | | Tolerance | | | coefficient | | component | 77 | | capacitance | 97 | frequency | 17 | | resistance | 45, 51, 80 | Toll-cable constants | 821, 824 | | semiconductor
tolerance | 483
85 | Torino | 28 | | compensation | 85 | Toroidal core
Torque | 324, 336
933 | | capacitor | 83 | Torus volume | 1035 | | transistor | 522 | Tower, radio | 936 | | conversion | 33 | Trace | 1093 | | emitter | 368 | Track recorder | 905 | | extremes | 922 | Train, vibration | 945 | | gradient | 747 | Trancor | 276 | | scale | 47 | Transcendental functions | 1063 | | standard | 920 | Transconductance | 376 | | transformer
world | 302 | Transducer loss | 569 | | Template, profile chart | 923
744 | Transfer admittance | 138 | | Tensile strength of wire | 52 | constant | 165 | | Tension, line | 935 | function | 348, 1000 | | Terminal pair | 646 | impedance | 137 | | Terminating | 040 | Transform | | | impedance | 188 | Fourier | 1002 | | set | 831 | Laplace | 158 | | Ternary pulse-code modula | | . Transformation | | | Testing, component | 76 | matrix | 64 8, 660 | | Tetrode transistor | 488 | rectangular coordinates | 1057 | | T, H attenuator | 255, 258, 262 | T to pi | 142 | | Theorem, network | 132 | Transformer audio frequency | 271
286 | | Thermal | | intermediate-frequency | 106 | | conductivity | 45, 75 | rectifier | 273 | | emissivity | 369 | shielded | 263 | | expansion | 45, 63 | Transhybrid loss | 832 | | | | • | | | cables 612 radar 80 military 608 Transpose of matrix 109 | |
--|------------| | Transistor 478, 480, 486 biasing 497, 511 characteristics 507 circuit 499 definition 478 direct-current gain 523 magnetic amplifier 333 Transit angle 385 Transitional probability 970 Transition in line 655 Transit time 380 Transmission line 4549, 644 admittance 558 transformation 570, 574, 612 military 608 Transpose of matrix 556 biasing 497, 511 transducer loss 556 vector diagram 556 vector diagram 556 vector diagram 556 for reflection coefficient 562, 57 Transmission of signals coefficient, junction 64 formulas, links 75 signal/noise ratio 536, 544, 75 Transmitter 549, 644 Transmitter 549, 644 Transmitter 549, 644 admittance 558 transformation 570, 574, 612 cables 612 Transpose of matrix 109 | 14 | | biasing 497, 511 transducer loss 566 characteristics 507 vector diagram 555 556 vector diagram 557 vector diagram 558 558, 574 vector diagram 558 vector diagram 558 vector diagram 558 vector diagram 558, 574 vector diagram 558 vector diagram 558 vector diagram 558 vector diagram 558, 574 vector diagram 558 vector diagram 558 vector diagram 558, 574 vector diagram 558 diagr | | | characteristics 507 circuit 499 voltage 555 voltage 555 definition 478 gradient 562, 575 gra | - | | circuit 499 definition 478 direct-current gain 523 magnetic amplifier 333 Transit angle 385 Transitional probability 970 Transition in line 655 Transit time 380 Transission of line 549, 644 Transmission line 549, 644 admittance 558 transformation 570, 574, 612 military 608 Transpose of matrix 559 voltage 555 reflection coefficient 562, 57 Transmission of signals coefficient, junction 64 formulas, links 75 signal/noise ratio 536, 544, 75 speed 84 Transmit-receive switch 427, 64 Transmitter brightness response, television 759 frequency tolerance 11 radar 86 Transpose of matrix 1059 | - | | definition 478 gradient 59 direct-current gain 523 magnetic amplifier 333 Transit angle 385 Transitional probability 970 Transition in line 655 Transit time 380 Transmission line 549, 644 admittance 558 transformation 570, 574, 612 cables military 608 Transpose of matrix 59 gradient 59 gradient 59 gradient 59 reflection coefficient 562, 57 Transmission of signals coefficient, junction 64 formulas, links 75 signal/noise ratio 536, 544, 75 speed 84 Transmit-receive switch 427, 64 Transmitter 549, 644 Transmitter 558 broadcast 77 frequency tolerance 10 gradient 59 reflection coefficient 562, 57 Transmission of signals coefficient, junction 64 Transmission inks 75 signal/noise ratio 536, 544, 75 speed 84 Transmit-receive switch 427, 64 Transmitter 57 brightness response, television 79 broadcast 77 Transmitter 79 broadcast 77 Transmitter 79 7 | | | direct-current gain magnetic amplifier Transit angle Transitional probability Transition in line Transition Transmission line Transmission line Transmission line Transmission line Transformation Transmiter Tr | _ | | magnetic amplifier 333 Transmission of signals Transit angle 385 coefficient, junction 64 Transitional probability 970 formulas, links 75 Transit time 380 signal/noise ratio 536, 544, 75 Transit time 380 rranslation 1004 Transmission line 549, 644 admittance 558 transformation 570, 574, 612 cables 612 radar 80 military 608 Transpose of matrix 105 | _ | | Transit angle 385 Transitional probability 970 Fransition in line 655 Transit time 380 Translation 1004 Transmission line 549, 644 admittance 558 transformation 570, 574, 612 cables 612 military 608 Transpose of matrix 644 formulas, links 75 signal/noise ratio 536, 544, 75 signal/noise ratio 536, 544, 75 ransmit-receive switch 427, 64 Transmit-receive switch 427, 64 Transmitter brightness response, television 75 broadcast 77 frequency tolerance 11 radar 80 | 0 | | Transitional probability 970 Transitional probability 970 Transition in line 655 Transit time 380 Translation 1004 Transmission line 549, 644 Transmission line 558 damittance 558 transformation 566 transformation 570, 574, 612 cables 612 military 608 Transpose of matrix 1058 | | | Transition in line 380 Translation 380 Translation 1004 Transmission line 549, 644 admittance 558 transformation 566 attenuation 570, 574, 612 military 608 Transpose of matrix 536, 544, 75 signal/noise ratio 536, 544, 75 speed 84 Transmit-receive switch 427, 64 Transmitter brightness response, television 75 broadcast 77 frequency tolerance 1 gradar 80 Transpose of matrix 109 | _ | | Transit time 380 speed 84 Translation 1004 Transmission line 549, 644 admittance 558 transformation 566 attenuation 570, 574, 612 cables military 608 speed 84 Transmitrer switch 427, 64 Transmitter brightness response, television 75 broadcast frequency tolerance 1 Transpose of matrix 105 | | | Translation 1004 Transmission line 549, 644 admittance 558 transformation 570, 574, 612 cables 612 military 608 Transmit-receive switch 427, 64 | | | Transmission line admittance transformation attenuation cables military 549, 644 Transmitter brightness response, television 558 broadcast frequency tolerance 109 Transpose of matrix 109 Transmitter brightness response, television 75 broadcast 77 frequency tolerance 109 Transpose of matrix | | | admittance 558 brightness response, television 759 transformation 566 broadcast 779 attenuation 570, 574, 612 frequency tolerance 110 cables 612 radar 80 military 608 Transpose of matrix 105 | ,, | | transformation 566 broadcast 77 attenuation 570, 574, 612 frequency tolerance 1 cables 612 radar 80 military 608 Transpose of matrix 109 | 22 | | attenuation 570, 574, 612 frequency tolerance 1 cables 612 radar 80 military 608 Transpose of matrix 109 | _ | | cables 612 radar 80 military 608 Transpose of matrix 109 | 17 | | military 608 Transpose of matrix 109 | - | | | - | | characteristic impedance 588 Transverse electromagnetic wave 61 | 17 | | current 555 Trapezium area 103 | | | delay 600 Trapezoidal | | | efficiency 564 area 1031, 103 | 33 | | G-line (surface-wave) 604 pattern 52 | 29 | | impedance 558 pulse 46 | 50 | | matching 583, 584 wave 102 | 20 | | transformation 566 Traveling wave 64 | 44 | | length 585 tube 39 | 95 | | matching section 583 Triangle, Triangular | | | microstrip 595 area 103 | 31 | | mismatch loss 569 current distribution 68 | | | open-circuited 560 hyperbolic 109 | 52 | | parameters, general circuit 555 pulse 46 | 62 | | power 564 | 64 | | dissipation 566 Tieses | • | | rating 812, 810 | 13 | | duditer-wave 374 | 68 | | matching section 363 | 42 | | radio-frequency capies | | | reflection coefficient 562 Trigonometry, Trigonometric 10. resistance of 574 functions | • | | resonant (see also Resonant lines) 574 degree 110 | იი | | RETMA cables 612 logs 110 | | | RG-cables 612 identities 104 | | | (10) | | | nitegius | - | | hyperbolic hyperbolic | | | sign conventions 540 plurie | | | slotted spherical spherical | 99 | | Smith chart | 77 | | spiral delay 600 Tropical | 26 | | standard cables 608 1 | | | standing-wave zone | 9 | | loss factor 573 Troposphere | 4 !
5 7 | | ratio 562, 5/0 | 57 | | strip line 598 TR tube 427, 6 | | | STUD 564 Truck Vibration | 45 | | Styrotiex 612 True inductance, incoderment | 68 | | subscripts 549 ¹ T section 145, 164, 2 | 47 | #### Tube | T () (F() (1)) | | |--
--| | Tube (see also Electron tube) | Valence band 480 | | circuit 432 | Valley attenuation 192 | | electron 367 | Van de Graaff generator 895 | | Tubular conductor 131 | Vanishing carrier 535 | | Tuned circuit 116, 164, 236 | Variable, random 981 | | coupled 580 | Variance 983, 994 | | current 580, 582 | Variate 981 | | equivalent to resonant line 577 | Varistor 480, 482 | | interstage 521 | Vector | | loss 579, 581, 582 | analysis formula 1085 | | pair of 580 | column 1090 | | power 579, 582 | Hertz 1029 | | standing-wave ratio 579 | modulation 527 | | staggered 228 | multiplication 1086 | | Turboprop aircraft vibration 945 | Poynting 1029 | | Turn-on time 524 | product 1086 | | Turnstile 691 | row 1090 | | Twin-T circuit 270 | triple product 1086 | | Two-hop transmission 719 | Vee antenna 679, 690 | | Two-port junction 647 | Vehicles, vibration 944 | | Two-wire | Velocity | | line 589 | acceleration 942 | | termination 831 | error constant 362 | | Type | light 34, 924 | | designation | modulation 385, 391 | | capacitor 83 | phase, helix 683 | | component 78 | phasor 850 | | number 957 | sound 854, 924 | | Type-O, Type-I system 346 | wind 924, 939 | | | Versine 1042 | | U | Vertical | | • | | | 1114 - 1 1 1 7 | antenna 664, 670, 671, 713 | | Ultra-high frequency 8 | antenna 664, 670, 671, 713 polarization 665 | | propagation 741 | | | propagation 741
Unbalanced | polarization 665 | | propagation 741
Unbalanced
pi, T attenuator 252 | polarization 665
radiation angle 679 | | propagation 741 Unbalanced pi, T attenuator 252 Uncertainty 965 | polarization 665
radiation angle 679
scanning frequency 793 | | propagation 741 Unbalanced pi, T attenuator 252 Uncertainty 965 Undesired responses 774 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 | | propagation 741 Unbalanced 252 pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform 774 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 | | propagation 741 Unbalanced pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform pdm 547 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 | | propagation 741 Unbalanced 252 pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 | | propagation 741 Unbalanced 252 pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform 547 pdm 546 time 25 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 | | propagation 741 Unbalanced 252 pi, T attenuator 262 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 | | propagation 741 Unbalanced 252 pi, T attenuator 265 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 | | propagation 741 Unbalanced 252 pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency | | propagation 741 Unbalanced 252 pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 939 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 | | propagation 741 Unbalanced 252 pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 | | propagation 741 Unbalanced 252 pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 7531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Vestigial-sideband modulation 710 Vestigial-sideband modulation 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Vitrual height, ionosphere 723 Visibility factor, indicator 805 | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 United States standard gauge 61 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 | | propagation 741 Unbalanced pi, T attenuator 252 Uncertainty 965 Undesired responses 774 Uniform pdm 547 ppm 546 time 255 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 United States standard gauge 61 Universal time 953 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Verty-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531
Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 | | propagation 741 Unbalanced 252 pi, T attenuator 265 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Vestigial-sideband modulation 710 Vestigial-sideband modulation 939 Vibration 939 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 Unsymmetrical multivibrator 472 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Vestigial-sideband modulation 710 Vestigial-sideband modulation 710 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage amplification, transistor 500 | | propagation 741 Unbalanced 252 pi, T attenuator 265 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Very-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage amplification, transistor 500 breakdown 921 | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 Unsymmetrical multivibrator 472 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Vesty-long trequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage amplification, transistor 500 breakdown 921 coefficient, resistor 80 | | propagation 741 Unbalanced 252 pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 Unsymmetrical multivibrator 472 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Verty-low frequency 8 propagation 710 Vestigial-sideband modulation 531 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage amplification, transistor 500 breakdown 921 coefficient, resistor 80 current dual 509 | | propagation 741 Unbalanced pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform pdm 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 Unsymmetrical multivibrator 472 UT 953 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Vestigial-sideband modulation 710 Vestigial-sideband modulation 939 Vibration 939 Vibration 941 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage amplification, transistor 500 breakdown 921 coefficient, resistor 80 current dual 509 derating, capacitor 91 | | propagation 741 Unbalanced pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform pdm 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 Unitary matrix 1092 Unitary matrix 1092 Unitary states standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 Unsymmetrical multivibrator 472 UT 953 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Vestigial-sideband modulation 710 Vestigial-sideband modulation 710 Vibration 939 Vibrator power supply 271 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage amplification, transistor 500 breakdown 921 coefficient, resistor 80 current dual 509 derating, capacitor 91 drop 54 | | propagation 741 Unbalanced pi, T attenuator 965 Uncertainty 965 Undesired responses 774 Uniform pdm 547 ppm 546 time 25 Unit(s) 29, 914, 924 circle 1050 cisoid 1083 conversion table 36 impulse 159, 1003, 1081 matrix 1090 step 160, 1081 vector 1086 Unitary matrix 1092 United States standard gauge 61 Universal time 953 Unloaded Q 222, 385, 575 Unstable nucleus 892 Unsymmetrical multivibrator 472 UT 953 | polarization 665 radiation angle 679 scanning frequency 793 Vertically stacked loops 704 Very-high frequency 8 Very-long wave 710 Vestigial-sideband modulation 710 Vestigial-sideband modulation 939 Vibration 939 Vibration 941 Video-frequency amplifier 413, 516 transmitter 797 Vidicon 418 Vinyl acetal 303 Virtual height, ionosphere 723 Visibility factor, indicator 805 Visual transmitter 797 Voice-frequency repeater 829 Voice, spectrum 871 Voltage amplification, transistor 500 breakdown 921 coefficient, resistor 80 current dual 509 derating, capacitor 91 | | Voltage (continued) | | Weight (continued) | | |--------------------------------|-----------------|---|----------| | gradient | 595 | foil, printed circuit | 108 | | matrix operation | 657 | lines | 608 | | multiplier | 305 | Weighting network, noise | 839 | | power supply | 929 | Welding | 47 | | rating, component | 77 | Wheatstone bridge | 263 | | ratio | 40 | Wideband response | 448 | | reflection coefficient | 562 | Wien | | | regulation | | bridge | 264 | | transformer | 280 | constant | 34 | | tube | 427 | Winding transformers | 298 | | sparkgap | 921 | Wind velocities, pressures | 924, 939 | | Volume | 1034 | Wire, Wiring | | | density | 36 | diagrams | 947 | | efficiency, capacitor | 85 | fusing current | 55 | | level | 827 | gauge, see Wire table | | | range | 838 | insulating material | 303 | | resistivity | 63 | motor | 932 | | · | | table 50, 54, 114, | | | | | transmission | 816 | | W | | voltage drop | 54 | | Wagner earth connection | 264 | wound resistor | 80 | | Washington & Moen gauge | 61 | Work | | | Water | | function | 43 | | cooling | 369 | unit of | 36 | | vapor | 925 | Working-voltage rating | 77 | | absorption | 749 | World, power supplies | 929 | | gradient | 747 | WWV and WWVH | 24 | | Wattage rating, resistor | 81 | | | | Wave | | X | | | equation | 850 | x-hyperbola | 1060 | | filter, see Filter | | x-nyperbola
x-parabola | 1057 | | interference | 745 | X-ray | 888 | | polarization | 670 | density | 74 | | propagation | 710 | density | , , | | reactor | 272, 285 | V | | | sound | 850, 864 | Y | | | standing | 644 | Y-delta transformation | 142 | | transformation matrix | 648 | y-hyperbola | 1060 | | traveling | 644 | Young's modulus | 75 | | Waveform | 1002 | y-parabola | 1058 | | analysis
generator | 458, 460 | | | | paper capacitor | 93 | Z | | | | | Zero | 208, 355 | | beyond cutoff | 617, 644
628 | displacement, velocity error | 346 | | cavity | 642 | Zinc plate | 927 | | designation | 629 | Zone, skip | 719 | | hybrid (magic T) | 634 | ZUO | 28 | | ridged | 626 | | | | theoretical power, attenuation | | | | | Wavelength-frequency | 7 | Numerical | | | Weather data | 922 | 4-79 Mo | 326 | | Wedge frustum volume | 1036 | 144 weighting network | 839 | | Weight | | 302-type telephone | 826 | | atomic |
41 | 500-type telephone | 826 | | 1 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 1 | | | |